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Abstract: Today, cloud systems provide many key services to development and production environ-
ments; reliable storage services are crucial for a multitude of applications ranging from commercial
manufacturing, distribution and sales up to scientific research, which is often at the forefront of
computing resource demands. In large-scale computer centers, the storage system requires particular
attention and investment; usually, a large number of diverse storage devices need to be deployed in
order to match the varying performance and volume requirements of changing user applications.
As of today, magnetic drives still play a dominant role in terms of deployed storage volume and of
service outages due to device failure. In this paper, we study methods to facilitate automated proac-
tive disk replacement. We propose a method to identify disks with media failures in a production
environment and describe an application of supervised machine learning to predict disk failures.
In particular, a proper stage to automatically label (healthy/at-risk) the disks during the training
and validation stage is presented along with tuning strategy to optimize the hyperparameters of the
associated machine learning classifier. The approach is trained and validated against a large set of
65,000 hard drives in the CERN computer center, and the achieved results are discussed.

Keywords: failure; hard disk; prediction; regularized greedy forest; storage

1. Introduction

The new frontiers of industrial production and scientific research are reflected in a
growing demand for computing and, consequently, in an evolution of storage technologies.
The increased demand for data storage and processing pushes the data-centers to provide
increasingly efficient services [1]. This efficiency requirement can be compromised by the
devices that underpin storage: hard drives. Magnetic hard disks are currently among the
most widely used and devices for storing data.

Magnetic hard disks are currently among the most widely used and among the most
frequently failing components of storage systems and disk failures, resulting in about 78%
of cloud server system failures [2].

In addition to the impact of a service outage for the user, these events also result in
significant costs for the service provider. As unscheduled interventions, they may require
rapid (and hence costly) human intervention or a resource intensive consistency check
and re-validation of recent processing steps by a combination of the service provider and
user. In the worst case, disk failures can lead to permanent data loss and hence economical
damage to the user and service provider due to a breach of service level agreements [2–
4]. While fault tolerance techniques can reduce the risk of loss, they also often impact
negatively on system performance or price per usable volume.

In order to facilitate the automated interpretation of the disk operational status, the
disk vendors introduced Self-Monitoring, Analysis and Reporting technology (SMART),
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a standardized monitoring system with the goal to warn about an increasing likelihood
of disk failures. The SMART subsystem is a firmware component running on the disk
processor and continuously collects operational metrics in order to generate a warning or
error messages before disk failures that affect the integrity of application data.

The characteristics of SMART technology include a number of attributes for diagnos-
tics, the SMART attribute implementation technology varies from model to model, even
for different disk models of the same manufacturer [5].

The goal of the SMART system is to warn a user at least 24 h before device failure [6].
Each manufacturing company implements SMART sensors according to their proprietary
technology choices and sets alarm thresholds with the aim of an acceptable rate of false-
alarms and its potential impact on drive warranty obligations. Generally, the false-alarm rate
is around 0.1% per year [7,8].

Several methods based on modeling techniques have been proposed to recognize hard
drives that need to be replaced using SMART attributes [8–11], but none of them meet all
the needs of adapting to heterogeneous sets of hard drives, low false positive and false
negative rates, automatic preliminary dataset labeling.

To overcome the limitations considered before, we propose an inference method to
retrieve information about failed disks and a supervised machine learning approach to
build a predictor of near-failure disks. The method presented in this paper does not need a
human intervention for dataset labeling and is capable of operating with heterogeneous
sets of magnetic hard disks.

The proposal has been validated in a case study at the European Organization for
Nuclear Research (CERN), where the High Energy Physics (HEP) challenges have led storage
services to become a crucial part of the cloud services [12].

CERN uses a variety of models [13], and an effective prediction of a likely drive
malfunction would allow increasing the user’s perceived service quality and, at the same
time, decrease the resources to operate the service.

The remainder of this paper is organized as follows: in Section 2, we set the scene with
a brief review of the state-of-the-art technology in hard disk failure prediction; in Section 3,
we provide a short summary of the machine learning algorithm we have chosen, followed,
in Section 4, by a detailed description of its application to our classification problem. In the
conclusion, we summarize the results obtained by applying our method to the CERN disk
population (Section 5) and outline future extensions of our approach.

