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Abstract: With its potential, extensive data analysis is a vital part of biomedical applications and
of medical practitioner interpretations, as data analysis ensures the integrity of multidimensional
datasets and improves classification accuracy; however, with machine learning, the integrity of the
sources is compromised when the acquired data pose a significant threat in diagnosing and analysing
such information, such as by including noisy and biased samples in the multidimensional datasets.
Removing noisy samples in dirty datasets is integral to and crucial in biomedical applications,
such as the classification and prediction problems using artificial neural networks (ANNs) in the
body’s physiological signal analysis. In this study, we developed a methodology to identify and
remove noisy data from a dataset before addressing the classification problem of an artificial neural
network (ANN) by proposing the use of the principal component analysis–sample reduction process
(PCA–SRP) to improve its performance as a data-cleaning agent. We first discuss the theoretical
background to this data-cleansing methodology in the classification problem of an artificial neural
network (ANN). Then, we discuss how the PCA is used in data-cleansing techniques through a
sample reduction process (SRP) using various publicly available biomedical datasets with different
samples and feature sizes. Lastly, the cleaned datasets were tested through the following: PCA–
SRP in ANN accuracy comparison testing, sensitivity vs. specificity testing, receiver operating
characteristic (ROC) curve testing, and accuracy vs. additional random sample testing. The results
show a significant improvement in the classification of ANNs using the developed methodology and
suggested a recommended range of selectivity (Sc) factors for typical cleaning and ANN applications.
Our approach successfully cleaned the noisy biomedical multidimensional datasets and yielded up
to an 8% increase in accuracy with the aid of the Python language.

Keywords: principal component analysis (PCA); artificial neural network (ANN); multidimensional
dataset; dimension reduction process; sample reduction process (SRP); receiver operating characteristic
(ROC) curve; selectivity (Sc); sensitivity; specificity

1. Introduction

It is clear that biomedical sensors will keep improving exponentially, as they become
more accessible; more readily available on the market; more intelligent; smaller and
more compact; and integrated into personal belongings, such as cellular phones, watches,
and eyeglasses. It is an outstanding contribution to human health, entertainment, the
military, security, sports, and leisure and in analysing a patient’s physiological data and
their interpretation. These sensors are an integral part of biomedical devices; however,
this innovation has an ever-evolving trend coupled along with challenges to perform
intelligently [1]. The integration of these sensors, subjected to different environments in
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both wired and wireless implementations, adds random noise to the system. The sudden
upswing of the noise floor yields a degradation in the signal-to-noise ratio (C/N) and low
energy bit per noise reference (Eb/No) during data processing. The drastic increase in
the probability of error (Pe) eventually decreases the accuracy in such a system [2]. This
interference results in flawed calculation and decision making, especially for artificial
neural networks (ANNs) in biomedical applications [3].

An artificial neural network (ANN) is a part of a computing system that simulates
the ability of the human neuron to learn the complex characteristics of the environment, to
recognise patterns, and to generalise the inter-relationships between the features, including
multidimensional datasets. It is part of the umbrella of artificial intelligence (AI) and deep
learning, and it solves problems that would be impossible or difficult to solve by human
effort or statistical criteria. ANNs have self-learning skills, enhancing their efficiency as
more effective and reliable data become available to them. Primarily, ANNs enable the
complex inter-relationships between the features within a given dataset to be identified
and have seen widespread adoption in different applications, including biomedical and
signal processing, which is readily and publicly available by wearable sensors [4].

Since data are everywhere—such as on the Internet—neglecting the integrity of a source of
information poses a significant threat for ANNs to misinterpret the data. For critical aspects
of the medical field, the efficacy of a diagnosis is threatened if the analysis that aids medical
experts in research has a weak source, especially if dealing with the multitude of datasets that
result in the presence of noisy and biased data, which often occurs from seemingly reliable
sources [5].

Low-powered sensors are a critical source of unreliable information. Sudden changes
in conditions can introduce environmental noise, and there are many possible avenues for
noise and interference to blend into any part of the system. A sensor’s scalability is another
problem, given that the sensors nowadays are low power and with limited computation.
Placement or location is another significant constraint, and if they are placed too close to
other devices, they may be affected by crosstalk interference [6].

To understand the data, first, one needs to understand their composition. Data
comprise valid and dirty data. Accurate data contain information that is accurate, holds
predictive power, and is generalised to the entire set. Dirty data contain information that is
misleading, noisy, or erroneous data, such as pragmatic contexts and the semantic- and
syntactic-biased errors shown in Figure 1 [7].

Figure 1. Dirty data.

