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Abstract: Significant growth in Electronic Health Records (EHR) over the last decade has provided
an abundance of clinical text that is mostly unstructured and untapped. This huge amount of
clinical text data has motivated the development of new information extraction and text mining
techniques. Named Entity Recognition (NER) and Relationship Extraction (RE) are key components
of information extraction tasks in the clinical domain. In this paper, we highlight the present status
of clinical NER and RE techniques in detail by discussing the existing proposed NLP models for the
two tasks and their performances and discuss the current challenges. Our comprehensive survey on
clinical NER and RE encompass current challenges, state-of-the-art practices, and future directions in
information extraction from clinical text. This is the first attempt to discuss both of these interrelated
topics together in the clinical context. We identified many research articles published based on
different approaches and looked at applications of these tasks. We also discuss the evaluation metrics
that are used in the literature to measure the effectiveness of the two these NLP methods and future
research directions.

Keywords: electronic health records; clinical text; natural language processing; named entity
recognition; relationship extraction; machine learning

1. Introduction

The amount of text generated every day is increasing drastically in different domains
such as health care, news articles, scientific literature, and social media. Since 2010, the In-
ternational Data Corporation (IDC) has predicted that the amount of data can potentially
grow 50-fold to 40 billion terabytes by 2020 [1]. Textual data is very common in most
domains, but automated comprehension is difficult due to its unstructured nature and has
led to the design of several text mining (TM) techniques in the last decade.

TM refers to the extraction of interesting and nontrivial patterns or knowledge from
text [2]. Common text mining tasks include text preprocessing, text classification, question-
answering, clustering, and statistical techniques.

TM has become extremely popular and useful in the biomedical and healthcare
domains. In healthcare, about 80% of the total medical data is unstructured and untapped
after its creation [3]. This unstructured data from hospitals, healthcare clinics, or biomedical
labs can come in many forms such as text, images, and signals. Out of the various text
mining tasks and techniques, our goal in this paper is to review the current state-of-the-
art in Clinical Named Entity Recognition (NER) and Relationship Extraction (RE)-based
techniques. Clinical NER is a natural language processing (NLP) method used for extracting
important medical concepts and events i.e., clinical NEs from the data [4]. Relationship
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Extraction (RE) is used for detecting and classifying the annotated semantic relationships
between the recognized entities. Significant research on NER and RE has been carried out
in the past both on clinical narratives and other types of text. For example, in the sentence,
“Her white count remained elevated despite discontinuing her G-CSF”, the words in bold
are the various entities in the sentence. After the entities are recognized, the relationship
between two or more entities is extracted. In this case, “her white count” and “elevated”
are found to be related to each other in a manner dissimilar to the nature of the relationship
between “elevated” and “her G-CSF”. In the sentence “Atorvastatin is found to have
therapeutic effects in breast cancer although no clinical trials are performed at present”,
the NE of interest includes the name of the drug (atorvastatin) and the disease name (breast
cancer), whereas the drug–disease relation (atorvastatin–breast cancer) is the relationship of
interest. Figure 1 shows a pictorial representation of the association between NER and RE.

Figure 1. Association between Named Entity Recognition and Relationship Extraction.

2. Background

Over the years, many toolkits and applications have been introduced to address
different NLP tasks in the clinical domain, including NER and RE. The WEKA Data Mining
Software [5] first came into existence in the late nineties. It was updated several times
over the years to include NLP systems for language identification, tokenization, sentence
boundary detection, and named entity recognition. Later on, the clinical NLP toolkit,
CLAMP (Clinical Language Annotation, Modeling, and Processing) [6] was introduced
in 2018 and provides a GUI-based state-of-the-art NLP system. CLAMP achieved good
performance on NER and concept encoding and is also publicly available for research use.
Comprehend Medical, a NER- and RE-related Web Service (2019) [7], is a very recent effort
that introduces an NLP service launched under Amazon Web Services (AWS). Likewise,
other research works have also addressed these topics, which motivates this review. A high-
level overview of machine learning, neural networks, and evaluation metrics is presented
below before we review clinical NER- and RE-related tasks.