2. Prediction in Hard Disk Replacement

An automated and standardized hard disk replacement process can be defined based
on the results from automatic testing framework, which is integrated by disk manufacturers
in their disk firmware: the SMART system. The hard disk models used in storage centers are
often numerous and change over time. Due to the heterogeneity of hard disks of which data-
centers are often composed, it is not possible to perform analytical modeling. So modeling
by means of machine learning is the best solution in this context. Multiple recent approaches
based on SMART attributes have been proposed and show improved prediction performance
in general but are usually highly dependent on the specific device they were applied to.

A Gaussian Mixture based the fault detection approach has been proposed in 2017,
which is able to minimize the False Alarm Rate (FAR) of 0%, but its performance drops by
a few dozen percentage points in the hours before the last 24 h, and there is no information
on the rate of false alarms in the days before the last. In addition, the method has been
tested on a single hard disk model [8].

The authors of [10] propose a technique based on Online Random Forests. Their
method reaches an accuracy (defined as the fraction of true positives and true negatives in
the whole population) above 93% while maintaining a low rate of false positives (i.e., failure
predicted for an actually healthy disk). To achieve this result, this technique considers
hard disk metrics over the period of one week. It predicts a disk failure in case any of the
smart metrics in the period is positive and is hence sensitive to transient phenomena. Good
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results have been reached using an offline machine learning technique based on a decision
forest named Regularized Greedy Forest (RGF) [14]. Only two cases of hard disk models
were explored for which a recall (defined as the fraction of correctly detected failures among
all positives) value as high as approximately 98% was achieved. The corresponding results
for the false positives rate are not mentioned explicitly but can be derived as approximately
2% [14].

An interesting approach based on the Long Short Term Memory model has been
proposed in [15] that achieves good results in terms of the false alarms rate. This paper
does not present a labeling method for broken disks; thus, it is not clear how to create the
dataset for the machine learning models. Moreover, it does not introduce a solution on
how to deal with heterogeneous sets of hard drive models.

The authors of [11] focus on the wide-spread heterogeneity of data-centers. They
addressed the issue of the manufacturer dependencies of the implementation technology,
which the SMART monitoring system is integrated with. The authors compare Decision
Trees, Neural Networks and Logistic Regression and suggest Decision Tree as the best
solution for the problem at hand. The method proposed is able to predict about 52% of all
hard disk failures among the truly failed drives.

3. Regularized Greedy Forest Model

The Regularized Greedy Forest model proposed in [16] is a variant of a Gradient
Boosted Decision Tree with an explicit regularization (introduced with a regularization
term in the loss function) and with a repeated full-correction of the coefficients (a repeated
optimization). The RGF model and the algorithm for its training are briefly described to
clarify the steps that follow in the paper. The RGF is a forest, or more formally, a non-linear
function class h : X −→ {0, 1}, where X is a set of input vector x = [x[1], x[2], . . . , x[d]] ∈
Rd. The vector y ∈ {0, 1} is a response vector used for the supervised learning. Each node
is a non-linear decision rule ν associated with the pair (βν, αν). Here, βν refers to a basis
function and αν to the weight assigned to the internal node ν. The model of the forest is

hF(x) = ∑
ν∈F

ανβν(x) , (1)

where αν = 0 for any internal node. This forest model is accompanied with a loss function
L(h(x); y) and a regularization term R(h). The RGF goal is to find a non-linear function ˆh(x)
from a function class H that minimizes the following risk function: ĥ = argminh∈H[L(h(x), y) +
R(h)].

The algorithm greedily selects the basis functions and optimizes the weights. The two
structural operations managing the forest are (1) the splitting of nodes and (2) the intro-
duction of additional trees. At the k-th iteration, the algorithm, in modifying the structure,
operates one of the two options in order to reduce the regularized loss functions defined
as: Q(F) = L(hF(X), Y) + R(hF).

The addition of a new node, from which to start a new tree, consists of the sum of
the node pair to the existing tree, formally: hFk (x) = hFk−1(x) + αβ(x). The splitting of a
node consists of the removal of the node that must be divided and the addition of the two
new nodes. Assuming a generic node associated with (β, α), (β, α) needs to be split into
(β1, α1) and (β2, α2) because it is the node split that minimize the loss function, the forest h
at the iteration k becomes: hFk (x) = hFk−1(x)− αβ(x) + α1β1(x) + α2β2(x). After a series
of changes in the structure, the algorithm proceeds to an optimization of the weights.
The algorithm then fixes the structure and adjusts the weights by evaluating all possible
combinations in order to minimize the loss function. Carrying out a frequent optimization
of the weights affects the calculation times.

