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Abstract: Magnetic resonance (MR) images can detect small pathological tissue with the size of
3–5 image pixels at an early stage, which is of great significance in the localization of pathological
lesions and the diagnosis of disease. High-resolution MR images can provide clearer structural
details and help doctors to analyze and diagnose the disease correctly. In this paper, MR super-
resolution based on the multiple optimizations-based Enhanced Super Resolution Feed Back Network
(ESRFBN) is proposed. The method realizes network optimization from the three perspectives of
network structure, data characteristics and heterogeneous network integration. Firstly, a super-
resolution network structure based on multi-slice input optimization is proposed to make full use
of the structural similarity between samples. Secondly, aiming at the problem that the L1 or L2
loss function is based on a per-pixel comparison of differences, without considering human visual
perception, the optimization method of multiple loss function cascade is proposed, which combines
the L1 loss function to retain the color and brightness characteristics and the MS-SSIM loss function
to retain the contrast characteristics of the high-frequency region better, so that the depth model
has better characterization performance; thirdly, in view of the problem that large deep learning
networks are difficult to balance model complexity and training difficulty, a heterogeneous network
fusion method is proposed. For multiple independent deep super-resolution networks, the output
of a single network is integrated through an additional fusion layer, which broadens the width of
the network, and can effectively improve the mapping and characterization capabilities of high-
and low-resolution features. The experimental results on two super-resolution scales and on MR
images datasets of four human body parts show that the proposed large-sample space learning
super-resolution method effectively improves the super-resolution performance.

Keywords: ESRFBN networks; multiple optimizations; MR images; deep learning; super-resolution

1. Introduction

MR images can detect small pathological tissue at an early stage, which is of great
significance in the localization of pathological lesions and the diagnosis of disease. As
MR images with high-resolution can provide clearer structural details, which can help
doctors to analyze and diagnose the disease correctly, it is more desirable to obtain high-
resolution MR images in a stronger magnetic field [1]. However, the acquisition of high-
resolution MR images requires a stronger magnetic field and longer radiation scanning
time. Generally, on the MR imaging time, it maybe lasts about 6–12 min for one organ
region [2]. In this paper, the high-resolution refers to the resolution of an image for one
organ region. For example, for the same size of the organ region, the low-resolution
is 512 × 512, and the high-resolution is 1024 × 1024. When the imaging process takes
a longer time, the movement of the human body during the process will bring more
noise [3]. The improvement of the resolution of MR images will be at the cost of a doubling
of the imaging time, which greatly reduces the patient’s experience and easily brings
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psychological pressure to the patient. When improving the resolution of MR images, the use
of software to improve the resolution of MR images in this paper is a cost-effective method
compared with the hardware method of upgrading the imaging equipment. Compared
with traditional interpolation methods, such as Bicubic Interpolation and Nearest Neighbor
Interpolation [4], as well as reconstruction-based methods, such as Convex Set Projection [5]
and Maximum Posterior [6], the dictionary learning method has stronger feature expression,
and can better characterize the mapping relationship between high- and low-resolution
MR images [7].

Bicubic interpolation is the interpolation method in which the value of the function
at the point (x, y) can be obtained by the weighted average of the 16 nearest sampling
points in the rectangular grid. The nearest neighbor interpolation method is a gray value
interpolation method, which makes the gray value of the transformed pixel equal to the
gray value of the input pixel closest to it. Super-resolution reconstruction technology
refers to the reconstruction of a corresponding high-resolution image from one or more
low-resolution images based on reconstruction. This is mainly because the dictionary
learning method can introduce the image’s prior information from the trained data set, but
its shallow model expression ability is limited; thus, the ability to learn the image’s prior
information is limited.