2.1. Machine Learning

Machine learning (ML) is a type of data-driven Artificial Intelligence (AI) that pro-
vides the ability to learn about a system without explicit programming. ML algorithms are
applied in many scientific domains and the most common applications include recommen-
dation systems, data mining, and pattern recognition. ML is classified into one of the four
subdomains:

• Supervised Learning: With these algorithms, the training data are given ground-
truth labels, which can be used for learning the underlying patterns in the dataset.
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Classification and regression algorithms are most commonly used, including Naive
Bayes [8], Support Vector Machines (SVM) [9], and Decision Trees [10].

• Unsupervised Learning: In this case, the training dataset is not given labels and, thus,
many of the solutions attempt to find patterns without any prior guidance. Commonly
used algorithms in this category are association rules and clustering methods, such as
K-Means [11] or DBSCAN [12].

• Semi-Supervised Learning: Here, only some of the training data is labeled, putting
these solutions in a space somewhere between fully supervised and unsupervised
learning. Text classification [13] is one of the most common applications for semi-
supervised learning.

• Reinforcement Learning: Using a reward system, a reinforcement learning agent
optimizes future returns based on prior results. This iterative, continuous learning
process mirrors how humans learn from their experiences when interacting with an
environment. Deep Adversarial Networks [14] and Q-Learning [15] are well known
reinforcement learning algorithms.

2.2. Neural Networks

The traditional machine learning algorithms often perform well with structured
data but can struggle with unstructured or semi-structured data, i.e., human information
processing mechanisms such as vision and speech [16]. Neural networks, specifically deep
learning algorithms, have shown promising results with NLP and image analysis tasks.
In neural networks, the input is processed through different layers of the network, where
each layer transforms the features of the dataset following some mathematical function.
The concept of neural networks follows the mechanism that the human brain uses to solve
a problem. Once the data is processed through different layers within a neural network,
the output layer performs the classification. In general, this approach does not require as
much human intervention as the nested layers using different hierarchies try to find the
hidden patterns on their own.

2.3. Common Evaluation Metrics

The F1-score is a popular evaluation metric for the two NLP functions reviewed in
this paper. Comparisons can be classified as exact or relaxed match [17]. Relaxed match
only considers the correct type and ignores the boundaries as long as there is an overlap
with ground truth boundaries. In the case of an exact match, it is expected that the entity
identified correctly should also detect boundary and type correctly at the same time [17].
The following keys are used to calculate the F-score, precision, and recall.

• True Positive (TP): A perfect match between the entity obtained by NER system and
the ground truth.

• False Positive (FP): Entity detected by the NER system but not present in the ground truth.
• False Negative (FN): Entity not detected by the NER system but present in the

ground truth.
• True Negative (TN): No match between the entity obtained by NER system and the

ground truth.

Precision provides the number of correct results detected correctly whereas recall
provides the total entities correctly detected; they are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall
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Accuracy =
TP + TN

TP + FP + FN +TN

2.4. Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying named entities such as
specific location, treatment plan, medicines/drug, and critical health information from
the clinical text. NER was first introduced in 1995 [18] where the three categories (Entity,
Name, and Number) were defined. The original design idea for NER was to parse the text,
to identify proper nouns from the text, and to categorize them.

NER is an extremely popular machine learning method and is also considered a base
technique for many of the NLP tasks. Prior to 2011, all work on NERs was domain-specific
and was designed to performing specific tasks based on ontologies. Collobert et al. [19]
introduced a neural network-based NER, which for the first time, made it domain indepen-
dent. This approach is now quite common, and there are many variations proposed over
the last decade that leverage Recurrent Neural Networks (RNN) and word embeddings
among others.