To make RGF work with success, several parameters involved in the model training
have to be suitably tuned. Three different versions of the Loss Function L(hF(X), Y) can be
exploited: the Square Loss LS := ( f (x)− y)2/2, the Exponential Loss Expo := e(y f (x)) or
the logistic loss Log := log(1+ e(y f (x))) function. The regularization term R(hF) can assume
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three different models. In all of the three cases, the coefficient λ weighs the importance for
regularization. The first regularizer is the L2 Regularization on Leaf-only Models defined as
R(hT) = λ ·∑ν∈T α2

ν/2. The second regularizer is the Minimum-Penalty Regularizer defined
as R(hT) = λ · {∑ν∈T γdν β2

ν/2 : hT(β)(x) ≡ hT(x)}. The third regularizer is similar to the
second, but the condition changes: the sum of the sibling pair need to be zero. The third
regularizer is the Minimum-Penalty Regularizer with Sum-to-zero Sibling Constraints; the
regularizer is R(hT) = λ · {∑ν∈T γdν β2

ν/2 : hT(β)(x) ≡ hT(x) ; ∀ν /∈ LT · [∑p(ω)=ν βω =
0]} [16].

4. Proposed Approach

The novel method presented here is for inferencing failed hard disks (Algorithm 1)
and to predict when a drive needs to be replaced due to impending failure (Algorithm 2).

From the collected data, a first step (Figure 1) of knowledge extraction is made to
label the disks that have been replaced due to a failure and distinguish them from all
other disks (replaced or not). After that, a cleaning of the inconsistent data is carried
out, then, hyperparameters tuning, training and testing phases of an RGF model are
performed consequently (Figure 2).

Figure 1. Data Collection and pre-processing phases.

Figure 2. DOE, modeling and prediction phases.

4.1. Automatized Labeling Stage
4.1.1. Labeling Training Data

In many environments, including the CERN storage deployment, a precise definition
or label for “failed” disks is not a priori available but needs be derived from other existing
information. At CERN, we have put in place a probe that several times per day determines
the presence of all disk drives (identified by their serial numbers) in all server or compute
nodes. Changes between these configuration snapshots are used to track interventions by
the data center operations team, which usually take place for one of the following reasons:
A disk is

• removed/disabled after repeated I/O or self-test errors;
• retired/replaced at the end of its planned lifetime;
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• relocated within the data center(s) (e.g., due to floorspace reorganization).

In Figure 3, the hard disk d2 is an example of temporary suspension during the interval
Ig = [g1; g2]. A typical scenario of a host decommissioning is also shown in the Figure 3.
All drives belonging to a host that has to be shut down are drained and removed. Due to
the high disk reliability, it is quite unlikely that more than one disk would fail at the same
day on the same host. Thus, whenever multiple shutdowns are observed (e.g., d1, d2, d3, d4)
in a small day interval, it is necessary not to classify these disks as replaced disks due to
a failure.

Figure 3. Hard disks’ lifetimes in a decommissioned host at time t3.

As there is no available label classifying a disk as broken, we propose a heuristic ap-
proach based on the following definition for “disks at risk”, which is aimed to identify disk
replacements due to individual device failures from the larger amount of disk replacements
due to other data center operations (e.g., host or disk model replacements or retirement
campaigns).

Definition 1. A disk is classified as broken if it has been removed and all other hard disk belonging
to the same host machine continue to operate nominally.

In other words, replaced hard disks are classified as broken if and only if neither
if other HDDs are removed in the same day nor if the host machine is decommissioned
within 30 days (e.g., dk at tk instant in Figure 3).

4.1.2. SMART Data

The number of hard disks required to perform good training must be reasonably large.
Hard drives fail even after several years from their installation, which leads to a small
number of failures per year in a storage system. To obtain sufficient SMART tuples (a
complete set of SMART measures defining the health status of a disk) to train and test the
proposed machine learning method, some tens of replaced hard disks have to be taken
into account; this way, the SMART tuples of all hard disks must be necessarily collected
in a database daily. The collected data must be accessible in order to be evaluated in their
temporal sequence, and each SMART attribute tuple must be associated with the serial
number, model, host machine and timestamp of the drive. The job that collects and stores
this information must be run daily.