In recent years, with the rapid development of deep learning technology, deep learning
based super-resolution methods have been actively explored, which greatly promotes the
development of image super-resolution technology. In 2014, Dong et al. proposed the Super
Resolution Convolutional Neural Network (SRCNN) model [8], which applied deep learn-
ing to the field of image super-resolution for the first time. Since then, scholars have carried
out studies from the aspects of network architecture, loss function type, learning principle
and strategy, etc. A large number of image super-resolution methods based on deep convo-
lutional networks have been proposed, and they have been improving the performance
of super-resolution continuously [9], such as Very Deep Super Resolution (VDSR [10]),
Residual Dense Network (RDN) [11], Super Resolution Generative Adversarial Network
(SRGAN) [12], Deep Back-projection Network (DBPN) [13] and Super Resolution Feed
Back Network (SRFBN) [14], etc., which have reached the most advanced performance on
various benchmarks of image super-resolution. In previous works, the researchers devel-
oped some MR super-resolution algorithms. We describe as follows. BIC [15]: The Bicubic
Interpolation (BIC) method is to use the value of 16 pixels around the pixel to be calculated
to estimate the value of the unknown pixel. It is a more complex interpolation method
than the Nearest Neighbor Interpolation and Bilinear Interpolation. The method uses a
cubic polynomial to approximate the theoretically best interpolation function. IBP [16]: The
Iterative Back Projection (IBP) is to adopt an iterative method to reduce the error between
the image obtained by the simulated degradation process and the actual low-resolution
image gradually, and then the error value between the two is backward projected to update
the initial estimate of the high-resolution image and reconstruct the high-resolution image.
POCS [5]: The Projection onto Convex Sets Approach (POCS) requires that a set of closed
convex constraints be defined in a vector space within which the actual high-resolution
image is contained. An estimate of a high-resolution image is defined as a point within the
intersection of sets of these constraints. A high-resolution estimation image can be obtained
by projecting any initial estimate onto these constrained sets. MAP [6]: The Maximum a
Posterior (MAP) method is a probability-based algorithm framework, which is the most
widely used method in practical application and scientific research at present, and many
specific super-resolution algorithms can be classified into this probabilistic framework.
The basic idea of the maximum posterior probability method is derived from conditional
probability, which takes the known low-resolution image sequence as the observation
result to estimate the unknown high-resolution image. JDL [7]: Compressive Sensing (CS)
points out that an image can be accurately reconstructed from a set of sparse representation
coefficients on an over-complete dictionary under very harsh conditions. Joint Dictio-
nary Learning (JDL) can strengthen the similarity between the sparse representation of
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low-resolution and high-resolution image blocks and their corresponding real dictionaries
through the joint training of low-resolution and high-resolution image block dictionaries.
Therefore, the sparse representation of low-resolution image blocks and the high-resolution
super-complete dictionary can work together to reconstruct the high-resolution image
blocks, and then the high-resolution image blocks are connected to obtain the final com-
plete high-resolution image. IJDL [17]: Aiming at the problem of dictionary joint cascade
training only considers the joint image block pair error and does not consider the indi-
vidual reconstruction error of the high- and low-resolution dictionary, Improved Joint
Dictionary Learning (IJDL), which is a dictionary training method based on independent
calculation of high- and low-resolution dictionary reconstruction errors, is proposed. This
method optimizes the objective function, and takes the individual reconstruction errors
of high- and low-resolution dictionaries into consideration, and discards the traditional
cascade calculation method, effectively reducing the reconstruction error and improving
the reconstruction accuracy of the image. RDN [11]: The Residual Dense Network (RDN)
applies Residual Dense blocks. It can not only read the state of the previous residual dense
block through a continuous memory mechanism, but also make full use of all the layers in
it through local dense connection, and adaptively retain the accumulated features through
Local Feature Fusion (LFF). The global residual learning is used to combine the shallow
features with the deep features and make full use of the stratified features of the original
low-resolution image. EDSR [18]: Enhanced Deep Residual Networks for Single Image
Super-Resolution (EDSR) draws on the residual learning mechanism of the ResNet network.
The input is divided into two paths after a layer of convolution. One path goes through the
N-layer RDB module for convolution again, and the other leads directly to the intersection
for weighted summation, and then the result is output after up-sampling and convolution.
SRGAN [12]: SRGAN is a generative adversarial network. It adds a discriminator on the
basis of SRResnet. Its function is to add an additional discriminator network and two losses,
and to train the two networks in an alternate training way. ESRGAN [19]: Compared with
SRGAN, ESRGAN increases the perceptual loss, and uses the Residual-in-Residual Dense
Block (RDDB) module to replace the original Residual Block module, so that ESRGAN
can obtain more realistic and natural textures. SRFBN [14]: SRFBN designed a feedback
module, using the return mechanism to improve the effect of super-resolution. The advan-
tage of a returnback is that no additional parameters are added, and multiple returnbacks
are equivalent to deepening the network, refining the generated image. Although other
networks have adopted similar return structures, these networks are unable to make the
front layer obtain useful information from the back layer. ESRFBN [20]: For ESRFBN, the
number of feature graphs and group convolutions is increased on the basis of the SRFBN
network. The number of feature graphs is changed from 32 to 64, and the number of group
convolution is also increased from 3 to 6.

However, these deep learning networks are mainly for natural image super-resolution
tasks, not medical images or MR images. In this regard, medical image researchers have
also paid attention to the progress of deep super-resolution, and transferred deep learn-
ing technology to MR images, and a number of deep-learning-based MR images super-
resolution methods have emerged. For example, a Progressive Sub-band Residual learning
Super-Resolution Network (PSR-SRN) is proposed in [21], which contains two parallel
progressive learning streams. One stream passes through the sub-band residual learning
unit to detect the missing high-frequency residuals, and the other stream focuses on the
reconstruction of refined MR images. These two learning streams complement each other
and learn the complex mapping between high- and low-resolution MR images. In [22],
researchers proposed a new hybrid network, which improves the quality of MR images
by increasing the width of the network. The hybrid block combines multi-path structure
and the variation dense block, which can extract rich features from low-resolution images.
In the previous work [23], the researcher combined the meta-learning technology with
the Generative adversarial networks (GAN) to achieve super-resolution of MR images of
any scale and high fidelity, and the meta-learning technology was used in the work [24].
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Generative adversarial networks (GAN) are a deep learning model. It is one of the most
promising methods of unsupervised learning on complex distribution in recent years.
The model produces fairly good output through mutual game learning of two modules
in the framework: generative model and discriminant model. GAN is most commonly
used in image generation, such as super-resolution tasks, semantic segmentation and so
on. The Super Resolution scale is the scaling factor. The scaling operation will adjust the
size of the image according to the given scaling factor. In this paper, data sets with two
super-resolution scales of ×2 and ×4 are generated in this paper.