2.5. Relationship Extraction

A relationship can be extracted between any combination of named entities. An RE
task is basically a classification of the semantic relationship between entities from textual
data. RE between entities in any text is a vital task that facilitates its automated natural
language understanding. The abundance and heterogeneity of unstructured data in any
domain are hard to be fathomed by humans alone. Hence, the conversion of unstructured
text into structured data by annotating its semantics needs to be automated. RE tasks
are thus very useful in automating the process of identification of different relations from
clinical data. Some important applications of clinical RE include gene–disease, drug–
effect, disease–mutation, and disease–symptom relationships. In general, the pair-wise
association between entities is considered, but in many cases, more than two entities are
also involved. The process of checking whether a relationship exists between entities is a
classification problem that can also be extended to multi-class classification or multi-label
classification. In [20], a relation is defined as a tuple t = (e1, e2, e3, . . . , en), where ei are
the entities with a predefined relationship r within the document D. Similarly, all of the
different relationships in a document can be defined.

Similar to NER, RE has been applied to many domains, including the healthcare do-
main. One of the oldest works on RE was published in 1999, which extracted informative
patterns and relations from the World Wide Web [21]. In the following year, relationship
extraction from the large plain text was conducted, where a system named Snowball
introduced novel strategies for pattern generation [22]. Kernel-based methods such as
dependency tree kernel-based technique [23], shortest path dependency kernel-based tech-
nique [24], and subsequence kernel-based techniques [25] were proposed. The integration
of probabilistic models and data mining were also proven to be good techniques for ex-
tracting relations and patterns from text [26]. Although there are innumerable RE methods
in place, the models and algorithms are very domain- and data-specific. The absence of
generalized algorithms to perform RE makes it challenging to define and perform a new
RE task; the state-of-the-art models vary between different datasets and from one domain
to another. In general, RE is most commonly viewed as a supervised learning technique
performing classification [27]. In such cases, a machine learning (ML) algorithm, either
traditional ML or deep learning-based methods, is used. RE can also be achieved by using
unsupervised learning and rule-based methods. In the following sections, we discuss the
various RE tasks and techniques applied to the clinical and biomedical domains.

2.6. Motivation

The significant growth in Electronic Health Records (EHR) over the last decade has
resulted in a rich availability of clinical text, which is unfortunately stored in an unstruc-
tured format. For example, in the radiation oncology domain, when analyzed using ML
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techniques, a lot of valuable information such as physician clinical assessments, which
includes pre-existing conditions, clinical and social history, and clinical disease status
embedded in free text and entered in clinical notes, can help physicians provide better
treatment. Hence, there is a need to explore robust techniques to extract such information
from the clinical text. NER and RE are the key components in information extraction. In this
paper, our goal is to highlight the present status of NER and RE by evaluating the models
and their performance and by discussing the challenges and factors affecting the NER and
RE models that need to be considered while designing a clinical decision support system.

3. Methodology

We used Google Scholar to search for articles related to NER and RE and specifically
papers used in the context of clinical text. We also checked for publications where the
above mentioned techniques are used in the radiation oncology domain. We discovered
that there is very limited work on NER and RE in the radiation oncology domain; however,
we did notice that there are a plethora of publications in using NER and RE in the clinical
text in general.

Figure 2 provides a high-level overview of the steps carried out to select research
articles for the survey. For clinical NER, search terms such as ‘Clinical Named Entity
Recognition’, ‘NER in Radiation Oncology’, ‘Deep learning Clinical NER’, and ‘Machine
Learning based clinical NER’ were used. From the resulting articles, we categorized them
based on the language used for NER i.e., English, Chinese, and Italian, among others. Next,
we classified the articles based on the type of approach used for NER; we found that a
majority of them used ML-based approaches, and only a few articles within the machine
learning class used deep learning-based methods. Overall, for clinical NER, we selected
around 23 papers, out of which 19 articles used machine learning-based approaches and
3 articles used rule-based methods while 1 article used a dictionary-based approach. Since
2018, most of the clinical NER models used only ML models, we discuss such methods in
greater detail. Figure 3a shows a representation of various clinical NER models that were
identified; we came across ∼8 papers that use ML approaches to develop NER models for
clinical text. Figure 3b represents the distribution of ML-based clinical NER models.