Noisy data are any random fluctuations considered unwanted, unpleasant, loud, or
disruptive that hinder the generalisation of the entire dataset. For an ANN with predictive
power to analyse the data, the dataset needs to be free from noise to reduce errors in
classification and prediction, which would significantly impact medical experts in their
professional biomedical interpretation. Given recent technological solutions, one relevant
control algorithm is highlighted in solving these challenges [8].
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Principal component analysis (PCA) is usually part of data visualisation. PCA con-
verts the features of datasets from high dimensional data and can help convert data to
low-dimensional data with the aid of covariance, eigenvalues, and eigenvectors in iden-
tifying and sorting the strength of the predictive power of all features [9]. PCA allows
for the extraction of critical feature vectors from multidimensional datasets in terms of
data visualisation and loses some crucial information along the process [10], which is
a considerable disadvantage, primarily if it is used extensively in the field of machine
learning. This study used PCA not as a dimension reduction but as a sample reduction in
order to remove the unwanted noisy samples in multidimensional datasets.

This paper proposes an application of a PCA–sample reduction process (SRP) to
improve the prediction accuracy of ANNs. Using publicly available biomedical datasets
from a different field provides qualitative analysis and demonstrates the effectiveness
of said method in improving the accuracy of ANNs. By cleaning the publicly available
biomedical datasets before training and testing the ANN, the classification problem is
expected to increase the accuracy and to lower the computational cost, which is a great
help in dealing with the the analysis and prediction of big multidimensional datasets.

A study to reinforce the methodology of an ANN using PCA–sample reduction is
proposed in this paper to determine the proposed system’s accuracy and performance
with different sizes of multidimensional biomedical datasets. Furthermore, we investigate
heart disease, voice and speech analysis for gender recognition, breast cancer classification,
and cancer patient datasets to prove the versatility and flexibility of the proposed data-
cleansing technique.

The rest of the paper is structured as follows. Section 2 provides a literature review of
data cleaning in biomedical applications. Section 3 discusses the basic concepts of principal
component analysis and related topics. Section 4 discusses how the PCA–SRP is integrated
with an ANN. Section 5 provides the recommended Sc ranges. Section 6 interprets the
result of publicly available biomedical datasets. Lastly, Section 7 provides a discussion, the
conclusion, and future research directions.

2. Data-Cleaning Applications

The volume of data collected nowadays is vastly increasing, and since most data
acquired are polluted, the dependability of the data is declining. Various data-cleaning
methodologies are available to rectify this issue, but data cleansing remains difficult when
working with large data requirements. Data cleaning, also known as data cleansing, is
no longer a recent area of research. It aims to increase data quality by detecting and
eliminating errors and inconsistencies [11]. As of now, there are two classifications of
data cleansing: traditional data cleansing and data cleansing for big data. Traditional data
cleansing techniques are so called because it is not used to manage massive volumes of
data, such as Potter’s Wheel and Intelliclean [12].

Meanwhile, the techniques in Table 1 such as Cleanix [13], SCARE [14], KATARA [15],
and BigDansing [16] are developed specifically for big data. Regarding the emerging
trends in data-cleaning techniques, one of the new challenges that researchers are about
to face is scalability [17]. One of the perennial problems in data analytics is identifying
and restoring dirty data, and failure to do so will result in faulty analytics and unreliable
decisions. New abstractions and scalability are among the various facets of this issue and
are considered when developing data-cleaning methods to cope with the amount and
diversity of data [13,14,16]—see Table 2. Given the significant amount of data, it needs
time to be processed to be suitable for big data analysis and decision making. The data’s
volume, veracity, and velocity must also be considered when analysing the proposed
approaches; however, the researchers mentioned that “Data analytics is not about having
the information known, but about discovering the predictive power behind the data
collected” [12].
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Table 1. Data-cleansing methods for big data.

Methods Key Features Approach

Cleanix Scalability, unification, Rule Selection
and Usability

SCARE Scalability Machine Learning
Technique

KATARA Easy Specification, Knowledge-base and
Pattern Validation Crowdsourcing
Data Annotation

BigDansing Efficiency, Scalability Rule Specification
and ease of use

Cleanix, SCARE, and BigDansing focus on the scalability issue in the data cleansing process.
Moreover, SCARE and BigDansing do not require any human-domain expert in the cleansing
process. SCARE needs an extensive set of rules to update the dataset; however, no expert
is present in the process. Nevertheless, the process is expensive, and if the authorities fail
to identify correct fixes for the dirty dataset, it will result in redundancy of the training data
and a threshold machine learning parameter that is hard to set precisely [15]. Furthermore,
BigDansing also requires a set of data-quality rules for optimisation of the cleansing process
that requires too many regulations to calibrate and put into place before the start of the cleaning
process, as shown in Table 2 below; however, it needs no human-domain expertise to monitor
the whole process, although adjusting such parameters is crucial in maintaining the essence of
the information in the datasets [12].