However, the current deep learning technology still has three limitations when ap-
plying to MR images’ super-resolution. (1) The characteristics of MR images’ sequence
are not fully considered. The imaging method of MR images is different from natural
images. In the process of MR images, a series of images with similar structures can be
obtained. Therefore, compared with natural images, MR sequence images can provide
richer structural information and make the network more robust to noise. (2) At present,
most deep networks adopt L1 or L2 loss functions, which are all based on a pixel-by-pixel
comparison without considering human visual perception. At the same time, they are easy
to fall into the local optimal solution, and it is difficult to obtain the optimal effect [20].
(3) The capability of feature representation of deep learning networks gradually increases
with the deepening of the network. However, with the huge network structure, the training
difficulty of the network also increases exponentially, which makes it difficult to achieve a
good balance between model complexity and training difficulty.

2. Algorithm Architecture

Super-resolution methods based on deep learning have been successively applied
to MR images. However, these methods simply use deep learning techniques to process
MR image super-resolution tasks without fully considering the difference between natural
images and medical images. Deep learning technology still has limitations in MR images’
super-resolution. In this paper, corresponding optimization methods are proposed for the
three limitations of the application of current deep super-resolution networks in MR images.

Aiming at the problem that the characteristics of MR images’ sequence are not fully
considered, this chapter proposes a multi-slice input strategy to provide more structural
information for the network. The MR images are a sequence of images. Its adjacent slices
have a similar structure, which can provide two-point-five dimension (2.5D) information
for the network. It can obtain better results than two-dimension (2D), and has fewer
parameters and higher efficiency than three-dimension (3D) convolution [25].

Aiming at the problem that the L1 or L2 loss function is based on a pixel-by-pixel
comparison without considering human visual perception, where the L1 loss function is the
Least Absolute value Deviation (LAD) loss function, and the L2 norm loss function is the
Least Square Error (LSE) loss function. We propose a method of multi-loss function cascade
optimization based on the analysis of the commonly used loss functions. By combining the
characteristics of the L1 loss function to retain color and brightness and the characteristics
of the MS-SSIM loss function to retain the contrast of the high-frequency region better, the
depth model has better characterization performance [26].

Aiming at the problem that it is difficult for large deep learning networks to balance
model complexity and training difficulty, this paper proposes a method based on het-
erogeneous network fusion [27]. Heterogeneous network fusion is the use of common
technologies to realize the interconnection of different structures of super-resolution net-
works. In addition, the different structures have the different ability of MR super-resolution.
Heterogeneous network fusion is to increase the super-resolution performance through
applying enough of the advantages from these heterogeneous networks. For multiple
independent deep super-resolution networks, the output of a single network is integrated
through an additional fusion layer, or two independent networks are cascaded. This
method essentially broadens the width and depth of the network, and can effectively im-
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prove the mapping and characterization capabilities of high- and low-resolution features,
so as to obtain a better MR images’ super-resolution effect.

In order to solve the three limitations of deep super-resolution networks on MR
images simultaneously, this paper proposes a multi-optimized ESRFBN super-resolution
network algorithm for MR images based on the optimization methods of the previous
three paragraphs. The algorithm architecture is shown in Figure 1. The three optimization
methods are applied to the ESRFBN network at the same time, so that the multi-optimized
ESRFBN network can get a better MR images’ super-resolution effect.
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2.1. Cascade Optimization of Loss Function Based on Joint PSNR-SSIM

In order to improve the PSRN and SSIM indexes of MR super-resolution, a cascade
optimization method based on the joint loss function of PSNR-SSIM is proposed in this
section. SSIM as a loss function is not particularly sensitive to uniform deviation. This
leads to changes in brightness or color, which usually become duller. However, SSIM
can preserve contrast and is better than other loss functions in the high-frequency region.
On the other hand, the L1 loss function can keep the brightness and color unchanged.
Therefore, in order to obtain the best characteristics of the two loss functions, this section
combines them to form a new loss function, and the name is Mix loss function. Its formula
is as follows

LMix = α · LMS−SSIM + (1− α) · GσM
G
· L`1 (1)

The cascade optimization calculation steps of the loss function based on joint PSNR-
SSIM are as follows.