For clinical RE, we used the search term, ‘Clinical Relationship Extraction’ and ob-
tained a number of research papers on clinical information extraction. After going through
them, we found out that most people consider this to be a classification problem using
machine learning models. Hence to filter out more of these papers, we again used the
search term, ‘Supervised Clinical Relationship Extraction’. Next, we used our judgement
to use the search term, ‘Unsupervised Clinical Relationship Extraction’ to see if the com-
munity focuses on clinical RE without data-annotation. The last search term for clinical RE
is ‘Rule based Clinical Relationship Extraction’ as we found out from the first search that
rule-based methods are also used to some extent besides ML-based methods. From the
top results of this search process, we manually identified the relevant papers based on
their closeness to clinical RE and considering the diversity of the presented methods. We
also kept the search results mostly limited to papers after 2016; however, this filter could
not effectively find clinical RE-based articles using rule-based and unsupervised learning-
based approaches. Not much work was conducted on clinical RE using unsupervised
learning-based approaches because, in the clinical domain, most datasets are annotated and
the supervised approaches are able to outperform these approaches in most cases, which
are discussed later; we could only find two papers in this area. Rule-based methods have
been used for clinical RE to some extent, but most of the noteworthy work was conducted
before 2015–2016. After that, the application of supervised learning-based approaches
for clinical RE started escalating distinctly and the focus on other approaches diminished.
Hence, we manually identified two papers using rule-based approaches after 2016; both
were published in 2021. We also manually chose three earlier papers using rule-based
methods as they were popular in the past. We manually chose the 16 top, relevant, diverse
papers using supervised learning-based approaches after 2016. We also considered another
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noteworthy supervised learning-based method for clinical RE before 2016. Out of these 17
articles, 15 papers used traditional ML and deep learning-based approaches and 4 papers
used language models, with 2 papers using both language models and ML. Overall, we
were able to choose 23 papers for clinical RE that used rule-based, deep learning-based,
or language model-based methods. Figure 4 shows the distribution of the clinical RE
research articles considered here on the basis of the methods therein using a bar chart and
a Venn diagram.

Start

 Manually 
check If articles are  

peer reviewed 

Store the research 
article in Zotero

Yes

Provide filter 
range for 

search term 
between 

2015-2021

DiscardNo

Google Scholar search using following terms ( search 
terms are used indepedently)                                                                                                                    

NER search terms: "Clinical NER", "NER in Radiation 
Oncology" , "ML based  clincial NER", "DL based clinical 

NER", "Rule based clincial NER", "Dictionary based 
clinical NER".                                                                                                                                                  

RE search terms: "clinical RE" , "Unsupervised clinical RE 
*" , "supervised clinical RE" , "Rule based clinical RE"                                                                                      

Review each article 
and see the NLP tasks 

performed, 
methods/datasets 
used and results.    

End

Classify papers based on different 
approaches for NER:- Dictionary, 
Rule, Machine Learning, and Transfer 
Learning. For RE:-  Rule, Machine 
Learning , Language Model, and 
Unsupervised Learning   

* For Unsupervised RE the focus 
is whether the community is 
considering clinical RE without 
annotation. 

Figure 2. Methodology flowchart used here for both NER and RE to select articles.
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Figure 3. (a) Representation of the various clinical NER models based on different approaches
for this survey paper and (b) percentage of NLP models identified based on different machine
learning approaches.

Figure 4. Representation of the clinical RE research papers used, based on the variety of the methods
by using (a) a bar chart and (b) a Venn diagram.