Table 2. Currently used data-cleaning technique.

Volume Veracity Velocity

Cleaning Technique
Data Scalability

No need for
Extensive Data
Quality Rule
Optimisation

No need for Human
Domain Expert

Cleanix x
SCARE x x

KATARA x x
BigDansing x x

These data-cleansing techniques support various data-cleaning tasks such as abnor-
mal value detection and correction, incomplete data filling, de-duplication and conflict
resolution (Cleanix), value modification (SCARED), the identification of correct and in-
correct data, and the generation of top-k possible repairs for inaccurate data (KATARA)
and rules into a series of transformations that enable distributed computations and several
optimisations (BigDansing).

There are two kinds of dirty data: erroneous and noisy—see Figure 1. The current big-
data-cleansing techniques—Cleanix [13], SCARE [14], KATARA [15], and BigDansing [16]—
are focused mostly on erroneous dirty data such as a solution in duplicate entries, missing
values, wrong values, and wrong formats. In medical applications, these big-data-cleansing
techniques play a critical role in medical record management in medical facilities; however,
they do not address noisy data acquired via biomedical sensors. Cleanix, KATARA, and
BigDansing are not able to predict the correct values through a machine learning approach
and cannot determine how to eliminate the mixed random number [12]; however, the
SCARE technique, though constructed via machine learning, can only replace the missing
values with the most precise value. When dealing with noisy data, the common approach
in applications with machine learning and artificial neural network (ANN) is to address
noise reduction and suppression [11,18,19].
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Given all of the above data-cleaning techniques, noise and random sample reduction
is a significant part of their scope of discussion, which is vital in biomedical data signal
analyses acquired in wearable biomedical sensors due to its subjectiveness in a different
kind of environment—an environment often filled with varying sorts of noises, such as
thermal and acoustic noises and interference. Moreover, since most wearable biomedical
sensors are of low power, by suppressing these kinds of noises through signal processing
by applying the filtering threshold method, the unsupervised classification is not effective
under a low SNR. When the spectral characteristics of the noise are so similar or near that
of the sensor-received signal, the detection performance may be degraded [20]. When it
applies to the classification problem of an artificial neural network (ANN), obtaining the
correct values through comprehensive and extensive quantisation in data-signal processing
is essential. Still, it is not sufficient to identify which of the gathered data have a predictive
power, as some authors mention that “Data analytics is not about having the information
known, but about discovering the predictive power behind the data collected” [12]. Correct
values of the data do not guarantee that it holds a valid value in predicting and summarising
the entirety of the multidimensional datasets. Mining those correct values is an integral
part of data mining in every machine learning and big data analysis.

Complicated and straightforward mistakes are unavoidably present in data input and
acquisition. Although much effort could be expended into this front-end procedure to
reduce entry mistakes, the truth remains that mistakes in massive datasets are prevalent.
Field error rates usually are about 5% or higher unless an organisation takes extraordinary
precautions to prevent data inaccuracies [21]. Moreover, this rate is still quite high, at such
a rate that it might lead to erroneous interpretation and decision making.

In the case of cleaning the noisy data via biomedical sensors, most researchers use prin-
cipal component analysis, such as a reduction in dimensionality or feature space [22–26],
feature extraction in further data visualisation [27–29], and feature selection tools in ma-
chine and deep learning applications [30–34] for machine learning applications.

Principal component analysis (PCA) is usually utilized in dimension or feature reduc-
tion and provides a significant increase in accuracy and efficiency along with other machine
learning techniques in many applications aside from biomedical application [35–39]. Nev-
ertheless, some of the information is lost during the process of dimension reduction [10].

Figure 2 shows a sample Excel dataset, and PCA reduces the dimensions vertically
(by column), shown in red; for the proposed methodology, it reduces the noisy samples
horizontally (by rows). We emphasise that the extraction of features, such as covariance,
eigenvalues, eigenvectors, and dimension reduction, is not a novel technique that we
propose here, but instead, we propose the implementation of sample reduction using PCA.
Identifying the noisy samples that cause irregularity in the multidimensional datasets and
omitting or reducing them is the main focus of this study.