Step 1. Calculate LMS−SSIM

SSIM/MS-SSIM is an index that measures the similarity of two images, mainly from
three aspects: brightness, contrast and structure. Therefore, the SSIM index can better
characterize the structural information of the image. As a loss function, it can better retain
the high-frequency information of the image, so that the super-resolution image has more
detailed information, which is useful for MR images in clinical diagnosis. Its expression is
as follows. Where y is the original high-resolution image; y′ is the high-resolution image
output by the deep network; µy is the mean of the image y; µy′ is the mean of the image y′;
σ2

y is the variance of the image y; σ2
y′ is the variance of the image y′; σy′y is the covariance

of the sum of the image y and y′; c1 and c2 are two constants, avoiding the denominator to
be 0.

SSIM(y, y′) =

(
2µy′µy + c1)(σy′y + c2)

(µ2
y′ + µ2

y + c1)(σ
2
y′ + σ2

y + c2)
(2)
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The index range of SSIM is 0–1. The larger the SSIM is, the higher the similarity of
the two images. Therefore, SSIM as the loss function can be expressed as the following
formula [20].

LSSIM = 1− SSIM(y, y′) (3)

In order to better transmit the error, the SSIM formula is deformed, and the depen-
dence of the mean and standard deviation on the pixel p is ignored here. The mean and
standard deviation are calculated using a Gaussian filter with a standard deviation GσG.

SSIM(y, y′) =
(2µy′µy + c1)(σy′y + c2)

(µ2
y′ + µ2

y + c1)(σ
2
y′ + σ2

y + c2)
= l(p)·cs(p) (4)

At the same time, the SSIM loss function can be re-characterized as

LSSIM(P) = 1− SSIM(
∼
p) (5)

∼
p represents the central pixel. Even if the network learns the weight to maximize the

SSIM value of the central pixel, the learned kernel will be applied to all pixels in the image.
Therefore, it is necessary to calculate the reciprocal of

∼
p to other pixels q, and the derivation

process is as follows

∂LSSIM(P)
∂x(q)

= − ∂

∂x(q)
SSIM(

∼
p) = −( ∂l(

∼
p)

∂x(q)
·cs(

∼
p) + l(

∼
p)·∂cs(

∼
p)

∂x(q)
) (6)

where
∂l(
∼
p)

∂x(q)
= 2·GσG(q−

∼
p)·(

µy − µy′ l(
∼
p)

µ2
y + µ2

y′ + c1
) (7)

∂cs(
∼
p)

∂x(q)
=

2
σ2

y + σ2
y′ + c2

·GσG(q−
∼
p)·
[
(y(q)− µy)− cs(

∼
p)·(y′(q)− µy′)] (8)

GσG(q−
∼
p) is the Gaussian coefficient associated with pixel q.

For MS-SSIM, it can be expressed as follows, where α = β j = 1

MS− SSIM(p) = lα
M(p)·

M

∏
j=1

cs
β j
j (p) (9)

Analogous to SSIM as a loss function, MS-SSIM as a loss function can be characterized
as

LMS−SSIM(P) = 1−MS− SSIM(
∼
p) (10)

Step 2. Calculate Ll1

Both the L1 and L2 loss function can keep the brightness and color unchanged, but
the L2 loss function is more sensitive to abnormal points; thus, the effect of the model will
be greatly affected the data quality.

The mechanism of the L1 loss function on the image is based on comparing the
differences per pixel and then taking the absolute value. In general, it minimizes the sum of
the absolute difference between the target value and the estimated value. The expression is
shown below, where y(i, j) represents the pixel value of the original high-resolution image
at position (i, j); y′(i, j) represents the pixel value of the network output image at position
(i, j); W and H represent the width and height of the image, respectively [20].

Ll1 =
1

WH

M

∑
i=0

N

∑
j=0
|y(i, j)− y′(i, j)| (11)
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Ll2 =
1

WH

M

∑
i=0

N

∑
j=0

(y(i, j)− y′(i, j))2 (12)

Compared with the L1 loss function, the L2 loss function magnifies the gap between
the maximum error and the minimum error, and the L2 loss function is more sensitive to
abnormal points. When the quality of the training data is poor, the L2 loss function will
affect the model effect, resulting in inaccurate super-resolution effects, which will have a
serious impact on medical diagnosis based on MR images. However, if only the L1 loss
function is used, it is easy to fall into a local optimal solution.

Step 3. Setting of α

The initial value of α in the formula is set to 0.84. In this section, half attenuation was
carried out in the 90th epoch, the 120th epoch and the 190th epoch, respectively, which can
be conducive to the rapid convergence of the network.