We used software tools such as Zotero to collect all of the papers and to perform
the literature survey. The next step was to categorize all of the articles and to prepare
an outline for this survey. We evaluated the architectures used, how the results were
reported, and the data used in the experiments. In total, we came across 51 articles (28
for clinical NER, and 23 for RE), and 46 of them were used for this survey paper; only
peer reviewed articles were considered. It is worth mentioning that a couple of survey
papers [17,28] also provide an in-depth view of each topic separately; however, we did
not find any such survey that discusses these two related topics together specifically with
respect to the clinical domain such as radiation oncology. To the best of our knowledge,
this paper surveys clinical NER and RE for the first time and discusses various approaches
along with their outcomes and limitations. The paper is organized as follows: Section 5
discusses the tasks associated with clinical NER, followed by a brief overview of various
approaches and their results. Similarly for RE, we review the various approaches and their
performance in Section 6. Finally, in Section 7, we provide our inference about the latest
trends, state-of-the-art techniques, and what we believe the community (both for clinical
NER and RE) needs to focus on in the future.

4. NLP Competitions and Datasets for Clinical Text

In this section, we review the different NLP competitions and datasets that are more
geared towards clinical text.
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4.1. Competitions

Competitions and datasets are considered assets in NLP tasks. Although most of
these challenges are for data from the general domains, clinical domain-related challenges
have come up in the past. Clinical-NER based competitions were mostly focused on the
de-identification of Personal Health Information (PHI). In 2014, there was a i2b2 UTHealth
challenge that had longitudinal data [29], and the goal of the competition was to perform de-
identification on clinical narratives, with a second track focused on determining risk factors
for heart disease over time. Stubbs et al. [30] provides a comprehensive review of a work-
shop that includes how data were released and how the submissions were evaluated. The
2016-CEGS N-GRID shared tasks that the workshop used in gathering psychiatric data [31]
for addressing text de-identification, symptom severity detection, and the proposal of new
research questions. Stubbs et al. [31] explained how the data were generated; discussed the
challenges with psychiatric data as it contains higher occurrence of PHI; and the outcomes,
which showcase the best performing systems and how the submitted models were evalu-
ated. There was also another competition on clinical NER for de-identification on Japanese
text (2012 NTCIR-10) [32]. Coffman et al. [33] organized a competition, which was also a
final deliverable for the Applied NLP course taught at UC Berkeley. The objective of the
competition was to develop an algorithm that predicts/assigns an ICD-9 (International
Classification of Diseases, 9th revision) code to clinical free text [33]. MADE1.0 [34] is a
competition for detecting Adverse Drug Events (ADEs) from EHR. The goal of the NLP
task is to detect medication names and other attributes such as frequency and duration.
Around 11 teams participated in at least one of the three tasks. There was a total of 41
submissions, among which Wunnava et al. [35] ranked first for the NER task, with a
micro-averaged F1-score of 0.892. SemEval-2014 [36] Task 7 was another competition on
analyzing clinical text; it had two subtasks, namely, identification and normalization of
disease and disorders in a clinical text from the ShARe [37] corpus. Around 21 teams
participated in the identification task, and the best F1-score reported was 81.3, while for
the normalization task, 18 teams participated, reporting a best accuracy of ∼74.1.

National NLP Clinical Challenges, also called n2c2, is a very popular competition for
different clinical NLP tasks. Between 2004 and 2014, the competition was called Informatics
for Integrating Biology and the Bedside (i2b2) but was then changed to n2c2 in 2018. They
introduced the following clinical RE tasks over the years, with datasets generated by the
NIH-funded National Centers for Biomedical Computing (NCBC).

• 2010 i2b2/VA Challenge on Concepts, Assertions, and Relations in Clinical Text [38]:
In this competition, 16 teams participated in the relationship extraction task that
showed that rule-based methods can be augmented with machine learning-based
methods. SVM-based supervised learning algorithm performed the best with an
F1-score of 0.737 [39].

• 2011 Evaluating the state-of-the-art in co-reference resolution for electronic medical
records [40]: In this competition, 20 teams participated and rule-based and machine
learning-based approaches performed best, with an augmentation of the external
knowledge sources (coreference clues) from the document structure. The best results
on the co-reference resolution on the ODIE corpus with the ground truth concept
mentions and the ODIE clinical records were provided by Glinos et al. [41], with an
F1-score of 0.827. The best results on both the i2b2 and the i2b2/UPMC data were
provided by Xu et al. [42], with F1-scores of 0.915 and 0.913, respectively.