Figure 2. Sample Excel multidimensional dataset.
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The observation and the application of the PCA–sample reduction process are utilised
for data cleansing of the noisy multidimensional datasets to increase the accuracy of clas-
sification problems in artificial neural networks and to identify recommended threshold
ranges. To the best of our knowledge, we are the first to propose this unique approach. We
discuss a specific technique for qualitative noise detection and omission of such. These
techniques are explained with a motivating example highlighting deep learning classifi-
cation problems of artificial neural networks in biomedical applications using publicly
available biomedical datasets. The simplicity of this technique makes it portable and can
apply to a variety of tasks for fast and accurate classification of typical or commonly used
artificial neural networks.

In terms of software implementation, developers and data engineers prefer Python
programming. It is the best option for projects or programming involving AI and big data
analysis as Python is a simple language with a mature and supportive Python community;
an abundance of support from renowned corporate sponsors; an extensive and popular
selection of libraries; and the ability to work with heavy-hitting frameworks such as
TensorFlow, Sci-kit-learn, OpenCV, and Keras [40].

3. Principal Component Analysis–Sample Reduction Process

Principle component analysis (PCA) aims to minimise the dimensionality of a dataset
with many connected variables while keeping as much variance as feasible. The conversion
of the new collection of uncorrelated variables known as principal components (PCs)
preserves most of the variance included in the original variables. A new set of dimensions
or orthogonal measurements are linearly independent and ranked according to the data
variance. This means the more crucial principal axis occurs first (more important = more
variance/more spread-out data). In general, understanding the PCA, variance, covariance,
eigenvalues, and eigenvectors has an essential role in this concept [41].

Figure 3 shows large positive covariance means that X and Y are completely related,
i.e., as X increases, Y also increases. Negative covariance portrays the exact opposite
relation. Zero covariance means that X and Y have no relation.

Figure 3. Covariance and their values.

The visualisation of data is an excellent approach to understand the patterns that
lie in the multidimensional datasets. When information is placed in the horizontal and
vertical axes (two-dimensional plane), it is straightforward to understand and discern the
pattern that lies in it; however, the difficulty of conceiving it visually in multidimensional
data with many features to consider and computing the data analysis becomes complex.
Principal component analysis prerequisites require the discovery of patterns between
the datasets so that the data are distributed across each dimension by first analysing
the contributions of each feature in providing information to the overall dataset through
eigenvector analysis. It then performs dimension reduction by keeping the feature columns
with the highest eigenvalues.

To demonstrate the efficacy of PCA, Figure 4, which projects a set of multidimensional
data onto a two-dimensional space, is used as an example. Due to the high dimensional
nature of the data points, it can be challenging to identify a linear correlation between the
data points. The points are represented as column vectors before being aggregated into a
matrix M. PCA is then applied to M as shown in Equation (1):
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PCA(M) = W ×V (1)

where W and V are the corresponding eigenvalues and eigenvectors, respectively.
VPC1 is generated using covariant eigenvalues V with the corresponding top k eigen-

value in W, which best represents the data points, and are then selected, before plotting
them as shown in Figure 5 [30]. The principal axes (PC1 and PC2) are denoted by the red
lines passing through the points that provide a graphical representation of the covariance
amongst the points.

Lastly, the vital part of the proposed PCA–sample reduction process (PCASRP) is
as follows:

PCASRP(M) = |M×VPC1 | (2)

where PCASRP(M) is the loading score of each sample in dataset M and VPC1 is the PC1
eigenvectors of the samples in matrix M.

S =
D

∑
0

{
1 if PCASRP(M) > Sc× PCASRP(M)highest

0 otherwise
(3)

S is the number of samples above the loading score of set-biased Sc, and S ≤ D, where
D is the number of samples in the dataset, including the random and noise samples.

passrate = S/D (4)

The passrate is the rate of samples cleaned using PCA–SRP in dataset M based on
Equation (4). Any samples above said threshold are accepted, and those below it will be
rejected for the new process dataset DPS as per Equation (3).

Figure 4. Projection of data points in two dimensions.

Figure 5. Projection of data points in the two newly constructed dimensions.
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4. PCA–SRP Implementation in ANN

The proposed framework addresses the limitations of the ANN in processing multidi-
mensional datasets through the use of PCA with the sample reduction process (PCA–SRP).
PCA is used to analyse the multidimensional data, and if there exists a significant relation-
ship between the features of a dataset, it is arranged from the most significant samples
to the least to be visualised and the multidimensional data are put into perspective. It
focuses on implementing dimension reduction by removing data from the multidimen-
sional dataset feature columns that do not have high inter-feature covariance; however,
the proposed framework using the loading scores can dissect all of the samples or rows in
the multidimensional dataset. Figure 6 provides a graphical description of the proposed
PCA–SRP-based ANN solution.

Figure 6. Conceptual flowchart of the proposed approach.

