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Abstract: Mild cognitive impairment (MCI) is an indicative precursor of Alzheimer’s disease and
its early detection is critical to restrain further cognitive deterioration through preventive measures.
In this context, the capacity of serious games combined with machine learning for MCI detection
is examined. In particular, a custom methodology is proposed, which consists of a series of steps
to train and evaluate classification models that could discriminate healthy from cognitive impaired
individuals on the basis of game performance and other subjective data. Such data were collected
during a pilot evaluation study of a gaming platform, called COGNIPLAT, with 10 seniors. An
exploratory analysis of the data is performed to assess feature selection, model overfitting, opti-
mization techniques and classification performance using several machine learning algorithms and
standard evaluation metrics. A production level model is also trained to deal with the issue of data
leakage while delivering a high detection performance (92.14% accuracy, 93.4% sensitivity and 90%
specificity) based on the Gaussian Naive Bayes classifier. This preliminary study provides initial
evidence that serious games combined with machine learning methods could potentially serve as a
complementary or an alternative tool to the traditional cognitive screening processes.

Keywords: mild cognitive impairment; serious games; machine learning; feature selection; data
transformations; classification; elderly

1. Introduction

Studies have shown that the cognitive functions of the elderly are negatively affected
by a number of factors, such as heredity, lifestyle (e.g., diet, smoking, alcohol), and age-
related pathological conditions [1]. With regard to normal aging, it appears that many
cognitive functions remain stable throughout life with mild attenuation beginning grad-
ually in the sixth or seventh decade of life [2]. Mild cognitive impairment (MCI) is often
labeled as a precursor of dementia and especially of Alzheimer’s disease (AD) [3] or just as
an intermediate level of cognitive function that is lower compared to what is considered
normal for a certain age and an educational level [4].

The current approach of MCI diagnosis is through a clinical check-up, performed
by a specialist, that includes an interview with the subject, the collection of the subject’s
medical history, a series of neurological examinations to test the mobility, the balance, the
functionality of the nervous system and finally a cognitive assessment, such as the Mini
Mental State Examination (MMSE) [5] or the Montreal Cognitive Assessment (MoCA) [6].
Although this approach provides the specialist with a wealth of information, beyond an
assessment score, which is assistive in drawing safe conclusions about the cognitive level
of the subject, it also presents some disadvantages. Given that the assessment is part
of a clinical check-up, the potential anxiety of the subject along with other convoluted
factors might result in a decreased performance. This situation combined with the low
repeatability of the clinical check-ups may lead to distorted assessments [7].

An aspect of the MCI detection is the stage at which it is performed. According to
a research that was conducted with a cohort of 139 subjects and included two MoCA
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assessments with a difference of 3.5 years, subjects with normal cognition during their
first assessment maintained their cognitive levels until the second assessment, whereas
subjects with MCI during the first assessment presented an average decline of 1.7 units
on the MoCA scale [8]. This suggests that the cognitive level of people with MCI has the
tendency to decline faster, something that makes the early detection of MCI an important
factor in cognitive intervention programs.

On the other hand, the evolution of technology now provides the possibility of MCI
detection through computer programs, electronic games and mobile devices [9]. These
innovations seem to be gaining ground in the field of cognitive screening compared to
traditional methods, as they are less costly, more flexible, provide better administration
conditions and more people have now access to these tools. In the same context, the
development of serious games as a cognitive assessment and screening tool is an innovative
practice that uses computer software to combine randomized visual, auditory and tactile
stimuli, as a simulation of various everyday situations of the individual [10]. Such tools can
provide the user with the sense of an engaging three-dimensional reality which encourages
the implementation of the method in research and clinical practice.

Serious games are games that have an explicit and carefully designed educational
purpose and are not intended to be used primarily for entertainment even though this does
not prohibit the inclusion of enjoyment and fun aspects [11]. They have been used in several
application domains, such as education, business, finance, cultural heritage, health and
military training. In particular, in the healthcare domain the aim is to introduce innovative
methods in the care, general health and rehabilitation processes, where the patient is less
dependent on professionals. Serious games can be designed to bring about some behavior
change in the patient, whether it is for prevention, treatment or for information about
the disease.

The general goal of this work is to contribute to the research in the field of early MCI
detection. Since MCI is a characteristic precursor of AD and other neurodegenerative
conditions, early diagnosis is critical to restrain cognitive deterioration through preventive
and rehabilitation measures. In the relevant literature, one can find numerous references
to studies where serious games are utilized to support cognitive screening [12] or even
rehabilitation [13] in a more engaging and fun way [14]. However, the specific objective of
this work is to answer the research question of whether game performance data gathered
during playing several sessions of serious games that were specifically designed for cogni-
tive assessment and training of elderly people can be utilized to create machine learning
(ML) models that could accurately classify users to the right cognitive state. The ultimate
goal would then be, to make use of these models to classify new users to distinct cognitive
levels judging by their in-game performance. The challenges that must be addressed in
order to build such a model and to provide a service that would enable access of such a
model for new data, were also investigated in this work.

2. Related Work

In the recent literature, a plethora of studies have been reported that demonstrate the
advantages serious games are providing in order to improve the detection and evaluation
of neurodegenerative diseases and precursor conditions of them, such as MCI. The re-
search types of studies range from literature reviews [15], surveys [16] and methodological
reviews [17], to more specialized research topics such as the use of special game-based
metrics to detect MCI [18].

Although the perspective of using ML techniques to address cognitive screening
in combination with serious games is mentioned in a few related works, eventually the
problem is typically solved by employing statistical methods and correlations and the use
of non-ML algorithms [12]. Furthermore, applying ML does not necessarily imply that a
model is used directly to detect whether a subject has characteristics that are in the range
of MCI. Instead there are plenty of cases that make use of ML for various other reasons.
For example, in the work of Leduc-McNiven et al. [19], the use of reinforcement learning
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(RL) techniques is demonstrated for the augmentation of the dataset with synthetic data
so that when the data reach a sufficient volume, a classifier model could be trained to
categorize new players based on their in-game performance. In a follow-up study by the
same research group they leveraged bots simulating various degrees of impairment to
produce synthetic data and on dense neural networks in order to explore the perspective
to classify playing ranging from perfect to various degrees of impairment [20].

In the work of Solana et al. [21] the design and development of an algorithm is
described that plays the role of a decision-making system which is built using data mining
techniques. The system not only has the ability to classify the users by the level of cognitive
impairment but it is also able to select the most appropriate tasks for each individual, in
terms of game playing difficulty, thus aiming at cognitive improvement.

In the work of Banerjee et al. [22] a different approach regarding the ML methodology
followed is given focusing on the datasets and the techniques applied on them. In particular,
three different datasets were created composed of different feature subsets. Furthermore,
the ML experiment is conducted four times, each time using a different technique for the
model training process. Similar approaches can also be found in the methodology of our
work, for example there are multiple datasets based on the selected features and there are
multiple repetitions of the experiment that each employs a different training technique.

Another study that explores the potential of digital games in the detection of early
symptoms of cognitive decline is reported by Sirály et al. [23]. A particular characteristic
is the use of magnetic resonance imaging (MRI) to measure the volume of the cerebral
structures as well as the use of several traditional cognitive screening tests including the
neurophysiological test paired associates learning (PAL). A total of 34 subjects participated
in the study playing the memory game ’Find the pair’ and the main goal was to investigate
the correlation between the MRI findings and the PAL results with the memory game
results. The statistical analysis conducted based on Logistic Regression suggests that
the number of trials a subject needs to complete the memory game could be used as an
indicator to determine if the subject belongs to the healthy or the MCI group.

The work of Binaco et al. [24] presents a methodology that builds ML models trained
on data from a digitized version of the well-known clock drawing test (CDT), which can
be found also as part of the MoCA assessment. This specific work can be described as
mostly a ML methods study since more focus is given to the methods needed to better
prepare the dataset and the algorithms to train the classifiers, rather than to the evaluation
of the models. For example, the SMOTE (synthetic minority oversampling technique)
method is utilized to compensate for the minority class. Furthermore, three different
neural networks are explored, multiple feature sets are selected, and the steps taken in the
direction of optimization and more specifically to avoid overfitting are described. A detail
that is interesting is the analysis of the challenges and the benefits that would arise in case
a multi-class classification problem is targeted instead of a binary one. Both cases were
examined with the binary classifiers resulting in a higher performance.