• Evaluating temporal relations in clinical text, 2012 i2b2 Challenge [43]: 18 teams par-
ticipated in this challenge, where for the temporal relations task, the participants first
determined the event pairs and temporal relations exhibiting temporal expressions
and then identified the temporal relation between them. This competition also showed
that hybrid approaches based on machine learning and heuristics performed the best
for the relationship classification. Rule-based pair selection with CRF and SVM by
Vanderbilt University provided the best results here (F1-score: 0.69).
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• 2018 n2c2 shared task on adverse drug events and medication extraction in electronic
health records [44]: a total of 21 teams participated in the relationship classification task
on adverse drug events (ADEs) and medication. Team UTHealth/Dalian (UTH) [45]
designed a BiLSTM–CRF-based joint relation extraction system that performed the
best (F1-score: 0.9630).

4.2. Datasets

The datasets are important in understanding the different entities and relations extracted
in the clinical domain. This subsection gives an overview of the different datasets used for
clinical NER and RE tasks for a better understanding of the challenges in the domain.

We came across a few publicly available datasets for clinical NER; however, these
datasets are restricted to specific NLP tasks in clinical domain. Below is a list of datasets
that were used in NER challenges or used as training for NER models, which are discussed
in Section 5.3 for training, testing, and validation:

• Mayo Clinic EMR: It has around 273 clinical notes, which includes 61 consult, 4 ed-
ucational visits and general medical examinations, and a couple of exam notes. A
few models, such as Savova et al. [46], generated a clinical corpus from Mayo Clinic
EMR [47].

• MADE1.0 Data set: This dataset consists of 1092 medical notes from 21 randomly selected
cancer patients’ EHR notes at the University of Massachusetts Memorial Hospital.

• FoodBase Corpus: It consists of 1000 recipes annotated with food concepts. The recipes
were collected from a popular recipe sharing social network. This is the first annotated
corpora with food entities and was used by Popovski et al. [48] to compare food-based
NER methods and to extract food entities from dietary records for individuals that
were written in an unstructured text format.

• Swedish and Spanish Clinical Corpora [49]: This dataset consists of annotated corpora
clinical texts extracted from EHRs; the Spanish dataset consists of annotated entities
for disease and drugs, while the Swedish dataset has entities annotated for body parts,
disorder, and findings. This dataset is mostly used for training and validation for NER
on Swedish and Spanish clinical text.

• i2b2 2010 dataset [38]: This dataset includes discharge data summaries from Partners
Healthcare, Beth Israel Deaconess Medical center, and University of Pittsburgh (also
contributed progress reports). It consists of 394 training, 477 test, and 877 unannotated
reports. All of the information are de-identified and released for challenge. These
datasets are used for training and validation in many of the NER models used for
clinical text.

• MIMIC-III Clinical Database [50]: This is a large and freely available dataset consisting
of de-identified clinical data of more than 40,000 patients who stayed at the Beth Israel
Deaconess Medical Center between 2001 and 2012. This dataset also consists of free-
text notes, besides also providing a demo dataset with information for 100 patients.

• Shared Annotated Resources (shARe) Corpus [37]: This dataset consists of a corpus
annotated with disease/disorder in clinical text.

• CanTeMiST [51]: It comprises 6933 clinical documents that does not contain any PHI.
The dataset is annotated for the synonyms of tumor morphology and was used for
clinical NER on a Spanish text by Vunkili et al. [51].

Specific relations annotated in the datasets from the various clinical RE challenges
mentioned in Section 4.1 are as follows:

1. 2010 i2b2/VA Challenge on Concepts, Assertions, and Relations in Clinical Text [38]:
A wide variety of relations were identified as follows:

• Medical problem–treatment relations:

– TrIP indicates that treatment improves medical problems, such as hyperten-
sion being controlled by hydrochlorothiazide.
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– TrWP indicates that treatment worsens medical conditions, such as the tumor
growing despite the available chemotherapeutic regimen.