2.2. ESRFBN Network Improvement Based on Contextual Network Fusion

The ESRFBN network improvement based on contextual network fusion is shown
in Figure 2. For the input low-resolution MR images, it is divided into two channels
and two input network architectures, respectively. For the first channel, the images are
computed with the calculation of 3 × 3 convolution, 1 × 1 convolution and deconvolution
and the up-sampling operation. Through these computer units, the high-resolution image
is created. In the second channel of images, a high-resolution image is obtained through
the second network computing. Then, the high-resolution images are created with the
convolution-based fusion network from the two channels of MR images from the super-
resolution networks. Two independent networks are used to predict high-resolution images,
respectively, and the fusion layer is used to fuse the high-resolution images outputted by
the independent network, then output the final super-resolution image. The expression is
as follows [20].

_
y i = F{S1,S2,··· ,SM}(xi) =

M

∑
j=1

Wj ∗ Sj(xi) + bj (13)
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Among them, Wj, bj is the fusion layer parameter that being constructed. The weight
of the fusion layer can be learned by fine-tuning the entire network. In this section, two
independent network parameters are frozen to learn the parameters of the fusion layer. A
3 × 3 convolution layer is used as the fusion layer, and its learnable parameter is 3 × (3 ×
3 + 1) = 30. In the training of the improved ESRFBN network method based on contextual
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network fusion, the weight of a single network is frozen, and the fusion layer is randomly
initialized by a zero-mean Gaussian distribution with a standard deviation of 0.001.

2.3. Algorithm Flow

In this section, the steps of the ESRFBN super-resolution network algorithm for MR
images based on multiple optimizations are mainly divided into network training and
model testing. The specific steps are in the Appendix A.

2.4. Discussion

Firstly, under the large number of the training samples, the super-resolution perfor-
mance is better if the super-resolution network is deeper. Accordingly, the number of the
parameters of the deep super-resolution network is larger. Secondly, under the similar
number of parameters and training samples, the different structures of the deep network
have the different ability of super-resolution. The different performances depend on the
different super-resolution mechanism. So, we have the fusion of the different structure of
networks, and the fusion network can extract enough of the features of the MR images.
Then, the higher super-resolution performance is obtained with the fusion super-resolution
deep network. In this fusion network, we fuse the independent deep super-resolution
networks, so the size of networks is not decreased. So, the numbers of parameters are
similar for the original different super-resolution networks and fusion network. On the
balance of the performance and the complexity, on the same size of the deep networks, the
fusion network can achieve the higher performance than the original scale of deep network.
For multiple independent deep super-resolution networks, the output of a single network
is integrated through an additional fusion layer, which broadens the width of the network,
and can effectively improve the mapping and characterization capabilities of high- and
low-resolution features.

3. Experimental Results and Analysis
3.1. Experiment 1

In this section, the loss function experiments of L1, L2, SSIM, MS-SSIM and L1+MS-
SSIM are performed on the double cubic down-sampling data set and K-space truncated
data set. The specific experimental results are shown in Tables 1–4. When ESRFBN uses
cascading loss function L1+MS-SSIM as a loss function for training, the effect is optimal
on both the bicubic decrement sampling data set and K-space truncated data set, which
indicates the effectiveness of the optimization of the cascading loss function.

SSIM, as a loss function, is not particularly sensitive to uniform deviations, which
will cause changes in brightness or color, and usually become duller. However, SSIM
can preserve contrast and is better than other loss functions in the high-frequency region.
On the other hand, the L1 loss function can keep the brightness and color unchanged.
Therefore, the cascaded loss function can combine the characteristics of the two well, so
that the super-resolution effect of the trained network is better.

Table 1. PSNR values of different loss functions (bicubic downsampling).

Data Scale Bicubic L1 L2 SSIM MS-SSIM L1+MS-SSIM

neck
×2 25.44 37.89 40.41 40.24 40.15 40.47
×4 21.58 30.28 30.90 30.50 30.67 30.92

breast
×2 28.56 35.13 41.46 42.90 42.83 42.97
×4 20.50 30.78 32.88 32.60 32.91 32.93

knee
×2 30.60 38.39 40.12 40.04 40.12 40.20
×4 22.69 31.42 32.63 32.29 32.51 32.64

head
×2 20.32 39.42 38.55 38.19 38.28 39.39
×4 18.60 34.04 32.97 32.20 31.95 34.11

Note: The numbers in bold are the best results.
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Table 2. SSIM values of different loss functions (double cubic downsampling).

Data Scale Bicubic L1 L2 SSIM MS-SSIM L1+MS-SSIM

neck
×2 0.6928 0.9876 0.9900 0.9900 0.9898 0.9897
×4 0.5442 0.9308 0.9349 0.9367 0.9358 0.9392

breast
×2 0.8848 0.9492 0.9763 0.9802 0.9797 0.9816
×4 0.4830 0.8979 0.9031 0.9070 0.9075 0.9082

knee
×2 0.9185 0.9760 0.9633 0.9641 0.9637 0.9774
×4 0.5649 0.8987 0.8844 0.8881 0.8867 0.8873

head
×2 0.6025 0.9605 0.9592 0.9597 0.9593 0.9609
×4 0.5623 0.9128 0.9064 0.9064 0.9011 0.9609

Table 3. PSNR values of different loss functions (K-space truncation downsampling).