A work that lies in the same context to our research and includes the process of
training classifier models based on in-game data is that of Valladares-Rodríguez et al. [25].
The scope of this study is much broader, since it also includes the process of creating the
serious games, the selection of a suitable focus group, the inspection of collected data from
a statistical point of view, the classifier training and finally the evaluation of the serious
games based on participant’s replies to the Game Experience Questionnaire. Regarding the
classification models, three ML algorithms have been used, with a single dataset composed
of features automatically selected based on their importance as calculated by a Random
Forest based model. An evaluation study was performed with 16 seniors, including AD,
MCI and healthy individuals as assessed by the MMSE scale. A dataset of 89 instances
was assembled with several variables derived from the three games used. The binary
classification model that was trained using logistic regression and support vector machine
achieved an absolute prediction with no false negatives. Except for accuracy, the false
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positive and false negative ratios were measured, along with the metric of F-measure
defined as the weighted harmonic mean of precision and recall.

To summarize there are only a few studies that are targeting MCI detection leveraging
on ML models trained on data collected from serious games. Moreover, between the
existing approaches there are significant differences in terms of the screening tools and
the cutoff scores employed for assessing ground truth cognitive states, the game tasks
involved, the cognitive functions targeted, the features engineered for model training,
the ML methods applied, the measures taken to prevent high model bias/variance and
the provision of an endpoint to access online classification services for new data. This
entails that a simple comparison between existing methods may not be practical and that
the discussion should take into consideration several characteristics. Table 1 provides
an overview of such characteristics in order to associate our work to similar studies on
MCI detection.

Table 1. Characteristics of related studies on MCI detection based on ML and game data.

Study Game Suite Subjects Features Classes Dataset ML
Methods a Accuracy Bias b CSAPI c

This work COGNIPLAT
platform 10

Game performance
and

demographic data
Healthy, MCI

119
game

sessions

DT, GNB, kNN,
LR, MLP, RF, SVM 92.14% Addressed Yes

[19,20] War Cognitive
Assessment Tool

Bots simulating
various degrees of

impairment to
produce

synthetic data

Game timing and
hand tuned features

Random play,
75%/50%/25%

impairment,
perfect play

110,000 games
played
by bots

DNN 96.2% Addressed No

[23] ‘Find the Pairs’
memory game 34

Number of attempts
and game

completion time as
predictor variables

Healthy, MCI
40

game
sessions

LR for
correlation analysis

Not
applicable Not applicable No

[24] Digital Clock
Drawing Test 163

Dimensions and
orientation of clock

components,
drawing time, drift

from ideal placement

AD, MCI
subtypes (binary

classification
combinations)

163
digital clock

drawing tests
NN

83.44–91.49%
depending on

the binary
classification

problem

Addressed No

[25] Panoramix 16 Game
performance data Healthy, MCI/AD 89

instances CART, LR, SVM 100% Not discussed Yes

a CART: Classification and regression trees, DNN: dense neural network, DT: decision tree, GNB: Gaussian Naive Bayes, kNN: k-
nearest neighbors, LR: logistic regression, MLP: multi-layer perceptron, NN: neural network, RF: random forest, SVM: support vector
machine. b Measures to prevent high model bias/variance, overfitting/underfitting avoidance. c Classification service application
programming interface.

3. Methodology

CRISP-DM (cross-industry standard process for data mining) is one of the most
established methodologies to apply data mining tasks [26]. In our approach existing
methodologies were studied and adopted as guidelines, with CRISP-DM playing a major
role in this procedure, to build a custom methodology consisting of a series of processes,
each one focused on a particular task. According to recent studies CRISP-DM is the
methodology of choice for several projects in health as well as other domains [27].

Overall, the methodology that was used as a guide for this research could be described
as an extension of the CRISP-DM methodology, with the exception of the deployment step
which was not applied. Examining the approach in a macroscopic level, the involved steps
could be organized into the following four major processes which will be elaborated in the
following sections:

• Extract-Transform-Load (ETL)
• Exploratory Data Analysis (EDA)
• Production Model Creation (PMC)
• Classification Service Application Programming Interface (CSAPI)

In Figure 1 an overview of the methodology is given as a general workflow of the
processes involved. The association with the game platform employed is also given. The
platform on the one hand provides the game data that are used to train the models, and on
the other hand, classification results would be requested on demand by implementing a
method to send game session’s data to the CSAPI component through REST (REpresenta-
tional State Transfer) requests.



Appl. Sci. 2021, 11, 8184 5 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 31 
 

Overall, the methodology that was used as a guide for this research could be de-
scribed as an extension of the CRISP-DM methodology, with the exception of the deploy-
ment step which was not applied. Examining the approach in a macroscopic level, the 
involved steps could be organized into the following four major processes which will be 
elaborated in the following sections:  

• Extract-Transform-Load (ETL) 
• Exploratory Data Analysis (EDA)  
• Production Model Creation (PMC)  
• Classification Service Application Programming Interface (CSAPI)  
In Figure 1 an overview of the methodology is given as a general workflow of the 

processes involved. The association with the game platform employed is also given. The 
platform on the one hand provides the game data that are used to train the models, and 
on the other hand, classification results would be requested on demand by implementing 
a method to send game session’s data to the CSAPI component through REST (REpresen-
tational State Transfer) requests. 

 
Figure 1. Methodology overview. 

3.1. COGNIPLAT Platform and Data Collection 
The data used in this work were collected in the context of COGNIPLAT project (A 

Gaming PLATform for Restoration of COGNItive Functions of the Elderly People) [28]. A 
basic aim of this project is to design and implement a serious gaming platform based on 
rehabilitation methods suggested by the scientific research, so that its employment as part 
of a therapeutic program, would alleviate MCI symptoms. The COGNIPLAT game plat-
form was built based on a multi-disciplinary approach combining theories of neuropsy-
chology, cognitive linguistics and speech therapy organized in six domains, one diagnos-
tic and five training domains focused on enhancing cognitive functions through different 
game exercises. In addition, the platform has been designed to automatically adjust the 
complexity and type of exercises by adapting the cognitive requirements of the games to 
the characteristics of each patient through an ontology-based knowledge model [29]. In 
this work data from ten serious games used in the diagnostic mode were collected. Table 
2 describes the game types and the associated cognitive functions. 

  

Figure 1. Methodology overview.

3.1. COGNIPLAT Platform and Data Collection

The data used in this work were collected in the context of COGNIPLAT project (A
Gaming PLATform for Restoration of COGNItive Functions of the Elderly People) [28].
A basic aim of this project is to design and implement a serious gaming platform based
on rehabilitation methods suggested by the scientific research, so that its employment
as part of a therapeutic program, would alleviate MCI symptoms. The COGNIPLAT
game platform was built based on a multi-disciplinary approach combining theories of
neuropsychology, cognitive linguistics and speech therapy organized in six domains, one
diagnostic and five training domains focused on enhancing cognitive functions through
different game exercises. In addition, the platform has been designed to automatically
adjust the complexity and type of exercises by adapting the cognitive requirements of
the games to the characteristics of each patient through an ontology-based knowledge
model [29]. In this work data from ten serious games used in the diagnostic mode were
collected. Table 2 describes the game types and the associated cognitive functions.

Table 2. COGNIPLAT games used in this study and the corresponding cognitive function targeted.