– TrCP indicates that treatment causes medical problems, such as Bactrium
possibly being a cause of abnormalities.

– TrAP indicates that treatment is administered for medical problems, e.g., pe-
riodic Lasix treatment preventing congestive heart failure.

– TrNAP indicates that treatment is not administered because of medical
problems e.g., Relafen being contraindicated because of ulcers.

– Others that do not fit into medical problem–treatment relations.

• Medical problem–test relations:

– TeRP indicates that the test reveals medical problems, such as an MRI
revealing a C5-6 disc herniation.

– TeCP indicates that the test was conducted to investigate a medical problem,
such as a VQ scan being performed to investigate a pulmonary embolus.

– Others that do not fit into medical–test relations.

• Medical problem–medical problem relations:

– PIP indicates any kind of medical problem such as a C5–6 disc herniation
with cord compression.

– Other relations with respect to medical problems that do not fit into the
PIP relationship.

2. 2011 Evaluating the state-of-the-art in coreference resolution for electronic medical
records [40]: The data for this challenge was similar to the 2010 i2b2/VA challenge
as the dataset contained two separate corpora, i.e., the i2b2/VA corpus and the
Ontology Development and Information Extraction (ODIE) corpus, which contained
de-identified clinical reports, pathology reports, etc.

3. Evaluating temporal relations in clinical text, 2012 i2b2 Challenge [43]: The temporal
relations or links in the dataset indicate how two events or two time expressions or
an event and a time expression is related to each other. The possible links annotated
in the dataset were BEFORE, AFTER, SIMULTANEOUS, OVERLAP, BEGUN_BY,
ENDED_BY, DURING, and BEFORE_OVERLAP.
Ex: OVERLAP -> She denies any fever or chills.
Ex: ENDED_BY -> His nasogastric tube was discontinued on 05-26-98.

4. 2018 n2c2 shared a task on adverse drug events and medication extraction in electronic
health records [44]: The different relations identified between two entities in this
case are either of the following types: Strength–Drug, Form–Drug, Dosage–Drug,
Frequency–Drug, Route–Drug, Duration–Drug, Reason–Drug, and ADE–Drug.

5. Discussion on Clinical Named Entity Recognition

The goal of using NER on clinical text is to extract entities or subjects of interest
from the clinical text. The clinical text, in general, has many medical terms such as the
disease name, location, and medical procedures, and hence, the named entities can help
in finding useful patterns. The nature of the clinical text, in general, is dictated by notes
from physicians based on their interaction with the patients. In most cases, it is in free
text format, which can be split into multiple paragraphs, and is mostly narrative in nature.
For example, the clinical text written by physicians in the consultation notes from the
radiation oncology domain has the following information:

• Physical Exam: This section can have both structured and unstructured information
such as toxicity and review of systems, where we try to store information such as
dizziness, cough, and rectal bleeding.

• Past Medical History: This has all of the allergy information, medications, prior
military service, prior surgery information, and prior diseases for patients and is
mostly stored as unstructured free text.
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• Oncologic History: This includes all of the prior oncologic information in unstructured
format and varies based on the types of cancer.

• Diagnostic Test: Various tests may be performed on patients and vary based on cancer
types. They are mostly in structured format; however, some tests may be specific to
patients that can be documented and stored in unstructured free text format such as
Bone Scan and CT Pelvis.

Clinical NER is very common these days due to the massive growth in EHRs and is
considered the first step in processing clinical text. The output of clinical NER is further
used for other tasks such as decision-making in precision treatment. Due to the unstruc-
tured nature of the clinical text, there are challenges in designing effective clinical NER
systems, as discussed below. We observed that many clinical NER models are developed
for different languages such as Chinese and Italian; Figure 5 shows the number of clinical
NER models that we came across for different languages. Due to the strict privacy rules
in the EU (European Union) and HIPAA compliance in the US, it is difficult to dissemi-
nate medical information. We found very few articles that use clinical NER models for
de-identification where medical document is parsed and any Protected/Personal Health
Information (PHI) is removed; for example, recently Catelli et al. [52] developed a clinical
NER model for Italian COVID-19 clinical text.