Data Scale Bicubic L1 L2 SSIM MS-SSIM L1+MS-SSIM

neck
×2 15.80 24.16 24.32 23.98 24.24 24.36
×4 9.29 18.54 19.76 18.85 19.26 19.77

breast
×2 13.52 31.75 31.82 31.78 31.96 31.98
×4 7.68 25.62 25.94 25.15 25.98 25.98

knee
×2 11.83 31.49 31.52 30.81 31.09 31.73
×4 5.97 26.09 26.31 24.86 25.48 26.49

head
×2 6.29 27.89 29.87 26.98 27.97 28.76
×4 2.95 20.75 20.43 20.97 18.53 20.98

Note: The numbers in bold are the best results.

Table 4. SSIM values of different loss functions (K-space truncation downsampling).

Data Scale Bicubic L1 L2 SSIM MS-SSIM L1+MS-SSIM

neck
×2 0.6500 0.8923 0.8979 0.8997 0.8980 0.8998
×4 0.3399 0.8201 0.8255 0.8292 0.8268 0.8315

breast
×2 0.4967 0.9123 0.9211 0.9206 0.9189 0.9213
×4 0.0487 0.8027 0.8078 0.8111 0.8178 0.8185

knee
×2 0.3647 0.9008 0.9072 0.9073 0.9054 0.9078
×4 0.0919 0.7840 0.7908 0.7858 0.7864 0.7864

head
×2 0.3126 0.8065 0.8211 0.8997 0.8075 0.9609
×4 0.2081 0.6434 0.6336 0.6503 0.6508 0.6539

Note: The numbers in bold are the best results.

As can be seen from Figure 3, compared with SSIM and MS-SSIM loss functions, the
result of L1 and L2 only improves the pixels around the contour details, while for the result
of SSIM and MS-SSIM loss functions, the feature details of high-resolution images after
super-resolution are more prominent than that of L1 and L2. However, the L1+MS-SSIM
loss function retains both pixel gray level information and contour feature information, and
the image after super-resolution is most similar to the original image. It also indicates that
the ESRFBN super-resolution network based on the L1+MS-SSIM cascading loss function
optimization can effectively improve the super-resolution effect of MR images.
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3.2. Experiment 2: Analysis of the Convergence of Each Loss Function Index during the
Training Process

In order to enable the network to converge better during the training process and
avoid falling into the local optimal solution, the cascaded loss function L1+MS-SSIM uses
parameter α to balance the PSNR index and the SSIM index. As can be seen from the
training convergence curve of the ESRFBN network in Figure 4, it began to converge before
80 epochs. Uncertain factors in the calculation of loss function were increased by adjusting
the attenuation of the learning rate and parameter α, so as to avoid falling into the local
optimal solution. The attenuation of parameter α is shown in Figure 4, which is attenuated
by half at the 90th epoch, 120th epoch and 190th epoch, respectively.
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In this section, in order to reflect the impact of parameter α’s attenuation on the training
process better, the difference between the evaluation indexes of the cascaded loss function
(Mix) and other loss functions during the training process is used for characterization.
Figure 5 shows the curve of the number of iterations and the difference in PSNR during
the training of each loss function, and Figure 6 shows the curve of the number of iterations
and the difference in the SSIM during the training of each loss function. It can be seen from
the figure that at 90 epoch and 120 epoch, the difference between the Mix loss function and
other loss functions will have obvious vibrations. This is because in the Mix loss function,
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the parameter α attenuated and the loss function curve oscillates, resulting in lower PSNR
and SSIM values calculated by the model. However, the difference tends to stabilize after
rising in the subsequent process. This shows that ESRFBN has a strong convergence ability.
On the other hand, it shows that during the training process, the learning rate attenuation
strategy can prevent the network from falling into the local optimal solution, so that the
network model obtained finally has a better super-resolution effect.
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In order to improve the PSRN and SSIM indexes of MR super-resolution, this section
proposes a method based on PSNR-SSIM joint loss function cascade optimization. In order
to verify the effectiveness of the proposed method, four experiments were carried out on
the data sets generated by the two modes.

Experiment 1 proves that the L1+MS_SSIM cascaded loss function can obtain the
optimal super-resolution effect, which proves the effectiveness of the optimization of the
cascading loss function. This is mainly because the cascading loss function combines the
advantages of the L1 loss function which can keep the brightness and color unchanged
and the MS_SSIM loss function which can retain the contrast and is better than other
loss functions in the high frequency area, so that the cascading loss function has the best
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characteristics of the two loss functions. The cascade loss function optimization enables
the ESRFBN network to obtain a better super-resolution effect of MR images.

Through Experiment 2, it can be proved that parameter attenuation can make the
difference between the Mix loss function and other loss functions vibrate significantly, so as
to avoid the network falling into the local optimal solution and make the obtained network
model have better super-resolution effect. At the same time, it shows that the ESRFBN
network has strong convergence ability, which can make deep network converge quickly
in the training process and reduce the learning difficulty of network.