The PCA–SRP Python program generates a new set of multidimensional data with
fewer samples based on the screen plot to identify the most significant samples. It is used
in the Python ANN program as an input in order to ensure correct classification.

Figures 7 and 8 show the algorithm used in Python in the implementation and analysis
of the concept. The implementation starts by extracting the data in .csv format and by
injecting it into the PCA–SRP process. Major principal components are extracted through
the threshold mentioned above based on the input dataset, resulting in a new set of
multidimensional datasets used in ANN.

Figure 7. Detailed breakdown of the steps in PCA.

Figure 8. Detailed breakdown of the steps in ANN.

The proposed PCA–SRP utilised in the ANN consists of two hidden layers consisting
of 32 neurons and 16 neurons. The learning rate was set at 0.1 and trained for 100 epochs.
The input parameters in the PCA–SRP-based ANN are shown in Table 3 [42].
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Table 3. PCA–SRP and ANN parameters.

PCA–SRP and ANN Parameters Values

Most significant >Sc× (PCASRP(M)highest)
sample size

Learning rate 0.1%
Epochs 100

Number of ANN 2 hidden layers (32 and
neurons 16, respectively)

Activation functions ReLU in hidden layers
used SoftMax in final layer

The accuracy of the PCA–SRP-based ANN was compared against a model trained
using ANN alone on different datasets.

5. Sc Range Identification

Accuracy testing was conducted for the specified dataset in order to identify the Sc
range shown in Figure 9, to maximise the number of samples of the cleaned set S, and to
maximise the number of samples of the removed set R in the processed DPCA−SRP.

Figure 9. Detailed sensitivity vs. specificity testing procedure.

Assume that there are two sets of data D: cleaned data S and R.

D = S + R (5)

%Noise = R/S (6)

R = %Noise× S (7)

Therefore,
D = S + %Noise× S (8)

D = S× (1 + %Noise) (9)

By indexing the dataset D for identifier, where n is the number of cleaned data S, we
have the following:

D =

{
S if 0 ≤ index ≤ n
R if n < index ≤ n× (1 + %Noise)

(10)

DR randomly distributes R in S to thoroughly mix the noise in the cleaned data by
maintaining its index for identification. Then, DR is processed in PCA–sample reduction
and sorted based on its loading score through the concept of covariance, eigenvalues and
eigenvectors, and DPCA−SRP.

Sc is the selectivity of the data based on the equation in Table 3, DPCA−SRP, where the
cut-off is biased to separate the clean-processed data DPS and to remove processed data
DPR. The dataset was transformed from random to sorted PCA-SR-processed data.

Transformation:
D → DR → DPCA−SRP (11)
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Thus,
D = S ∪ R (12)

DPCA−SRP = SPCA−SRP ∪ RPCA−SRP (13)

By definition, Saccuracy (true positive rate or sensitivity) is the number of correct
samples in a clean-processed S in DPS with a relative to number of n.

Saccuracy = SDPS /n (14)

However, Raccuracy (True Negative Rate or Specificity) is the number of correct samples
of R in DPR.

Raccuracy = RDPR /(n×%Noise) (15)

Therefore, the most efficient Sc is where Saccuracy and Raccuracy meet.

5.1. Test Selectivity (Sctest)

To find Sctest, the actual cleaned S set and random R set are needed to identify the
accuracy by identifying the Saccuracy and Raccuracy lines and by applying Equation (16).

Sctest = index[max(Saccuracy × Raccuracy)] (16)

For Scmin, Saccuracy and Saccuracy are maximised:

∂(Saccuracy)

∂(Sc)
= 0 (17)

∂(Raccuracy)

∂(Sc)
= 0 (18)

As shown in Equation (16),

Fvalue = Saccuracy × Raccuracy (19)

∂Fvalue
∂(Sc)

= Saccuracy ×
∂(Raccuracy)

∂(Sc)
+ Raccuracy ×

∂(Saccuracy)

∂(Sc)
= 0 (20)

∂2Fvalue
∂(Sc)2 < 0 (21)

Maximum Fvalue with respect to Sc is the Sctest by satisfying the Equation (21).
Note: Be cautious when using Sctest as Sc; it might remove all of the unwanted sample

sets but may lose some information.

5.2. Minimum Selectivity (Scmin)

The minimum Sc is the rate of samples in PC1, which shows that all included samples
pass the minimum requirements of having the same attributes as the entire set.

Scmin = PC1rate (22)

Note: By using Scmin as Sc, while it might not lose important information, the dataset
D includes an abundance of random and noise samples.

The acceptable Sc is shown in Equation (23) in Figure 10.