4.1.3. Pre-Processing

To suitably train the proposed method, all incorrect measures associated with errors,
missing values, exceeding values, etc., must be preliminarily removed. The collected mea-
surements may be corrupted as errors caused by the probe, in the internal network, in the
file system, etc., may occur. Another typical example of a corrupt measurement can be an
out-of-range temperature measurement, which can happen because the temperature sensor
of a hard disk broke, but this has not affected the correct functioning of the storage device.
Moreover, a disk can be turned off for several days before being switched on again. Disks
disappeared from the list of monitored devices and belonging to multiple removals (due
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to maintenance, dismantling of hosts machine or similar) have to be excluded from the set
labeled as broken units. In addition, entire measures may be missing in some days because
of software errors, busy firmware, database problems, etc.

An example of the considered conditions are schematically presented in Figure 3; in
particular, the hard disk d2 (more specifically, its SMART tuples) are not present during a
time interval, a gap.

Let us define S as the whole dataset of available hard disks in the storage system, and
let Ig := [g1; g2], with g2 > g1 + 1 be a generic days gap experienced during SMART tuples
acquisitions. This way, the subset Sr ∈ Ig of hard disks replaced during the gap has to
be removed from the dataset because no assumptions can be made about their possible
failure and the classification rule for broken disks is not applicable; a specific hard disk
is dropped from the list of monitored devices since its host machine has been completely
removed, and hard disks possibly operating have also been dismissed. On the other hand,
disks normally running after the gaps are kept in the dataset. Disks replaced during an
interval Sr,k ∈ Ig+k := [g2; g2 + k] need to be excluded as well because a replacement Ŝr,k
that happened in the interval Ig+k does not have the k days of measures needed for a
consistent train dataset. Thus, the dataset becomes Sd = S− {Sr ∈ Ig, Ig+k}.

Afterward, a classification needs to be performed on the dataset according to Definition
1. The system must be able to recognize and process the typical measures of the last K
useful days before disk replacement. To this aim, a preliminary analysis has to be carried
out to understand how many days before the replacement, the SMART measures of a disk,
typically, begin to significantly change.

4.2. RGF-Based Machine Learning Approach
4.2.1. Training of Models

The considered dataset Sd needs to be split into training, SL, and test, ST , sets. As there
is a need to classify each hard disk according to its state of health, a binary classification
distinguishing between “at-risk” sb and “not at risk” sh disks must be performed. The clas-
sification phase is performed by using the RGF model. The training algorithm requires a
tuning of the hyperparameters.

The goal is to learn a single nonlinear function h(x) on some input vectors x ∈ SL
with labels Y, minimizing the argument of a loss function L(h(X), Y). The algorithms used
for learning can be RGF with L2 regularization on leaf-only models (referred to as “RGF”
in the following), or the RGF with Minimum-Penalty Regularization (“RGF_Opt”) or RGF
with min-penalty regularization with Sum-to-zero Sibling constraints (“RGF_Sib”).

The number of leaves is a data-dependent hyperparameter, and its tuning affects the
training time. The number of leaves can be chosen in the range of (1000, 10,000). The de-
gree of regularization λ can be adjusted choosing a value as small as needed {1, ...10−20}.
A lower value of λ reduces the importance of the regularization in the regularized loss
functions. The hyperparameter mazimum depth γ is a parameter used only with the two
Minimum-Penalty Regularization models and indirectly tunes the importance of nodes
because a smaller value ensures a lesser penalty for deeper nodes. In the two min-penalty
regularizers, the dν represents the distance from the root of the generic node ν, and the con-
stant hyperparameter is elevated as γdν . Thus, higher values of γ penalizes deeper nodes.
The last hyperparameter of interest is the Test Interval, i.e., the number of leaves added
per each iteration. Besides the ones just listed, there are others hyperparameters whose
configurations, if not defined, do not prevent model training but can help improving
its efficiency and effectiveness. Their contribution will not be discussed in this paper,
and the amplitudes exploited during the performance assessment have been set to their
default value.