Game Type Description Cognitive Function

Puzzle Solving a photo puzzle Attention
Maze Finding the exit from a maze Visual-motor perception

Recall (Anaklisi) Recall a random sequence of numbers Short-term memory
Calculations Solving arithmetic crosswords Working memory

Naming Naming specific types of objects given a set of
images shown on the screen Episodic memory

Sound Matching Listening to sounds and selecting the
corresponding image Acoustic memory

Orientation Placing shuffled images in chronological order
in order to create a brief story Spatio-temporal orientation

Language Finding word antonyms/synonyms Semantic memory

Logical Order Selecting the right pattern to reasonably
complete the given sequence Executive functions

Memory Cards Revealing pairs of alike pictures Visual memory

Every game played earns points. Different points are awarded for each successful
game at a different difficulty level. The calculation of points is based on a formula that
combines the level of difficulty and the difference between the completion time of the game
and the total time available. The formula for calculating the total score is given below:

Score = Di f f iculty_Level_Points ∗
(

1 − game completion time
available total time

)
(1)
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The design and development of the COGNIPLAT platform was based on the principles
of user-centered design in terms of its technological dimension. In recent years there has
been a shift in the creation of user-centered systems, especially in the field of health, which
while providing care and support, this is done in a way that the patient is not mentally
burdened, while entertainment is served. Each game screen was designed in such a way
that useful conclusions can be drawn about the performance achieved, such as the speed of
initial interaction with the game screen, the speed of successful completion of each task, the
number of tasks successfully completed and other relevant statistics that can be collected.
Figure 2 provides some examples of COGNIPLAT game screens.
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The most important feature of the games is the ability to statistically analyze and draw
useful conclusions from them. Taking into account the history of player performance and
using game performance data, it is possible to observe performance over time and any
changes can be noted and analyzed. In addition, the cognitive profile and cognitive status
of each user can be monitored through game analysis. The adaptability or the ability of
the system to dynamically adapt the difficulty of the game to the players is an additional
important feature of the platform.

An experimental evaluation study of the COGNIPLAT platform took place with the
participation of 10 elderly at a daily care center (7 male and 3 female, mean 76.1 ± 7.05 years
of age, mean 9.60 ± 2.37 years of education). The games were accessible as an Android
application on a tablet device. Each participant had the opportunity to complete twelve
game sessions during the evaluation period, which lasted for about three months. During
the study, the subjects had the freedom to play any of the games for an arbitrary number of
rounds and in any order.

Although the main objective of the experimental study was to assess the feasibility,
engagement and acceptance of serious games for the elderly people, leveraging on this
evaluation our aim is to classify participants to cognitive levels by using data which were
collected from the game platform and relevant questionnaires. The MoCA test was used to
assess the ground truth cognitive level of the participants and their score ranged between
20 and 28 (mean 24.40 ± 2.88). MoCA has been validated for the Greek population by
providing normative data [30]. Table 3 gives the distribution of the participants according
to the MoCA diagnostic classification [30] and other basic characteristics of the sample.
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Table 3. Distribution of participants according to their MoCA score and basic characteristics.

Characteristic MCI Normal

N 6 4
Age 76.67 ± 9.27 75.25 ± 2.06

Gender (Male/Female) 4/2 3/1
MoCA 22.50 ± 1.87 27.25 ± 0.96

Education Years 8.5 ± 2.26 11.25 ± 1.50
Technology Familiarity 1.83 ± 0.75 2.50 ± 0.58

MCI participants were distinguished from the “healthy group” with a cutoff score of
23 (2 cases) for low educational level (≤6 years) and a cutoff score of 26 (4 cases) for middle
educational level (7–12 years). The mean MoCA score for the MCI group was 22.50 ± 1.87
and the corresponding score for the Normal group was 27.25 ± 0.96. The morphology of
the sample for the two groups has similar characteristics in terms of age and gender. The
mean age is comparable between the two groups although the variance is higher in the
MCI group. The mean education years of the MCI group was 8.5 ± 2.26 and for the Normal
group was 11.25 ± 1.50. The technology familiarity (e.g., frequency of computing devices
and internet usage) was assessed with relevant questionnaire items in a scale of 0 to 4 and
was found to be less than average for the MCI group (1.83 ± 0.75) and above average for
the Normal group (2.50 ± 0.58).

The MoCA test can assess various cognitive domains of a subject, such as attention,
concentration, executive functions, memory, language, visuospatial, as well as abstraction,
delayed recall and orientation. The assessment is administered in approximately 10 min.
The total points a subject can score is 30. The person who administers the assessment,
sums the subtotals of each individual task that are recorded on the right-hand of the
questionnaire during the MoCA process.

On top of that, an additional questionnaire was administered in order to collect
demographic, medical and lifestyle information. A classification of the questionnaire data
is performed according to standardized categories [31], as shown in Table 4.

Table 4. Grouping of questionnaire data according to the type of medical data source.

Medical Data Source Questionnaire Field

Demographics (HL7) age, gender, education level, marital status
Medical Profile (Diagnosis) family medical history, depression, hypertension

Lifestyle smoking, exercise, familiarity with technology (smartphones, Internet)

The data concerning the in-game performance of each subject is contained in two
tables, the game sessions holding data such as which user is logged in and when, and the
game rounds holding data such as game type, difficulty level, game outcome (success/fail),
game completion time, earned points and other details regarding a single game round.
During the evaluation period, in terms of recorded data entries, there were 10 subjects,
10 different game types, 119 game sessions and 2951 game rounds in total. These data are
essential for this study in order to answer the main research question.

3.2. Extract-Transform-Load

The process of ETL plays a crucial part in our methodology. The main purpose that it
serves is to merge all the data from the individual schemas, due to the fact that during the
evaluation multiple tablet devices were used and each tablet had its own local database.
The merging was done after a database migration to a new slightly improved schema.

3.2.1. Data Extraction and Partial Preprocessing

The schema migration was done in order to create parameter tables for each field with
categorical values and use the key field from those parameter tables whenever these values
are referenced in other tables such as game sessions and rounds. In turn, this practice
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helped to reduce the need for encoding functions until later in the EDA process. However,
a drawback of this practice is that it can only be applied on ordinal features, since the
non-ordinal features would still need to be treated with more appropriate techniques such
as One-Hot-Encoding, as it was done for the feature of marital status.

3.2.2. Data Transformation and Feature Engineering

The next step, as part of the data transformation and before data loading at the
scripting level, is feature engineering [32]. This process includes arithmetic and cumulative
transformations to produce new features that were later inspected in the EDA process, for
their importance and correlation to the target classification class.

In addition, apart from a couple of features with random values that were created
to be used as reference points of the minimum importance a feature can have [33], the
rest represent aggregated information about game rounds. The reason to customarily
define how new features are calculated, instead of applying brute force or any other
existing feature selection technique is the necessity for these features to be explainable and
recreatable. The former is required to know exactly what a feature represents in a specific
context, in other words to know how it relates to the target class. As for the latter, it denotes
the ability to understand how the value of a feature is calculated, since this is essential to
set up the process that recreates the feature from raw data of future datasets before feeding
them to the model for the actual prediction.

The engineered features typically are aggregated data of individual game rounds
found in a game session, as for example, total points earned in a session and average game
completion time in a session. Other more composite aggregations can be also defined such
as the importance of a game type which is measured as the ratio between total points won
in successful game rounds of a game type in a session divided by the average points won
in successful rounds for that particular game type in all sessions recorded. Table 5 gives an
outline of the features that were defined and used in the MCI detection methodology.

Table 5. The entire feature set defined and explored in the developed models.

Feature Data Type Description

age Categorical
(Ordinal) The age of the subject. 0: <60, 1: 60–69, 2: 70–79, 3: 80–89, 4: >89

gender Categorical
(Ordinal) The gender of the subject. 0: Male, 1: Female

education Categorical
(Ordinal)

The education level of the subject. 0: Illiterate, 1: Primary incomplete, 2: Primary integrated, 3:
Secondary incomplete, 4: Secondary integrated, 5: Tertiary, 6: Postgraduate, 7: PhD

laptop_usage Categorical
(Ordinal) Frequency of laptop usage. 0: Never, 1: Seldom, 2: Sometimes, 3: Often, 4: Always

smartphone_usage Categorical
(Ordinal) Frequency of smartphone usage. 0: Never, 1: Seldom, 2: Sometimes, 3: Often, 4: Always

smoking Categorical
(Ordinal) Smoking level of the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

alcohol_use Categorical
(Ordinal) Alcohol use by the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

family_med_history Categorical
(Ordinal) History of memory loss or related illnesses of the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

exercising Categorical
(Ordinal) Exercising level of the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

depression Categorical
(Ordinal) Depression level of the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

hypertension Categorical
(Ordinal) Hypertension level of the subject. 0: None, 1: Low, 2: Moderate, 3: Heavy

marital_status Categorical
(Non-Ordinal)

The marital status of the subject. 0: Single, 1: Married, 2: Divorced, 3: Widow. This feature is
encoded with One-Hot-Encoder to derive separate Boolean features

marital_status_1 Boolean One-Hot-Encoding of marital_status for 1: Married or 0: Not-Married
marital_status_3 Boolean One-Hot-Encoding of marital_status for 1: Widow or 0: Not-Widow
total_gr_in_gs Real number The total number of game rounds in a game session

total_success_rounds_in_session Real number The total number of successful game rounds in a game session
total_win_gr_points_in_gs Real number The total points won in a game session

avg_gr_time_in_gs Real number The average completion time of a game round in a game session
avg_gr_time_win_gr_in_gs Real number The average completion time of a successful game round in a session

rf_integer_3 Integer A feature with random integer value in the range between 1–3
rf_decimal_100 Real number A feature with random decimal value in the range between 1–100
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Table 5. Cont.