0 ≥ Scmin ≥ Sc ≥ Sctest ≥ 100 (23)

Then,
Scmin ≥ Sc ≥ Sctest ≥ 100 (24)
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Therefore, the recommended Sc is between the range given in Equation (25). It varies
depending on how much cleaning and removing are needed in the dataset D.

Scmin ≥ Sc ≥ 100 (25)

Figure 10. Sc—accuracy testing representation.

5.3. ANN Selectivity (ScANN)

The ANN requires samples that allow for strong predictive power (see Section 7 for
more details concerning the ANN requirements); we assumed the following:

Sctest ≥ ScANN ≥ 100 (26)

However, Sctest is unknown due to unidentifiable R samples, and it is suggested that
ScANN is close to 100%.

6. Multidimensional Datasets

The multidimensional datasets for classification problems are tested under two layers
of artificial neural network with 32 and 16 neurons, respectively, using ReLU and SoftMax
activators, a testing size of 20%, a training size of 80%, 100 epochs, a learning rate of
10% [42], and Sc = 98% of the highest loading score in PCA analysis. Noisy data based on a
standard distribution are added to the original dataset before training to simulate noisy data
samples. Figure 11 shows how a given multidimensional dataset is preprocessed and used
in the proposed PCA–SRP approach. Each multidimensional dataset or corpora has selected
the variation in its dimensions, primarily sample sizes; the number of classifications shown
in Table 4; the noise sample contents; and the purpose it serves in any field of biomedical
applications in classification problems.

Table 4. Datasets used and their metadata.

Datasets Number of
Dimensions Sample Size Target Classification

Heart Disease 14 301 2
Gender Voice
Recognition 21 3167 2

Breast Cancer 31 568 2
Cancer Patients 24 1098 3
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Figure 11. Pre-processing an application of multidimensional datasets in the proposed approach.

The different multidimensional datasets are shown in Table 4 and were acquired from
different scientific and medical laboratories [43–47]. Specifically, to test our procedure, we
vary the number of samples and dimensions. Moreover, researchers also are trying to show
that the Python implementation works with a variety of dataset sizes.

6.1. Heart Disease Dataset

The experiment with the Cleveland patients dataset is concentrated on simply attempting
to distinguish presence (values 1) from absence (values 0) to find other trends in heart data to
predict certain cardiovascular events or to find clear indications of heart health [43].

Figures 12 and 13 show the result of the scree plot based on the values, indicating
the PCA value distributions of the features in the dataset and the Sc-threshold cutoff limit,
respectively. Based on the values, 78.48% of the top samples were selected in the training
of the ANN model for a 98% selectivity.

Figure 12. Scree plot of the heart disease dataset.
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Figure 13. Threshold cutoff limit of the heart disease dataset.

6.2. Gender Voice Recognition Dataset

The gender voice recognition dataset is based upon acoustic properties of the voice
and speech to identify a voice as male or female. The dataset consists of 3167 recorded voice
samples collected from male and female speakers. The voice samples are preprocessed by
acoustic analysis in R using the Seewave and TuneR packages, with an analysed frequency
range of 0–280 hz (human vocal range) [44].

Figures 14 and 15 show the threshold cutoff limit and the result of the scree plot show
the PCA distributions of the features in the dataset, respectively. In the training of the ANN
model, the proposed method selected 23.82% of the top samples from the dataset.

Figure 14. Scree plot of the gender voice recognition dataset.

Figure 15. Threshold cutoff limit of the gender voice recognition dataset.
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6.3. Breast Cancer Classification Dataset

The computed dataset consists of a series of digitised images of a mass breast fine
needle aspirate (FNA). They describe characteristics of the cell nuclei present in the three-
dimensional image as described in [45].

Figures 16 and 17 show the threshold cutoff limit and the results of the scree plot
showing the PCA distributions of the features in the dataset, respectively. The selection of
the top eigenvalues in the samples obtains 93.67% of the original dataset.

Figure 16. Scree plot of the breast cancer classification.

Figure 17. Threshold cutoff limit of the breast cancer classification dataset.

6.4. Cancer Patients Dataset

The data comprise information about hundreds of cancer patients and their lifestyles.
It consists of three classes (low, medium, and high severity), based on the cancer patients
dataset [47].

Figures 18 and 19 provide the threshold cutoff limit and a graphical description of the
PCA distributions amongst the features in the dataset, respectively. The selection of high
eigenvalues features resulted in 45.41% of the samples in the original dataset used for the
model’s training.

Figure 18. Scree plot of the cancer patients dataset.
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Figure 19. Threshold cutoff limit of the cancer patients dataset.