The hyperparameter tuning, together with the choice of the number of observation
days, create a number of possible configurations that can rapidly reach a few thousands.
A drastic reduction of the experiments number without losing significance can be made by
means of a Design Of Experiments (DOE) using the Taguchi Orthogonal Array Designs [17];
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in particular, each combination of factor levels exploited to carry out a specific experiment
is referred to as plan configuration. Some of the considered parameters, such as the width
of the observation window, lambda, the number of leaves, etc., can assume values within
large intervals. The purpose of the design of experiments is to evaluate the effect of all
parameters in some significant configurations for training purposes; this way, for each
parameter, a suitable, limited number of values has been established according to both
their typical interval of variation and authors’ knowledge and experience.

The choice of levels for each factor is limited to the number of configurations of the
experiment plan used. The risk of overfitting is averted. Due to the limited number of possible
combinations, it is necessary to execute the experiment plan within intervals that reasonably
already give good performance. The optimal configuration is therefore identified between
levels of factors that do not cause overfitting. It is also possible to make a comparison between
the performances obtained in the optimal case and in all cases foreseen by the experiment
plan. This further comparison allows the system to obtain the certainty of having achieved
the best performance among all the tested combinations.

Usually, the goal is generally to minimize false negatives to avoid risk targets being
incorrectly predicted, thus assuring a conservative behavior from an operating point of
view. The accuracy index is often used in contexts of methodologies based on predictors to
give a quantization of the goodness of the model. Accuracy is defined as

Accuracy =
True Positives + True Negatives

Total Population
, (2)

where True Positives and True Negatives are the number of disks well predicted as healthy
or non-healthy, respectively. Vice-versa, the number or disk wrongly predicted are False
Positives (in case of an healthy disk predicted as to be replaced) and False Negatives (for
disks that need to be replaced and actually predicted as healthy). The accuracy is usually
used to have a first feeling on the effectiveness of the predictor since it returns the fraction
of correctly predicted test cases out of the totality of all test cases. Although this index
shows correctly executed predictions, it does not measure the predictor’s sensitivity to
the distinctions between positive and negative cases. The method proposed in this work
uses Recall, False Positive Rate (FPR) and Positive Likelihood Ratio (LR+) to better evaluate the
predictor’s performance.

The Recall index, defined as

Recall =
True Positives

True Positive + False Negatives
(3)

is often preferred in this context; the higher the recall value, the better the reduction of
false negatives.

As regards data-centers storage systems, characterized by tens of thousands of hard
disks, a single percentage point of false positives corresponds, instead, to several hundred
hard disks wrongly classified as “to be replaced” even if they are not. This way, in the
considered application field, minimizing the false positive occurrences turns out to be as
fundamental as maximizing the recall. The index associated with the risk of false positives
is the False Positive Rate defined as:

FPR =
False Positives

False Positive + True Negatives
. (4)

The Taguchi DOE approach can be exploited to assess the factors’ impact on one
performance index; to this aim, the Positive Likelihood Ratio (LR+), defined as

LR+ =
Recall
FPR

(5)
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and capable of simultaneously taking into account Recall and FPR, has been exploited.
Before carrying out the training stage of the RGF model, input data have to suitably shuffled
in order to guarantee independence from the temporal distribution of the measures and
prevent biases related to the dataset Sd. Both training and test experiments are required
for each of the plan configurations; to this aim, the whole dataset Sd is split according to a
ratio of 70%–30%, for training and testing, respectively.

Algorithm 1 Classifier Training.

1: procedure DATASETCOLLECTION(D)
2: for each disk di ∈ D do
3: S←− Get SMART tuples daily of di
4: end for
5: Return S
6: end procedure
7: procedure PRE-PROCESSING(S)
8: for each SMART tuple Si ∈ S do
9: if Si is corrupted OR missed OR out-of-range then

10: Remove Si from S
11: end if
12: Label(Si) according to Definition 1
13: if Si is replaced in [g1; g2 + k] then
14: Remove Si from S
15: end if
16: end for
17: Return S
18: end procedure
19: procedure DESIGN OF EXPERIMENT(S)
20: T = TaguchiDesign(L9, replicates = 30)
21: for each design ti ∈ T do
22: Shu f f le(S)
23: SL, ST = Split(S, 70− 30%)
24: Model = Rg f Train(ti, SL)
25: LR+ = Rg f Test(Model, ST)
26: end for
27: Select configuration C using E f f ectPlot(T, LR+)
28: Return C
29: end procedure
30: procedure THRESHOLD ASSESSMENT(S, C)
31: Shu f f le(S)
32: SL, ST = Split(S)
33: Get Definitive Model Model = Rg f Train(C, SL)
34: Get Probabilities P = Rg f Test(Model, ST)
35: RC ←− RocCurve(P, ST)
36: Select Threshold Tc using RC
37: Return Tc, Model
38: end procedure

The Regularized Greedy Forest is trained using the the training data set SL and tested
using the testing data set ST.