Feature Data Type Description

puzzleImp Real number

The importance of a game, expressed as a ratio between the total points won in successful game
rounds of a game session divided by the average points won in successful rounds for that particular

game in all sessions.

mazeImp Real number
anaklisiImp Real number

calcImp Real number
namingImp Real number
soundImp Real number
orientImp Real number
langImp Real number
logicImp Real number

memoryImp Real number

3.2.3. Data Loading

The output of the ETL process is a data view that contains the information required to
train the machine learning models. The dataset contains 119 instances with all the features
derived from each game session. The last step, therefore, of the process is to load the data,
at the scripting level for starting the EDA process.

3.3. Exploratory Data Analysis

The exploratory analysis could be described as the main process in the effort to create
models, measure their performance and draw a conclusion regarding the research question
of this work. The aim of this process is to explore all the important aspects that would
provide a better understanding of the collected data and will support making decisions on
the importance of each feature, testing various ML algorithms and observing the results
to avoid overfitting and underfitting. Additionally, it is the most appropriate process
to compare different standardization strategies, in other words secure the model from
concept drift in future datasets. Python and the Scikit-learn library [34] were used as the
development environment for the experimentation process.

The EDA process receives as input the data formulated at the end of the ETL process.
The output of the EDA process takes the form of the information inferred by its sub-
processes, which will enable the selection of the optimal feature set, the best performing
algorithm and the most suitable optimizations. At this stage and before starting any data
transformation, getting the quantile and the descriptive statistics of the engineered features,
as shown in Tables 6 and 7 respectively, allows one to gain a better insight of the data.

Table 6. Quantile statistics of the game-based engineered features.

Feature
Quantile Statistics

Min 5th Perc. Q1 Median Q3 95th Perc. Max Range IQR

total_gr_in_gs 1 4 16 24 31 48 60 59 15
total_success_rounds_in_session 1 1 2.5 7 11 12.1 14 13 8.5

total_win_gr_points_in_gs 5 11.6 43 97 167.5 323.3 361 356 124.5
avg_gr_time_in_gs 12.448 20.385 27.620 34.760 47.314 65.469 120.800 108.351 19.694

avg_gr_time_win_gr_in_gs 6 14.245 27.4 37 50.166 86 114.500 108.500 22.766
rf_decimal_100 1.140 6.093 24.322 51.228 74.437 93.357 97.827 96.687 50.114

puzzleImp 0.158 0.364 1.056 1.742 2.059 4.224 5.702 5.544 1.003
mazeImp 0.069 0.277 0.555 0.936 1.179 2.219 2.289 2.219 0.624

anaklisiImp 0.194 0.292 0.740 0.779 1.480 1.519 1.558 1.363 0.740
calcImp 0.090 0.090 0.428 1.037 1.465 2.286 2.976 2.885 1.037

namingImp 0.198 0.331 0.546 0.993 1.705 2.441 3.510 3.312 1.159
soundImp 0.106 0.156 0.424 0.848 1.590 2.932 6.734 6.628 1.166
orientImp 0.072 0.289 0.650 1.011 1.228 2.087 2.384 2.312 0.578
langImp 0.183 0.366 0.686 0.869 1.419 1.648 2.930 2.746 0.732
logicImp 0.382 0.473 0.812 0.908 1.290 1.725 1.768 1.385 0.477

memoryImp 0.213 0.355 0.711 0.995 1.422 1.991 2.204 1.991 0.711
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Table 7. Descriptive statistics of the game-based engineered features.

Feature
Descriptive Statistics

STD Coeff.
of variation Kurtosis Mean Median

Abs. Dev. Skewness Variance

total_gr_in_gs 12.730 0.513 −0.044 24.798 8 0.347 162.060
total_success_rounds_in_session 4.082 0.610 −1.507 6.686 4 0.032 16.666

total_win_gr_points_in_gs 95.309 0.796 0.038 119.636 59 0.982 9083.866
avg_gr_time_in_gs 16.395 0.422 4.929 38.828 8.527 1.666 268.799

avg_gr_time_win_gr_in_gs 21.046 0.505 1.492 41.668 10.888 1.129 442.966
rf_decimal_100 28.731 0.579 −1.222 49.550 24.837 −0.066 825.518

puzzleImp 1.117 0.600 1.516 1.860 0.475 1.098 147.000
mazeImp 0.633 0.623 −0.501 1.015 0.381 0.731 0.401

anaklisiImp 0.459 1.016 −1.434 0.596 0.389 0.426 0.368
calcImp 0.729 0.686 0.136 1.062 0.4961 0.726 0.532

namingImp 0.730 0.620 0.496 1.177 0.529 0.919 0.533
soundImp 1.037 0.888 13.422 1.166 0.583 2.907 1.075
orientImp 0.561 0.548 −0.075 1.023 0.361 0.587 0.315
langImp 0.528 0.507 1.691 1.040 0.412 0.833 0.278
logicImp 0.372 0.363 −0.327 1.025 0.143 0.620 0.138

memoryImp 0.531 0.483 −0.673 1.098 0.426 0.329 0.282

3.3.1. Target Class Selection

Given that the participants of the study were invited to complete both the MMSE and
the MoCA cognitive assessments, before and after using the COGNIPLAT platform, there
are more than one candidate variables that could be used as the target class. Aiming to
select one of these two assessments, the criterion that was most influential had to do with
the distribution of scores across the scale of cognitive performance for the MMSE (Figure 3a)
and the MoCA (Figure 3b). Both assessments have a similar value range between 1 and
30, however, the cutoff scores of the different cognitive levels differ significantly for each
assessment type. This is important as it affects the difficulty to distinguish a subject between
the cognitive classes.
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As initially demonstrated by Nasreddine [6], the ranges between the cognitive levels
are much less discrete in the MMSE assessment compared to the MoCA assessment. Other
researchers confirmed also that the MoCA assessment presents a much better sensitivity in
distinguishing subjects with MCI compared to the MMSE due to the fact that often subjects
are achieving higher scores in the latter assessment [35]. Finally, normative data for the
Greek population are available for the MoCA scale but not for the MMSE.

Therefore, in this study the MoCA assessment was selected. In particular, the test
performed before using the COGNIPLAT platform was chosen due to the following reasons.
Firstly, because the two tests were performed in a relatively short period of time it allowed
subjects to score better in the latter one due to repetition. Secondly, even with a moderate
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usage of serious games designed to train cognitive abilities it was expected to have a
positive impact on the follow up MoCA test. Thirdly, as shown in Figure 3b, the distribution
of scores in the first MoCA assessment (MOCA_PRE) was slightly more homogeneous
than the distribution in the second assessment (MOCA_POST).

3.3.2. Preprocessing
Missing Values Management

In the case of our dataset, the only entries with missing values were a few entries
representing game rounds that terminated due to application exceptions. Since these
rounds were only a few and they had most of their fields missing the decision was to discard
and not include them in the schema migration following the tuple ignoring technique [36].

Management of Outliers

Outliers apply only to values of fields that represent in-game data and not to fields
that are related to the demographics and other questionnaires that the subjects completed
and cannot deviate from predefined values. Given that the size of the dataset is relatively
limited, removing entries that contain outlier values in one or more fields is probably not
the best option. On the other hand, leaving those values as-is could potentially affect the
results in the process of scaling, depending on the algorithm that will be selected to apply.