7. Discussion and Results

Upon acquiring the given datasets, they are contiminated with noise and random
samples. By definition, noise is small, unwanted forms of energy or samples; on the other
hand, random samples are the unconscious and unspecified values within the range of
normal values.

The datasets with noise and random samples are processed using PCA–SRP with 98%
selectivity (Sc), shown in Table 5, and then subjected to following tests:

• PCA–SRP + ANN comparison accuracy testing compares the validation model accu-
racy with and without PCA–SRP in an ANN.

• Sensitivity vs. specificity testing is a diagnostic test to find the approximate Sc range
values (Sctest).

• Receiver operating characteristic (ROC) curve testing compares the methodology PCA–
SRP in different datasets in terms of organisation and classification of samples. Moreover,
ROC curves also provide a practical evaluation of machine learning techniques.

• Accuracy vs. additional random samples testing is a diagnostic test responding to the
sudden increase in noise and random sample spikes.

Table 5. Datasets sample status after PCA–sample reduction process.

Dataset Samples Used %Passrate

Heart Disease 259/330 78.48
Gender Voice Recognition 786/3300 23.82

Breast Cancer 562/600 93.67
Cancer Patients 499/1099 45.41

7.1. PCA–SRP + ANN Comparison Accuracy Testing

We compared the validity model accuracy using PCA–SRP in an ANN classification
problem as suggested by the results presented in Figure 20 and determined its effect upon being
subjected to noise and random samples. Tables 6 and 7 display the validation accuracy using
ANN + PCA–SRP and ANN only, showing a significant increase as shown in Figure 21 for both
noise and random samples.

Figure 20. PCA–SRP to ANN process.
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(a) Heart disease dataset
with noisy samples.

(b) Heart disease dataset
with random samples.

(c) Gender voice recognition dataset
with noisy samples.

(d) Gender voice recognition dataset
with random samples.

(e) Breast cancer classification dataset
with noisy samples.

(f) Breast cancer classification dataset
in random samples.

(g) Cancer patients dataset
with noisy samples.

(h) Cancer patients dataset
with random samples.

Figure 21. Validation model accuracy of the given datasets.

The difference between dataset accuracy subjected to noise and random samples
are the definition of the accuracy curve line between ANN + PCA–SRP to ANN only,
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even though both of them have a significant accuracy increase. The accuracy of datasets
under the influence of random samples swings and deviates more and is less defined in
comparison with accuracy with noise samples.

Table 6. A ccuracy of datasets with noisy samples.

Dataset ANN ANN %
Only with SRP Increase

Heart Disease 76.19 79.89 3.7
Gender Voice
Recognition 90.6 93.29 2.69

Breast Cancer 90.49 92.36 1.86
Cancer Patients 79.82 83.27 3.45

Table 7. Accuracy of datasets with random samples.

Dataset ANN ANN %
Only with SRP Increase

Heart Disease 73.69 81.76 8.07
Gender Voice
Recognition 85.72 91.2 5.42

Breast Cancer 83.3 86.46 3.12
Cancer Patients 80.90 88.81 7.91

7.2. Sensitivity vs. Specificity Testing

Sensitivity measures how many true positives remain in S set, and it is described
as a sudden dip as Sc increases. Specificity measures how many true negatives remain
in the removed R set and increases as Sc increases. Figure 22 presents the diagnostic
testing yielding a recommended Sc range in normal cleaning and ANN applications, as
demonstrated in Equations (25) and (26), respectively.

(a) Heart disease dataset. (b) Gender voice recognition dataset.

(c) Breast cancer classification dataset. (d) Cancer patients dataset.

Figure 22. Sensitivity vs. specificity diagram.



Appl. Sci. 2021, 11, 8240 18 of 24

Table 8 shows the relation between Scmin and Sctest, but in practicality, Sctest is hard to
determine due to unknown R sets, and whether it consists of noise or random samples. In
general, for the normal cleaning process, Sc is close to or above the Scmin or PC1 rate. For
the given datasets, it is suggested that Scnormal is as follows:

80% ≤ Scnormal ≤ 96% (27)

Table 8. Saccuracy (Sctest−min) result.

Dataset Scmin Sensitivity Specificity Sctest Sensitivity Specificity

Heart Disease 96 98.04 73.68 97 94.15 81.04
Gender Voice 80 88.75 2.87 90 53.08 84.103
Recognition

Breast Cancer 96 99.47 57.64 99 94.51 81.84
Cancer Patients 88 93.83 25.86 95 81.8 39.1

However, ANN applications need highly predictive samples [12], so it is suggested
that selectivity (Sc) should be almost near 100%. Table 8 shows ScANN at the follow-
ing range:

90% ≤ ScANN ≤ 99% (28)

A high Sc value loses information and true positives in the S set but increases the
specificity of the dataset; however, a low value of Sc adds noise and random samples that
yield fewer true negatives and increases sensitivity. Careful adjustment of Sc vouches for a
good result as a cleaning agent in the system.