Authors suggest at least 30 runs for each plan configuration in order to simultaneously
assure statistical significance and feasible execution times. For each plan configuration,
the values of Accuracy, Recall and FPR, expressed in percentage terms, are calculated as
the median of the Accuracy, Recall and FPR achieved in the various runs. The final index
of LP+ is calculated as the ratio of the median Recall and FPR.

The RGF classifier returns a probability for each tuple of SMART measures of likeli-
hood with respect to the two classes of healthy or broken. The last step for the user is the



Appl. Sci. 2021, 11, 8293 9 of 16

choice of a proper threshold beyond which discriminating whether the considered tuple
identifies a Hard Disk that needs to be replaced or not. The choice of the optimal threshold
turns out to be a trade-off between false and true positive rates. To drive the choice of the
right threshold, the Receiver Operating Characteristic (ROC) curve has been exploited.
The ROC curve, a graphic tool for the evaluation of FPR and TPR, helps the developer,
in fact, to identify the best trade-off threshold, which the authors experienced close to the
beginning of the curve knee.

4.2.2. Validation

The system configured and trained according to the above method can be put into
production. It is useful to perform a further final validation and evaluate the trend of the
probability with which each hard disk is classified as healthy or not.

Algorithm 2 Prediction.

1: procedure PREDICTION(Tc, D, Model)
2: for each disk di ∈ D do
3: Dp ←− Get SMART tuples of di
4: Prediction = Rg f Prediction(Dp, Model, Tc)
5: Return (Dp, Prediction)
6: end for
7: Return the list of disks at risk with probabilities
8: end procedure

The tuples of SMART attributes collected daily are processed by the trained and tested
RGF model. By reporting the evolution of probabilities versus time on a plot, samples
corresponding to a change of the operating condition (from healthy to broken) can be
identified a few days before the replacement of the hard disk.

5. Experimental Results

The proposed method has been validated on a case study at CERN; CERN has a
computer center where a large volume of data generated by the complex accelerator system
and experiments are stored and processed. The collected data are stored in a set of Magnetic,
Solid State or Tape Hard Disks through a distributed file systems service called EOS and
internally developed. There are currently roughly 65,000 magnetic drives, including 89
different models. Approximately 15,000 disk replacements occur annually due to different
reasons; replacements due to bankruptcies are roughly a dozen per week. Data collected
from August 2018 and October 2020 have been used for the case study experiments in
Section 5.1. A remaining fraction of data collected in the months between November 2020
and January 2021 were reserved for validation in Section 5.2. An example of the algorithm
implemented in R is available as supplementary material “R-Scripts” in order to encourage
the reproducibility of the method.

5.1. Case Study

For the case study, the five models among those used at the CERN Data Center were
examined. Selected models are those characterized by the higher cardinality in the CERN
Data Center; this is a key issue since a large number of hard drives are necessary to grant a
sufficient amount of information on broken disks to train the RGF model. The examined
datasets are shown in Table 1; it is worth noting that all considered datasets are unbalanced
in terms of healthy versus replaced hard disks in favor of the healthy ones. For the sake
of privacy, the vendors and models of the examined Hard Disks have been replaced with
names of some Tyrrhenian islands.
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Table 1. The composition of the dataset.

Model Healthy Broken Total

Ischia 11,962 81 12,043
Capri 11,238 160 11,398

Ventotene 9172 18 9190
Procida 7948 20 7968
Ponza 4695 378 5073

Before collecting the data to train and test the RGF model, a study on the temporal
distribution of the SMART measures has been carried out; as stated above, reasons why
there may be gaps between the measures are manifold. Since the proposed method requires
that for RGF training, tuples of hard disks classified according to Definition 1 are necessary,
establishing after how many days of absence a hard disk can be considered as permanently
replaced and its missing measures that are not attributable to transient conditions is a
fundamental step. To this aim, the duration of gaps between the tuples greater than 1 day
have been collected and organized as a histogram. The corresponding results are reported
in Figure 4, where it can be noticed that the maximum number of occurrences is associated
with a 5-day gap. On the contrary, the number of occurrences for gaps longer than 20 days
rapidly decreases.