Ideally, when a game session resembles an assessment, it provides a specific number
of game rounds, in a specific order, with a specific difficulty progression. The COGNIPLAT
platform which was used for data gathering serves a dual goal both for cognitive assessment
and for exercising cognitive functions of the elderly. As a consequence, the level of difficulty
was customizable allowing the application or the caregiver to adjust it in order to meet the
capabilities of each subject. On the other hand, the game performance in terms of points
won in a game round is directly related to the game difficulty level. Additionally, the
subjects had the option to repeat a level for several times. These characteristics resulted in
some game sessions with distinctly differentiated scores.

The way the issue of outliers was addressed was by value replacement and by applying
the Winsorization technique [37]. The technique was implemented to calculate new values
based on the following strategy. If the feature represented a total, for example the total
points gathered in the successful game rounds of a session, and the value for this feature in
an entry was too high, then it was replaced with the maximum value (Q3 + 1.5*IQR) of
the distribution of the feature. Respectively the low-end outlier values of an entry for a
feature representing a total value, were replaced by the minimum value (Q1 + 1.5*IQR)
of the distribution. On the other hand, for features that represent an average value, for
example the average completion time of a successful game round, the outlier values were
replaced by the median value of their distribution.

Both discretization and scaling can be affected by outliers, therefore the process that
manages the outliers was explicitly placed to precede both discretization and scaling to
avoid any effect of outliers in the outcome of these processes [38].

Discretization

Although discretization by binning is a relatively simple data transformation, in
our methodology binning of feature values to higher levels is an essential step and it
has been applied for the target class and for features derived from in-game data with
continuous values.

Firstly, discretization was applied to the target class, which represents the MoCA
scores recorded before the game sessions. The implementation is affected by the type of the
target class field because it defines what kind of ML algorithms, between regression and
classification, can be used to train the model. Additionally, this affects the way a prediction
is interpreted, since an answer in the MoCA range of results would give a specific estimate
while the objective is to get a broader estimate of the cognitive level of the subject as a
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classification between two cognition levels: normal cognition (NC) and mild cognitive
impairment (MCI).

Secondly, before moving to feature selection, some normalization method needs to
be applied to avoid the outweighing of features with low value ranges. In the case of the
target class, the exact range of each bin is known beforehand, which happens to be the
MoCA cutoff scores of each cognitive level. However, in the case of the rest of the features
several binning methods are available to be applied, since discretization can be achieved
with various strategies, such as equal width levels, equal frequency levels or any other
custom approach. What was used on the implementation level, was the KBinsDiscretizer
method of the Scikit-learn library, with the quantile option, which is described as an equal
frequency discretization strategy [34].

Low Variance Features Removal

The first step that was done towards feature selection was the removal of any low to
zero variance features. Those features have no useful information to offer to the model,
thus, a threshold was set and in case the values of a feature are the same in 80% or more of
the total entries, that feature is removed. As a result of applying this method, the features
of “smoking”, “alcohol”, “hypertension” and the importance of the Calculations game
were removed from the dataset. Although most of the feature selection steps follow the
preprocessing, on an implementation level, the step of low variance removal precedes the
data standardization to avoid having the variance threshold method being affected by the
transformation of the values.

Data Standardization

Standardization has been used to further ensure that values of our features will
be on the same scale and thus avoid certain features being outweighed. By applying
this technique, effects from a potential concept drift in future datasets is minimized [39].
Furthermore, standardization of individual features is considered a prerequisite for many
of the classifiers to be able to perform as expected [34]. The standardization method that
was applied is literally an implementation of the Z-score normalization technique, where
the mean of each feature distribution is centered at 0 and the values are scaled to represent
the result of the division by the feature standard deviation.

3.3.3. Feature Selection

Following the data curation that was described in the preprocessing section, the
methodology continues with the process that most of the data mining and ML guides
define as feature selection. The advantages of reducing the features to a subset of them are
well described in the literature [40], and affects many aspects of a ML experiment, such as
the speed of training, the accuracy and the explainability of a model.

Feature selection algorithms, based on their output, can be categorized into two differ-
ent categories. The first category is feature weighting which returns the same number of
input features along with their weights by employing wrapper feature selection algorithms.
The second category is subset selection which returns a subset of the input features by
employing either a filter or embedded model feature selection algorithms.

Our methodology involved the selection of two feature subsets based on two different
strategies. The first strategy primarily aims at creating a subset of features in which at least
some of the in-game related features will be included. The mandatory inclusion of some
of these features is related to the research question of this work, since it would have been
pointless to train a model based only on data from the questionnaires. The second strategy
used the method of feature selection with the chi2 statistic as the scorer function, a method
that eliminates features with low correlation to the target class.
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Feature Correlation Inspection

At first, the pairwise correlation between each feature is inspected. For this task,
Pearson’s correlation was calculated and projected on the heatmap shown in Figure 4.
The purpose at this stage is to recognize the highly correlated features and eliminate the
so-called redundant features, which are those that cannot append additional information
to the model [41].
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To avoid the daunting task of manually using the heatmap to find the highly corre-
lated features, a function that performs agglomerative clustering, was used, resulting in
feature clusters separated based on the degree of their correlation which were previously
calculated [42]. The dendrogram in Figure 5 projects the clusters that are formed based
on a threshold value of 36% that was empirically selected and represents the maximum
pairwise distance observed which in this case happens to be 4.68.

Feature Importance Inspection

Having every feature grouped into clusters of highly correlated features, the next step
of the methodology is to inspect their significance against the target class, with the ultimate
goal of keeping only the most important one of each cluster. To decide whether a feature is
important or not two metrics were incorporated, the mean decrease in impurity (MDI) and
the mean decrease in accuracy (MDA), also known as permutation importance. Essentially,
this is a form of feature weighting, thus a wrapper method is needed in order to calculate
these metrics. The wrapper method that was implemented incorporates a Random Forest
classifier that is used as an estimator both for the MDI and the MDA metrics. The wrapper
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method was then called once for the complete set of features, excluding those already
removed in the preprocessing, and then once for each cluster separately (Figure 6a,b).

To proceed with the custom selection process, judging by the MDA and MDI scores,
the features that appear to perform worse than the two randomized features were excluded,
followed by the exclusion of the less important features of each cluster. The features
that remained after the low variance feature removal, were inspected for their pairwise
correlation and for their importance against the target class in order to create an optimized
feature subset. This subset is identified next as the manually selected features.

Apart from the custom wrapper method that was implemented to measure the MDA
and MDI metrics, another wrapper method that measures the P-value and the F-score for
each feature, was used for an automatic selection of the k-best features. Figure 7 projects
the values of these metrics for each feature cluster.

Thus, a second subset was created using an automatic feature selection method which
selects features according to the k highest scores by computing the chi2 statistic. This subset
is identified next as the automatically selected features. In Table 8, the feature subsets for
each feature selection strategy is provided.

3.3.4. Classifier Selection

Having completed the preprocessing and the feature selection, the next major step
of the EDA process for this methodology is the classifier selection. The outcome of this
process is the performance evaluation of a series of ML algorithms. The criteria for whether
an algorithm performs well or not, besides accuracy, is any indication about the bias and
the variance of the model and also the statistics regarding the sensitivity and specificity
metrics (Figure 8).
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Table 8. Overview of feature subsets for each selection strategy.

Manually Selected Features Automatically Selected Features

Age Education
Family Medical History Laptop Usage

Exercising Smartphone Usage
Education Family Medical History

Avg. Game Round Time in Game Session Exercising
Orientation Game Importance Marital Status 1 (Married)

Naming Game Importance Marital Status 3 (Widow/er)
Memory Game Importance Total Round Points for Rounds won

Recall (Anaklisi) Game Importance Recall (Anaklisi) Game Importance
Logic Game Importance

Memory Game Importance
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As already stated, the final model would have the role of complementing screening
tests like the existing MoCA and MMSE assessments, which means that it aims to be
a tool to provide the likelihood, and not a definitive answer, of someone having MCI
or not, as per the definitions of diagnostic and screening tests presented in the work of
Trevethan [43]. Therefore, given that the outcome of our work is a binary classification
model that distinguishes subjects, between having or not MCI, the most appropriate metrics
to take into account for model performance evaluation appear to be those of sensitivity
and specificity. This is also backed up by the plethora of publications that examine the
performance of the MoCA assessment where the sensitivity and specificity metrics have
been the focus of the evaluation [30,44].