7.3. Receiver Operating Characteristic (ROC) Curve Testing

As observed in Figure 23, receiver operating characteristic (ROC) datasets have shown
an organisation of the samples, even the random and noise samples were strongly mixed
into the cleaned set. The larger the area under the curve (AUC), the better the classifier
methodology for the true positive rate (sensitivity) vs. true negative rate (1 − specificity)
diagram, as seen in Figure 24. Ideally, the objective is the perfect classifier; nevertheless, a
result above the random classifier line would allow us to conclude that the methodology
is acceptable.

Given all of the datasets, the cancer patients dataset is acceptable but by not as much
as the other datasets; it has a smaller AUC.
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(a) Heart disease dataset. (b) Gender voice recognition dataset.

(c) Breast cancer classification dataset. (d) Cancer patients dataset.

Figure 23. Receiver operating characteristic (ROC) curve.

Figure 24. ROC curve interpretation.

7.4. Accuracy vs. Additional Random Samples Testing

Since the cancer patients dataset shows the least-effective classifier, as shown in
Figure 23, it was tested for its response to the injection of the a sudden spike in additional
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random samples up to 100%. Figure 25 shows that, upon increasing the random samples,
the result of PCA–SRP decreases gradually.

Figures 26 and 27 present the validation accuracy of both ANN + PCA(SRP) and ANN
only to additional noises up to 100% with selectivities (Sc) of 88 and 98%, respectively. It
has also shown a reasonable increase in accuracy using 98% selectivity (Sc) instead of 88%.

Figure 25. PCA cleaned data percentage (%).

The high-valued data have been preserved and maintain their accuracy until a specific
additional noise point. Nevertheless, the predictive power remains intact until that point,
even though some data were lost in the process.

Figure 26. +%Noise response for cancer patients dataset (Sc = 88%).

The ANN + PCASRP maintains the highest performance of cancer patient classifica-
tions with high Sc values. The methodology allows for a significant advantage by gradually
lessening the decrease in classification problem accuracy over the sudden increase in noise
in the system.
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Figure 27. +%Noise response for the cancer patients dataset (Sc = 98%).

The ANN classification problem requires strong training sets, which requires a lot of
high Sc while disregarding the low ones; based on the observation in both Figures 26 and 27,
ScANN is better, as described in Equation (26).

8. Conclusions and Future Research

The material presented in this paper shows a significant improvement in the accuracy
of an ANN in classification problems with the aid of principal component analysis–sample
reduction process (PCA–SRP). The ANN cast off 10% of the learning rate, two layers with 32
and 16 hidden neurons, ReLU activators in hidden layers, and SoftMax in output activators
with 100 epochs or iterations, as shown in Table 3 based on the PCA–SRP and ANN The
Python implementation program was implemented on the multidimensional datasets
gathered, namely the heart disease, gender voice recognition, breast cancer classification,
and cancer patients datasets provided in Table 4. These datasets were then used in the
PCA–SRP + ANN accuracy comparison testing, sensitivity vs. specificity testing, receiver
operating characteristic (ROC) curve testing, and accuracy vs. additional random samples
testing; the results show significant improvements.

PCA–SRP removed dirty and imprecise datasets, based on the results shown in Table 5,
which allowed us to reduce the number of samples in the process and allowed for a signifi-
cant increase in accuracy, as shown in Tables 6 and 7. Furthermore, we also determined the
recommended Sc range values for normal cleaning and the ANN classification problem.

Future research will further investigate the performance in massive biomedical datasets
and determine how to load them into PCA–SRP cleansing agents; one of the suggestions is
loading through batch processing. Another suggestion is to utilise knowledge-based tech-
niques of PCA–SRP in different neural network architectures such as CNNs, RNNs, LSTMs,
and GNNs. Furthermore, an investigation into various field applications to explore the
incorporation of the investigated cleaning techniques, such as real-time biomedical automa-
tion, image-based medical diagnosis classification, and human thoughts processes [48–51]
could be a desirable research avenue.

The proposed methodology can be applied to a wearable EEG or similar device in
order to extract chaotic data from the brain’s unique biometric featured samples for use
in cryptography or especially for steganography. Lastly, this formal basis is necessary to
design and construct high-quality and helpful software tools to support the data cleansing
process of PCA–SRP and its application for artificial neural networks (ANNs).
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