Figure 4. A histogram of the temporal gap between SMART tuples by drive.

We decided on a conservative approach and chose to remove all the measures of the
30 days prior to the last available from the dataset. The measures of the last 30 days have
however been used for the purpose of labeling hard drives. In particular, the SMART
attributes considered to provide measure tuples are reported in Table 2.

After extrapolating only the data relating to the hard disks shown in Table 1 from the
entire dataset S, the dataset Sd has been pre-processed to clean from corrupt, incomplete
and error data according to what was stated in Section 4.1.3.

Once the dataset was cleaned, each hard disk’s serial (the drive’s unique identifier)
was classified and labeled according to Definition 1; successively, the labeled dataset has
been divided into train, Sl , and test, St, datasets. The training set of SMART measures of
healthy disks has been randomly decimated in such a way as to assure the same cardinality
of the broken drives for each disk model.
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Table 2. Selected SMART Attributes [18].

SMART Attribute Name Description

01 Read Error Rate Hardware read errors that occurred when reading data
from a disk surface

03 Spin-Up Time Average time of spindle spin up
04 Start/Stop Count Number of spindle start/stop cycles
05 Reallocated Sectors Count Quantity of remapped sectors
07 Seek Error Rate Frequency of errors while positioning
09 Power-On Hours Number of hours elapsed in the power-on state
10 Spin Retry Count Number of retry attempts to spin up
12 Device Power Cycle Count Number of power-on events

192 Power-off Retract Count Number of power-off or emergency retract cycles
193 Load/Unload Cycle Number of cycles into landing zone position
194 HDA temperature Temperature of a hard disk assembly
197 Current Pending Sector Count Number of unstable sectors (waiting for remapping)
198 Offline Uncorrectable Sector Count Number of uncorrected errors
199 UltraDMA CRC Error Count Number of CRC errors during UDMA mode

A Resolution III plan L9 has been exploited for all five hard drive models, whose plan
configurations are reported in Table 3.

Each configuration is characterized by at least one parameter level different from
one another, thus assuring a complete and efficient investigation of the whole experimen-
tal space.

Table 3. The design of the experiment.

Experiment Algorithm Loss Function Leaf Days

1 RGF LS 1000 6
2 RGF Expo 5000 7
3 RGF Log 10,000 8
4 RGF_Sib LS 5000 8
5 RGF_Sib Expo 10,000 6
6 RGF_Sib Log 1000 7
7 RGF_Opt LS 10,000 7
8 RGF_Opt Expo 1000 8
9 RGF_Opt Log 5000 6

The main output of the Taguchi approach is the so-called effects diagram, i.e., the
evolution of the performance index versus each parameter level; the effects diagram allows
the developer to determine which level of each factor corresponds to a maximization (or
minimization) of the chosen performance index. For the considered method, the goal is the
maximization the LR+ index. As an example, the corresponding results of the DOE for the
Ponza model is reported in Figure 5, in which, for each factor, the levels were coded with
the numbers 1, 2 and 3. As regards the algorithms and the loss functions, the three coded
levels are in the order: RGF, RGF_Opt and RGF_Sib for algorithms and LS, Expo and Log
for the loss function. As for the levels of the number of leaves and the number of days
of observation, the levels encode the values of 1000, 5000, 10,000 and 6, 7, 8, respectively.
From the reported effects diagrams, it can be stated that for Ponza models, the proposed
method gives better results using the RGF with L2 regularization on leaf-only models
(“RGF”) codified as the first level of the first factor. In a similar way, Expo, 10,000 and 6
days levels are chosen for the Loss Function, maximum number of leaves and observation
interval for training, respectively.
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Figure 5. Ponza’s Effect Diagram.

Similar behaviors have also been obtained for the other disk models; for the sake of
brevity, they have not been reported. Choosing the levels associated with the maximum
value in the effects diagrams for each parameter, the operating configuration capable of
assuring the best prediction performance can be determined; the corresponding values are
reported in Table 4 for the different disk models.

Table 4. Optimum Configuration.