From a machine learning perspective, in order for a model to continue being accurate
in future datasets, the bias/variance tradeoff needs to be taken into consideration. In
other words, the model needs to be accurate enough, yet able to generalize effectively,
disregarding any noise in data [45].

The following ML algorithms have been tested for the aforementioned evaluation
metrics: logistic regression (LR), decision tree (DT), random forest (RF), support vector
classifier (SVC), k-nearest neighbors (kNN), Gaussian Naive Bayes (GNB), multi-layer
perceptron (MLP) and a custom ensemble that includes all the ML algorithms except
from MLP and the output of the base models is combined considering a majority voting
aggregation function. At this stage, two models were trained for each type of algorithm,
one for each selected feature subset (Table 8). Those models serve as baseline models and
their results as a reference point to evaluate the difference in performance after performing
the optimization process.

To accomplish that kind of evaluation of the models, apart from the percentage of
accuracy, which is a good starting point to recognize overfitting, the decision boundary for
each model has been plotted, as shown in Figure 9. The way the decision boundary helps
in the process of model evaluation is by allowing the inspection of the model complexity
and how it would behave with noise such as outliers in data [46].

However, plotting the decision boundary on a two-dimensional plane presupposes
a similar dimensionality of the dataset, otherwise we would have to repeat the plotting
multiple times, each time for a features pair. The solution to that problem, on the imple-
mentation level, was given by plotting the decision boundary after applying the principal
component analysis (PCA) method [47], where the dataset consists of two component
features and the target class.

3.3.5. Optimization

At this stage, having trained and evaluated a series of baseline models, various
optimization techniques are applied in order not only to improve the evaluation metric
scores but also to improve the interpretability of these models. The optimization scenarios
with the methods applied to the baseline models are outlined in Figure 10.
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Data Augmentation

A major issue that had to be addressed in order to avoid biased results in our model
was the imbalanced number of game sessions between the two target classes, MCI and NC.
Two of the widely used methods to solve that problem are undersampling and oversam-
pling. Since the dataset is of relatively small dimensionality, especially after the process of
feature selection, undersampling would probably be a good option. However, due to the
fact that the dataset also has a rather small number of entries, the oversampling method
was preferred, in order to avoid discarding useful information. At the implementation
level the algorithm used was the synthetic minority oversampling technique (SMOTE) [48].

Interestingly, there seems to be a discussion on whether oversampling should be
applied before or after feature selection. In this work, the approach which introduces
oversampling after the feature selection was preferred, in order to avoid having artifi-
cially created data affecting the feature selection process, as similarly suggested by other
studies [49].

Dimensionality Reduction

The PCA technique is one of the most well-known techniques for dimensionality
reduction. Although PCA is fully capable of replacing the process of feature selection,
especially if the dimensionality of a dataset is not too large [50], it is incorporated in our
methodology for a different reason.

The first reason is to repeat the experiment having extracted a small number of
components and see if there is any fluctuation in accuracy and the rest of the metrics used
to evaluate the baseline models. The second reason is to reduce the dimensionality to
a number of components that would allow the dataset to be visualized along with the
decision boundary of each model. This means a reduction to either two components and
plotting the dataset into a two-dimensional plane with the decision boundary being a
line, or three components and plotting the dataset into a three-dimensional space with the
decision boundary being a plane.

As illustrated in the optimization scenarios workflow (Figure 10), PCA has been
applied in two different cases, right after the baseline models and after the oversampling.
For the actual implementation, the first step in utilizing PCA is to decide the optimal
number of principal components to extract. This was done using the GridSearchCV method
of the Scikit-learn library, which allows to inspect the accuracy of a classifier having the
number of components as a variable. The Gaussian Naive Bayes was the classifier selected
for that process and the range of the components was set between 1 and the number of
features minus one. In addition, cross-validation was used to get a standard deviation
for the accuracy for each number of components. As seen in the grid search results
on Figure 11, the case with two components presents the optimal performance between
0.95 and 0.99 accuracy. For further increase in the number of components, from 3 to 6, clear
evidence of overfitting is shown since the model reaches an accuracy between 0.97 and 1.

The next step in applying PCA, is to observe the results by plotting the components
against the total variance that they represent, as shown in Figure 12a and also the en-
tire dataset, after the transformation, against the target class to inspect how easily the
two classes could be distinguished as shown in Figure 12b.

Hyperparameter Optimization

One of the most applied methods for hyperparameter optimization (HPO) is grid
search. From a computational perspective, it is a costly operation since it essentially is
a brute force black-box task. However, it allows us to find the optimal values for the
parameters of multiple algorithms without human interaction. According to the literature,
one can find a few alternatives to grid search, such as the population-based methods of
random search, genetic algorithms, particle swarm optimization, the Bayesian optimization
methods and others that are less computationally expensive [51]. However, for this work,
since the dataset is of relatively small size, the grid search method was preferred.
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3.4. Production Model Creation

To be able to claim that one of the trained models can be considered production
ready, the aforementioned optimization processes are not sufficient. There is at least one
important factor that could potentially introduce bias to the trained models and that is data
leakage, as it is well described by Bussola et al. [52]. The final process of this methodology
focuses on solving that issue.

Amongst all the possible forms data leakage can take, we focus on solving the leakage
that could possibly occur during preprocessing from the training subset to the testing subset.
The culprit, for this type of data leakage, is considered to be the transformations that the
dataset goes through during the preprocessing and more specifically the transformations
that precede the splitting of the dataset between training and testing subsets [53].

The challenge that arises here is the fact that we are already at a late stage regarding
the methodology workflow, considering that even optimization has already been applied.
Thus, to be able to implement a solution for data leakage, we incorporated a method to
safely preprocess and train a model after splitting the dataset. On the other hand, a major
advantage of this practice is that upon prediction there is no need to separately load any
transformers to edit the future data, instead, preprocessing is now part of the model itself.
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3.5. Classification Service API

For the final stage of the proposed methodology, we have experimented with building
a classification service Application Programming Interface (API) to study and record any
challenges that could come up from such a task. The structure of this service is rather
simple, as it consists of a Flask server with a main method that loads the model and
a controller to receive REST requests for prediction from the COGNIPLAT game suite
application. In a production environment, these requests would contain the in-game data
recorded throughout a game session. The response returned from the controller contains
the label of the cognitive class predicted by the loaded model, i.e., MCI or NC and the
confidence score for the specific prediction, given of course that the loaded model supports
the export of that information.

4. Results

To evaluate the trained models, a wrapper function was created to efficiently get
the metric scores, relevant confusion matrices and the receiver operating characteristic
(ROC) with the area under curve (AUC) and the precision–recall diagrams. The evaluation
of each classification model is performed by applying the k-fold (k = 5) cross validation
technique on a stratified hold-out sub-dataset that was kept initially specifically for the
purpose of model evaluation. A split of the initial dataset was performed yielding a
training sub-dataset (70% of the dataset) and a test sub-dataset (30% of the dataset). The
performance of models with different configurations is then evaluated on the hold-out set,
for the purpose of selecting the best performing model. This approach is useful to measure
the prediction performance of the final production model or compare predictions with
reference to held-out samples [54].

The performance results of all the models trained are presented in two separate tables.
Table 9 records the results that are related to the baseline models, the application of the
SMOTE, PCA and HPO methods using the two feature subsets selected. Table 10 records
the results of the models that were trained using pipelines. A pipeline in the context of ML
can be described as a utility method that allows the design of a procedure from the data
preprocessing to the training of the classifier offering some advantages over the manual
execution of these steps. The purpose of the pipeline is to assemble the above methods that
can be cross-validated together while setting different parameters in the context of using
the Scikit-learn library [55]. The pipeline method eventually implements the solution for
avoiding data leakage.

Table 9. Evaluation results, by ML algorithm, for the training and testing processes, for both feature selection strategies,
from the stage of baseline models up to applying hyperparameter optimization.