The data set used in this section includes MR images’ data of the neck, head, breast and
knee. The number of training set, verification set and test set are: Neck: 400, 50, 50; Head:
500, 50, 50; breast: 1800, 200, 200; knee: 800, 100, 100. Data sets with two super-resolution
scales of ×2 and ×4 are generated. The model used is implemented with Pytorch 1.6.0,
and is trained with dual Nvidia GeForce GTX 1080 Ti graphics cards.

3.3. Performance Evaluation

In this section, the proposed multi-optimization ESRFBN super-resolution network
algorithm for MR images is compared with the super-resolution algorithm based on
interpolation, reconstruction, dictionary learning and deep learning. The algorithms
include BIC [15], IBP [16], POCS [5], MAP [6], JDL [7], IJDL [17], RDN [11], EDSR [18],
SRGAN [12], ESRGAN [19], SRFBN [14], ESRFBN [20].

The methods mentioned in this section and the experimental results of each method
are shown in Tables 5 and 6. It can be seen from the table that the method proposed
in this paper has obtained the best results in four parts of the human body and in two
super-division scales, and the evaluation index value improved greatly. Compared with
the suboptimal method under the scale ×2, the PSNR value is increased by 4.93, 5.90, 5.42
and 3.44, respectively; the SSIM value is increased by 0.0019, 0.0191, 0.0105 and 0.0206,
respectively. Under the scale ×4, the PSNR values were increased by 5.94, 6.07, 5.65
and 4.68; the SSIM values were increased by 0.0216, 0.0422, 0.0564 and 0.0418. From the
improvement of the index value, it can be seen that the MR image ESRFBN super-resolution
network based on multiple optimizations proposed in this section is more suitable for MR
image super-resolution tasks, and can effectively solve the limitations of deep learning
networks in the application of MR images’ super-resolution tasks. The experimental results
prove the effectiveness of the method proposed in this section.

Table 5. PSNR values of MR images ESRFBN super-resolution network based on multiple optimization.

Data Scale BIC IBP POCS MAP JDL IJDL RDN EDSR DBPN SRGAN ESRGAN SRFBN ESRFBN Proposed

neck ×2 25.44 29.35 28.86 30.01 35.95 36.12 29.05 37.34 35.74 37.69 36.16 38.03 37.89 42.96
×4 21.58 24.72 24.28 25.27 28.53 28.82 24.53 29.25 29.28 28.78 29.11 30.23 30.28 36.22

breast ×2 28.56 30.06 29.76 31.21 33.34 34.08 33.50 34.57 31.94 34.06 32.91 34.28 35.13 41.03
×4 20.50 21.56 22.38 23.09 27.87 29.16 23.68 30.00 28.13 27.99 26.31 30.68 30.78 36.85

knee ×2 30.60 32.80 33.01 34.36 35.94 36.87 36.34 37.49 37.67 36.93 36.00 37.95 38.39 43.81
×4 22.69 24.74 25.25 26.66 28.48 30.11 30.02 28.34 31.29 29.63 28.75 31.35 31.42 37.07

head ×2 20.32 28.22 28.04 31.24 33.43 35.11 38.05 38.03 33.82 35.80 35.89 39.19 39.42 42.86
×4 18.60 20.35 22.29 24.68 28.65 28.60 29.70 32.22 29.39 30.95 31.32 33.60 34.04 38.72

Note: The numbers in bold are the best results.

Table 6. SSIM values of MR images ESRFBN super-resolution network based on multiple optimization.

Data Scale BIC IBP POCS MAP JDL IJDL RDN EDSR DBPN SRGAN ESRGAN SRFBN ESRFBN Proposed

neck ×2 0.6928 0.8024 0.8257 0.8458 0.9155 0.9386 0.8824 0.9861 0.9800 0.9868 0.9821 0.9879 0.9880 0.9899
×4 0.5442 0.7589 0.8016 0.8274 0.9001 0.9318 0.7144 0.9164 0.9182 0.9093 0.9158 0.9304 0.9308 0.9524

breast ×2 0.8848 0.8943 0.9010 0.9046 0.9200 0.9308 0.9373 0.9447 0.9243 0.9332 0.9256 0.9428 0.9492 0.9683
×4 0.4830 0.7592 0.7759 0.7900 0.8594 0.8747 0.6118 0.8631 0.8351 0.8137 0.7900 0.8735 0.8979 0.9401

knee ×2 0.9185 0.9231 0.9210 0.9342 0.9591 0.9660 0.9641 0.9719 0.9727 0.9670 0.9634 0.9744 0.9760 0.9865
×4 0.5649 0.6491 0.6507 0.6875 0.8476 0.8522 0.8597 0.8968 0.8940 0.8643 0.9077 0.8964 0.9054 0.9641

head ×2 0.6025 0.8522 0.8483 0.8427 0.9018 0.9274 0.9565 0.9565 0.9062 0.9234 0.9241 0.9600 0.9605 0.9811
×4 0.5623 0.7295 0.7535 0.7624 0.8358 0.8601 0.7962 0.8886 0.7906 0.8500 0.8611 0.9089 0.9128 0.9546