Model Algorithm Loss Function Leaf Days

Ischia RGF_Opt Log 10,000 7
Capri RGF Log 1000 8

Ventotene RGF_Opt Expo 1000 8
Procida RGF_Opt LS 10,000 7
Ponza RGF Expo 10,000 6

Due to the discretization of the variation ranges, the DOE allows the developer
to single out a sub-optimal operating configuration. This way, a manual tuning of the
hyperparameters in a small neighborhood of the obtained configurations has been carried
out in order to further improve the performance in the prediction stage; in particular,
the performance index LR+ has increased for some points. The first draft of performances
are reported in Table 5. Using the sub-optimal configuration following the DOE, quite good
performance values were obtained, but it is necessary to further reduce the False Positive
Rate for the system in order to support maintenance.

Table 5. The results with a threshold at 50%.

Model Recall FPR LR+

Ischia 95.2% 1.6% 59.5
Capri 92.7% 3.6% 25.8

Ventotene 95.0% 8.7% 113.1
Procida 97.6% 6.1% 15.9
Ponza 100% 5.1% 19.5
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Therefore, it is necessary to increase the threshold beyond which a hard disk is
considered close to failure. Finally, the optimal thresholds have been carried out by means
of the ROC method (Figure 6). The associated final results are reported in Table 6; the
remarkable results in FPR reduction can be appreciated.

Figure 6. ROC Curves.

Table 6. The results.

Model Threshold Recall FPR LR+

Ischia 85% 98.4% 0.2% 659
Capri 67% 92.2% 0.8% 115

Ventotene 74% 95.8% 0.6% 160
Procida 62% 99.5% 0.4% 284
Ponza 88% 78.1% 0.9% 86

5.2. Validation

The performance of the model was evaluated on a small fraction of disks not used in the
previous phases. From the validation set, the hard drives replaced due to failure have been
extracted, according to the heuristic approach proposed in this paper. Thus, the predictor’s
ability to recognize these hard drives at risk in the days preceding the replacement has
been assessed.

The serial number of the replaced hard disks have been masked using the name of
German cities and French rivers.

SMART data from the last 60 days prior to the replacement day were collected from
these hard drives, and the predictor was evaluated on the tuples of each day. The most
significant results are shown in Figure 7a,b for Ischia and Ventotene models, respectively.
It can be noted that some hard disks showed a significant change in the range of a week
before the replacement day, and other hard disks were to be considered at risk even tens of
days before replacement.
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Figure 7. Validation of the Ischia (a) and Ventotene (b) Hard Disk Models.

6. Conclusions

In this paper, we have presented a method for predicting hard disk media failures
and hence increasing the availability of large-scale storage services. The main contribution
is a proper stage to automatically label (healthy/at-risk) the disks during the training
and validation stage along with the tuning strategy to optimize the hyperparameters of
the associated machine learning classifier. This way, the described classification model is
fully automated and avoids any repeated human intervention or judgment from a storage
deployment team. It is hence applicable in large data-centers faced with a heterogeneous
population of storage devices and storage deployments. The presented method is based
on a practical identification heuristics for failed disks and the application of supervised
machine learning (Regularised Greedy Forest), exploiting the full set of available SMART
metrics for failure predictions. We have described a data preparation algorithm that takes
care of handling operational problems, such as gaps in SMART sensor collection. Our
method allows us to reliably identify hard disks that have been replaced due to failures,
in contrast to other frequent deployment operations, such as disk retirement or relocation,
and operates without the requirement of keeping consistent replacement logs, e.g., by a
data center operations team. The model trained with our method achieves a promising
level of accuracy, in excess of 95%, and a False Positive Rate typically below 5%, even
reaching below 1% in some cases. The additional information from our model allows
storage service providers to reduce the risk of service unavailability, e.g., by proactive re-
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replication or via the determination of “at-risk” failure groups with multiple devices with
an increased failure likelihood. This method has the disadvantage of the need to archive a
continuous flow of data from the probe that collects data from the hard disks. In order to
carry out adequate training and achieve satisfactory performance values, it is necessary to
collect a set of measurements from tens of failed hard drives. In future works, there is the
intention to extend this method also to solid state drives whose quantity in our case study
is growing day by day and will soon be sufficient to validate the methodology. In future
works, two main tasks will be carried out. The first task will be to validate the current
methodology, especially the pre-processing phase described above, on larger datasets that
we continue to collect and test with other machine learning classifiers. The second task
will be to validate the methodology presented above on other contexts in which the dataset
is very unbalanced and for which the False Positive Rate assumes an important equal (or
greater) of false negatives, such as asynchronous electric motors and power supplies.
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