Algorithm

Manually Selected Feature Set Automatically Selected Feature Set

Accuracy (%) SD Accuracy (%) SD

Training Testing Training Testing

Baseline Models

Logistic Regression 100 100 0 93.33 93.33 13.33

Decision Tree 100 100 0 96.67 96.67 6.67

Random Forest 100 100 0 96.67 96.67 6.67

Support Vector Classifier 93.33 93.33 4.71 93.33 93.33 8.16

Gaussian Naive Bayes 100 100 0 100 100 0

Multi-layer Perceptron 90 90 8.16 90 93.33 8.16

k-Nearest neighbors 76.67 76.67 9.43 96.67 93.33 8.16

Custom Ensemble 100 100 0 96.67 96.67 6.67
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Table 9. Cont.

Algorithm

Manually Selected Feature Set Automatically Selected Feature Set

Accuracy (%) SD Accuracy (%) SD

Training Testing Training Testing

Baseline Models

SMOTE

Logistic Regression 97.78 97.78 3.14 97.92 98 4

Decision Tree 100 100 0 100 100 0

Random Forest 100 100 0 100 100 0

Support Vector Classifier 97.78 97.78 3.14 100 97.778 4.44

Gaussian Naive Bayes 100 100 0 100 100 0

Multi-layer Perceptron 97.78 97.78 3.14 97.92 98 4

k-Nearest neighbors 85.14 85.14 12.8 85.28 91.56 7.62

Custom Ensemble 100 100 0 100 100 0

PCA

Logistic Regression 70 70 14.14 76.67 73.33 13.33

Decision Tree 76.67 76.67 12.47 80 73.33 8.16

Random Forest 80 80 8.16 86.67 90 13.33

Support Vector Classifier 80 80 0 86.67 83.33 0

Gaussian Naive Bayes 70 70 8.16 96.67 96.67 6.67

Multi-layer Perceptron 73.33 73.33 9.43 86.67 86.67 19.44

k-Nearest neighbors 76.67 76.67 4.71 83.33 76.67 22.61

Custom Ensemble 73.33 73.33 17 86.67 86.67 12.47

SMOTE + PCA

Logistic Regression 95.56 95.56 6.29 95.83 95.78 5.18

Decision Tree 85.14 85.14 2.77 93.61 89.78 10.96

Random Forest 93.47 93.47 5.45 97.78 97.78 4.44

Support Vector Classifier 95.56 95.56 6.29 95.83 98 4

Gaussian Naive Bayes 93.47 93.47 5.45 95.69 95.78 5.18

Multi-layer Perceptron 95.56 95.56 6.29 95.83 95.78 5.18

k-Nearest neighbors 95.56 95.56 6.29 91.67 91.33 8.27

Custom Ensemble 95.56 95.56 6.29 97.92 93.78 5.1

SMOTE + PCA + HPO

Logistic Regression 95.56 93.33 8.89 95.83 95.78 5.18

Decision Tree 85.14 85.11 12.48 93.61 89.78 10.96

Random Forest 91.39 89.11 7.04 97.78 97.78 4.44

Support Vector Classifier 95.56 95.56 8.89 100 100 0

Gaussian Naive Bayes 93.47 93.56 8.79 95.69 95.78 5.18

Multi-layer Perceptron 91.39 89.11 7.04 100 100 0

k-Nearest neighbors 95.56 95.56 8.89 95.83 95.78 5.18

Custom Ensemble 95.56 95.56 8.89 90 86.67 12.47



Appl. Sci. 2021, 11, 8184 23 of 30

Table 10. Evaluation results, by ML algorithm, for the training and testing processes, for both feature selection strategies
using the pipeline method.

Algorithm Accuracy
(%)

Accuracy
(%) SD Sensitivity

(%) SD Specificity
(%) SD

Manually Selected
Feature Set Training Testing

Logistic Regression 100 91.79 6.74 96.6 6.8 70 20

Decision Tree 100 86.07 9.06 96.6 6.8 50 24.72

Random Forest 98.79 88.93 10.62 96.6 6.8 70 20

Support Vector Classifier 98.79 91.79 6.74 93.20 6.33 90 10

Gaussian Naive Bayes 84.33 83.57 10 93.20 6.33 60 17.42

Multi-layer Perceptron 100 94.64 6.59 96.60 6.8 90 10

k-Nearest neighbors 98.79 89.29 9.58 90 13.25 90 10

Automatically Selected
Feature Set Training Testing

Logistic Regression 96.38 89.64 8.66 89.4 6.62 90 10

Decision Tree 100 86.79 6.72 90 6.52 80 14.49

Random Forest 100 83.93 10.07 89.4 6.62 70 14.49

Support Vector Classifier 96.38 89.64 8.66 89.4 6.62 90 10

Gaussian Naive Bayes 98.79 92.14 8.2 93.4 6.2 90 10

Multi-layer Perceptron 100 89.64 8.66 89.4 6.62 90 10

k-Nearest neighbors 100 89.64 8.66 89.4 6.62 90 10

In Table 9, the accuracy of each model is provided both for the training and the testing
dataset. In the latter case the cross-validation accuracy is shown. At this point, by inspecting
the accuracy during training and testing it is possible to recognize which algorithms tend
to create models that overfit or underfit. Therefore, first a set of baseline models are trained
and tested, then SMOTE and PCA are applied separately, followed by the application of
combined SMOTE and PCA on the same dataset and finally a set of models are created
by combining SMOTE, PCA and hyperparameter optimization. By inspecting the results,
it is observed that most of the baseline trained models for the manually selected features
tend to either overfit or underfit, contrary to the dataset composed of the automatically
selected features. Moving to the results of the datasets when the SMOTE technique is
applied, a slight decrease of overfitting for the dataset of the manually selected features and
a significant increase of overfitting for the dataset with the automatically selected features
are observed. Inspecting the datasets when the PCA method is applied, a significant
underfitting for both datasets can be observed. Examining the results after the sequential
application of both SMOTE and PCA, a better consistency of the accuracy for both datasets
is observed ranging between 85.14% and 95.56% for the dataset with the manually selected
features and between 89.78% and 97.78% for the dataset with the automatically selected
features. Finally, only marginal variations in performance are observed when comparing
these results to those that are achieved from the sequential application of SMOTE, PCA
and HPO for the dataset with the manually selected features and in some cases for the
dataset with the automatically selected features where the models either present overfitting
(SVC, MLP) or underfitting (custom ensemble).

Moving on to the results of the next stage of our methodology, the final models of this
study are given which are built with the usage of pipelines to avoid any possible bias from
data leakage. For these models, there is an interest to study their performance in terms
of sensitivity and specificity as shown in Table 10. The first conclusion that can be drawn
from this evaluation is that for both datasets there are models that score 100% on accuracy
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in training, so these models clearly overfit and they should be discarded. Hopefully, there
are also models that do not overfit during the training, yet they do maintain relatively
acceptable scores regarding the accuracy and the rest of the evaluation metrics. Taking into
account the scores of sensitivity and specificity, we can distinguish as the best performing
models those that are trained using the SVC and GNB algorithms. More specifically,
the SVC based model yields an accuracy of 91.79% (6.74% SD), a sensitivity of 93.20%
(6.33% SD) and a specificity of 90% (10% SD) for the dataset trained on the manually
selected features, while the GNB based model yields an accuracy of 92.14% (8.2% SD), a
sensitivity of 93.4% (6.2% SD) and a specificity of 90% (10% SD) for the dataset trained
on the automatically selected features. Another remark about this batch of models is the
relatively abrupt values of the specificity metric, which is related to the fact that the SMOTE
is now part of the pipeline, thus the oversampling for the minority class happens much
later than the dataset split, which consequently leads small numbers in false positives to
have significant impact on specificity.

Figure 13 provides relevant confusion matrices to visualize the classification perfor-
mance of the models using the testing dataset for a single prediction. Note that the testing
dataset is a stratified hold-out sub-dataset, roughly 30% of the original dataset, yielding
38 instances.
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The custom wrapper method for model evaluation is also configured to plot the
ROC-AUC and the precision–recall diagrams as shown in Figures 14 and 15, respectively.
The AUC of SVC for the production level model and the manually selected features is
0.98 whereas the AUC of GNB for the automatically selected features is 0.97. These dia-
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grams along with the precision–recall diagrams affirm the efficiency of the aforementioned
ML models.
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5. Discussion

This work has shown that it is possible to create ML models based on data collected
from serious games and transformed to engineered features along with relevant subjective
information. These models can be used then to accurately classify whether a subject
belongs to the MCI or NC group as attested by the MoCA cognitive test. In this context, a
focal point of the research performed was the development of a custom methodology to
train such MCI detection models with low bias and variance and to validate the models
using established and solid metrics and techniques, while being attentive to maintain high
performance in terms of sensitivity and specificity.