Note: The numbers in bold are the best results.
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4. Conclusions

This paper aims at solving the three limitations of applying a deep learning network
in the super-resolution task of MR images, such as not fully considering the characteristics
of MR images’ sequence, difficulty in obtaining the optimal solution of loss function and
difficulty in balancing model complexity and training difficulty. Firstly, seven kinds of
deep learning networks with a good super-resolution effect were used to carry out experi-
ments under two super-resolution scales on four human body parts, namely neck, breast,
knee and head. Secondly, in view of the three limitations of applying deep learning in
the super-resolution of MR images, this paper proposes a multiple optimization-based
ESRFBN super-resolution network algorithm for MR images, which integrates the three
optimization methods. The quantitative experimental results show that the ESRFBN net-
work is more suitable for MR images’ super-resolution task. Secondly, in view of the three
limitations of applying deep learning in the super-resolution of MR images, this paper
proposes a multiple optimization-based ESRFBN super-resolution network algorithm for
MR images, which integrates the three optimization methods. Quantitative experimental
results show that the ESRFBN super-resolution network based on multiple optimization
of MR images is superior to the super-resolution algorithms based on interpolation, re-
construction, dictionary learning and other super-resolution algorithms based on a deep
learning network, and it can greatly improve the super-resolution effect of MR images,
proving that the method proposed in this paper is effective.
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Algorithm A1 Multiple optimization ESRFBN super-resolution network training
process.
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Algorithm A1 ESRFBN super-resolution network training based on multiple optimization.

Input: Multi-slice low-resolution image set X : (xt−1, xt, xt+1)m, Multi-slice high-resolution image set Y : (yt−1, yt, yt+1)m
Output: ESRFBN network model parameters θ1, EDSR network model parameters θ2
1: Hyper-parameter settings: Batch: batch_size, Number of iterations: epoch
2: Pre-trained model loading
3.1: Independent network model training

for 1 to epoch do
for 1 to m/batch_size do

for 1 to batch_size do
(1) ESRFBN network forward calculation
Y1 = fESRFBN(X; θ1), where Y1 represents the output result of ESRFBN network
Error calculation
L(θ1) = LMix(Y−Y1), where LMix = α · LMS−SSIM + (1− α) · GσM

G
· L`1 , α = 0.84

Parameter optimization
θ′1 = Adam(L(θ1))

(2) EDSR network forward calculation
Y2 = fEDSR(X; θ2), where Y′ represents the output result of EDSR network
Error calculation L(θ2) = LMix(Y−Y2), where LMix = α · LMS−SSIM + (1− α) · GσM

G
· L`1 , α = 0.84

Parameter optimization
θ′2 = Adam(L(θ2))

end for
end for

end for
3.2: Fusion layer parameter learning

(1) The parameters of the fusion layer are randomly initialized by a zero-mean Gaussian distribution with a standard deviation
of 0.001.

(2) Independent network outputs their respective super-resolution results
Y1 = fESRFBN(X; θ1)
Y2 = fEDSR(X; θ2)

(3) The fusion layer performs the fusion of the output results of each network
Y3 = fFusion(Y1, Y2; θ3), where θ3 represents the parameters of the fusion layer, a total of 30 parameters

(4) Error calculation
L(θ3) = LMix(Y−Y3), where LMix = α · LMS−SSIM + (1− α) · GσM

G
· L`1 , α = 0.84

(5) Update of fusion layer parameters
θ′3 = Adam(L(θ3))

4: Model parameter output θ1, θ2, θ3

Algorithm A2 Multiple optimization ESRFBN super-resolution network test process.

Algorithm A2 ESRFBN super-resolution network test based on multiple optimizations.

Input: Multi-slice low-resolution image set X : (xt−1, xt, xt+1)k
Multi-slice high-resolution image set Y : (yt−1, yt, yt+1)k
Deep model parameters θ1, θ2, θ3

Output: Evaluation value PSNR, SSIM.
1: Model parameter loading
2: Image super-resolution

for 1 to k do
(1) Independent network outputs their respective super-resolution results

Y1
i = fESRFBN(X; θ1)

Y2
i = fEDSR(X; θ2)

(2) The fusion layer performs the fusion of the output results of each network
Y3

i = fFusion(Y1
i, Y2

i; θ3)
end for

3: PSNR, SSIM calculation

PSNRavg = 1
k

k
∑

i=1
psnr(Yi

3, Yi)

SSIMavg = 1
k

k
∑

i=1
ssim(Yi

3, Yi)

4: Output the value of PSNR, SSIM
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