There are 31 features that originally were defined to train the models from which
15 are related to the games, 14 are related to demographic and health data and 2 are artificial
variables used as reference points to filter features with a lower importance than them
during the feature selection process. Mixing technology-based and subjective data in order
to improve the predictive performance of a cognitive impairment detection model is not
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unprecedented, as a similar approach has been demonstrated in other studies [56]. The
inclusion of features that represent demographics, health and lifestyle cater for improving
not only the performance but also the generality of the prediction. As a matter of fact,
such factors are taken into account also when traditional assessments are used to evaluate
cognitive impairment [57]. For example, in MoCA assessment, a score adjustment is
allowed depending on the education level of the subjects [6,30].

For the production model trained with the manually selected features and the Support
Vector Classifier integrating all the optimization techniques and in the context of the
pipeline method an accuracy of 91.79%, a sensitivity of 93.20% and a specificity of 90%
were achieved. On the other hand, for the production model trained with the more verbose
set of automatically selected features using the Gaussian Naive Bayes algorithm under
the pipeline context, the corresponding evaluation metrics were 92.14%, 93.4% and 90%.
However, for the specificity metric a higher standard deviation is observed which is due to
the fact that for the creation of the production model the testing dataset does not undergo
the oversampling process which is now part of the pipeline and happens later in the
workflow. Consequently, the true negative values are fewer and therefore small errors of
the model lead to a large variation. Both feature selection strategies lead to models with
roughly equal performance however the model with the manually selected features is 18%
more compact. This model includes 9 features with 5 of them representing game data and
4 of them representing subjective data.

The COGNIPLAT game suite includes games which target cognitive functions that are
linked to the assessment of MCI. From the features that have been selected in the machine
learning models it is observed that the games that are associated with the cognitive areas
of short-term memory, visual memory, episodic memory, spatio-temporal orientation and
executive functions are the most important predictors of cognitive impairments. This
is reasonable since the design of the corresponding games focused on several occasions
on porting typical cognitive assessments in a gamified environment. For example, the
Orientation game was inspired by Weschler’s Picture Arrangement Subset [58] which is
used to assess perception and problem-solving cognitive operations that are associated
with spatio-temporal orientation. The Logical Order game is a digital emulation of the
Wisconsin Card Sorting Test [59], frequently used to assess executive functions. The Recall
game is a gamified version of the Digit Span Forward Test, a subsection also of the MoCA
test, typically used to assess short-term memory. The Naming game is a gamified version
of the Rey Auditory Verbal Learning Test [60] where the auditory stimuli are replaced by
visual probes to assess the episodic memory. Consequently, this design approach ensures
that each gameplay assesses the cognitive operation that was meant for.

The use of ML algorithms for cognitive impairment identification on the basis of
game and subjective data goes beyond the classical approach of using statistical techniques.
The MCI detection problem, as defined, calls for employing supervised ML algorithms
for classification. Several such ML algorithms were evaluated in order to build the most
effective models including probabilistic classifiers (i.e., LR and GNB), kNN, SVC, decision
tree learning (i.e., DT, RF), neural networks (i.e., MLP) and ensemble learning. These
algorithms were selected based on their suitability regarding the characteristics of the
problem in hand and from a research perspective they provided the opportunity to test
the created dataset on a broad spectrum of different methods for classification. The choice
of ML algorithms is in accordance with other studies, especially in the area of disease
prediction in the healthcare domain [61]. The best classification models for MCI detection
that the proposed methodology delivered were based on SVC (an implementation of the
support vector machine method in the Scikit-learn library) and GNB which are ranked
amongst the top ML algorithms with superior accuracy in related problems [61]. The SVC
algorithm proved capable of efficiently handling the mixed feature scope (in-game and
subjective data) and showed endurance in the overfitting risk. On the other hand, GNB is
a well-known classifier which is simple and able to handle both discrete and continuous
data achieving a high performance even when the training dataset is limited.
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There are several challenges that must be addressed in order to build an MCI detection
model using data collected from serious games. Starting with the data available for model
training an important issue had to do with their unequal distribution between the two
categories of the target class. In particular, the game sessions that correspond to subjects in
the MCI category were 71, in contrast to those in the NC category, which were 48. This issue
could lead to the creation of biased models with respect to the majority class. To address
this, the oversampling method was applied using the SMOTE algorithm, as described in
the optimization task of the EDA process. Another data issue is related to features with
very low variance which had almost the same values for all the subjects. These features
were excluded from the model training (such as the alcohol and smoking variables) within
the low variance feature removal procedure. Finally, due to the relatively small dataset,
there is a limit to the application of more complex machine learning algorithms, such as
deep learning algorithms.

Data leakage is another important issue to resolve. The effects of data leakage are
essentially the possible alteration of performance results as the testing data are involved
in the process of creating (fitting) the model. The solution to this problem was to use the
pipeline utility method, where all transformations of the EDA stage are performed in a
closed process that contains no elements of the testing dataset. The advantages of the
pipeline include the encapsulation of the data transformations and the classifier, the ability
to be used along with grid-search and the prevention of data leakage given that a dataset
is split between training and testing sub-datasets beforehand. In our work, the usage of
pipelines, apart from the data-leakage prevention and the overall simplicity in workflow
design, offers the convenience of having the data preprocessing transformations included
in the final model itself, which is very important for the deployment of the classification
Service API. This allows new data to be loaded in a single entry point to get a prediction.

One of the optimization techniques applied was dimensionality reduction. In par-
ticular, the PCA technique was applied, thus managing to transform the independent
variables of the dataset (i.e., the features) into two principal components, which contained
a percentage of the original variance. There are other dimensionality reduction techniques
that could be used. One alternative method is the linear discriminant analysis (LDA), which
in contrast to the PCA method is a supervised learning technique, taking into account the
target class for the creation of new components. The difficulty of the LDA method is that
the number of new components that emerge is specific and is always the lowest value
between the number of features and the number of categories of the target class. In our
case this means that only one component could be used.

A limitation of the present study is that the number of participants is apparently
small to draw safe conclusions even though the design of the study and the assembled
sample were meticulously handled in terms of methodology (e.g., sample heterogeneity,
informed consent, ethical approval). Undoubtedly, a larger sample would provide a
sounder base regarding the effectiveness of the methodology. On the other hand, the dataset
for training and testing the classification models consists of 119 instances, which correspond
to the number of game sessions played by the participants. Each instance contains up to
32 variables, i.e., 31 features (as presented in Table 5) and 1 binary classification state. This
configuration plausibly serves our preliminary study aiming to assess whether serious
games combined with machine learning methods could potentially work as a tool for
cognitive screening.

The research described in this paper could be enhanced in various directions. An
extension of the research approach will be to explore a model that can classify multiple
classes such as NC, MCI and Dementia given the diagnostic capability of the MoCA
assessment. Since many subcategories of MCI have been identified such as amnestic MCI,
single domain MCI, multiple domain MCI, dysnomic MCI, dysexecutive MCI and their
combinations [62], it would be challenging to examine the association of low performance
in specific games with specific MCI subcategories in order to create a model that would be
able to classify multiple cognitive classes.
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6. Conclusions

This work demonstrates that models trained on data gathered from serious games
can distinguish, with sufficient accuracy, whether an individual belongs in the healthy
or the MCI state in terms of cognitive competency. The research performed in this work
is multifaceted and its scope ranges from the healthcare application domain in terms of
exploring MCI characteristics, to the use of serious games in terms of collecting raw data
and to the machine learning domain in terms of extracting features and building models
that allow the early MCI detection. The contribution of this work is a methodology to train
and evaluate models with ML algorithms, validate their results and reflect on the challenges
addressed throughout the steps of this process. Eventually, the ultimate goal is to use the
games and the machine learning models in services that could be used supplementary
to the traditional cognitive assessment tools. Our preliminary results are promising and
call for further research in the way to bring this methodology to the clinical practice of
cognitive impairment diagnosis.
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