Figure 5. Clinical NER models available for text in different languages.

5.1. Challenges in Clinical NER

• Nested Entities and Ambiguity: Most clinical terms are often confusing as there is no
common ontology. Physicians often use abbreviations or acronyms, which makes it
very difficult to standardize clinical text. In the radiation oncology domain, a common
challenge is that physicians dictate their clinical assessment based on the style they
were trained in and it varies significantly for different types of cancers, which makes
it very difficult to develop a standard NER model for processing radiation oncology
notes that cater to all of the different types.

• Meaning of Context: The clinical terms used can have different meanings, which vary
based on the context. Although this problem mostly applies to non-clinical notes,
for clinical NER, this becomes more challenging as the model should understand the
complete clinical context along with the entity. A common issue is negative medical
findings, where text is written in such a manner that it reports findings in a negative
context; however, the NER considers that as a positive.
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To address the nested entities and ambiguity, there are efforts to standardize the
nomenclature of clinical entities [53,54]. However, this is still in an initial phase, and to be
successful, it needs to be widely adopted.

5.2. Clinical NER Methods

One of the important challenges in designing a clinical NER is how to extract mean-
ingful information without much human effort. Prior to NER, the NLP techniques used
required a lot of human effort to process the text. There are various NER models pro-
posed over the last decade to extract information from the clinical text that can be broadly
classified into four types of approaches:

• Dictionary-Based Approach: In this approach, a predefined set of named entities
are defined that are later used as a lookup while parsing the clinical text for entities.
For example, Savova et al. [46] used a dictionary-based approach to detect NERs from
clinical text using their NLP toolkit.

• Rule-Based Approach: Here, the rules/entities are predefined by domain experts.
Most of the rules are handcrafted and are used to detect entities in a specific text.
The limitation of this approach is generalizability or extensibility, as most of them are
applicable to the domain they were defined in. This approach certainly requires a
lot of effort where experts spend time defining the entities, and then, it is used as a
lookup while parsing the clinical notes.

• Machine Learning-Based Approach: The purpose of this approach is to completely
automate the NER process. Commonly used ML algorithms such as Random Forest
(RE), Support Vector Machines (SVMs), and Neural Networks (NN) are used to learn
the pattern (entities and boundaries) using the training set. Once the training is
over, the model can classify the clinical text into predefined classes. This approach is
garnering much attention due to recent advancements in ML and the easy availability
of computational resources. The majority of the articles collected for this survey used
this approach.

• Conditional Random Field (CRF)-Based Approach: The CRF approaches fall under
the ML category and mostly solve a label sequencing problem, where for a given
input sequence X = x1x2x3, CRF tries to find the best label sequence Y∗ = y1y2y3. At
first, the entities are annotated with tags; in general, the BIO (Beginning, Inside, and
Outside of Entity) schema is used for annotation, where each word is assigned to a
label. The input for CRF models is mostly designed by humans and represented as a
bag-of-words style vector. Wu et al. [4] introduced seven tags and three CRF baselines
using different features. All of the commonly used CRF-based implementations in
clinical NER can be found in the CRF++ package. In Tables A1 and A2, we observe
that there are many models using CRFs for NER with good accuracy.

• Deep Learning-Based Methods: This is similar to the CRF label sequencing problem
using the BIO schema, where the input is a raw sequence of words. An added layer
performs the word embedding by converting words into densely valued vectors.
In the training phase, it learns the dependencies and features to determine entities.
Deep learning methods are very popular for clinical NER as they achieve state-of-the-
art results and can also detect hidden features automatically. The first neural network
architecture for NER was proposed by Collobert et al. [19], with a convolution layer,
several standard layers, and a non-linear layer. This architecture achieved state-of-
the-art performance in clinical NER. Details on the CNN model for clinical NER can
be found in [17]. New studies have recently shown that RNNs (Recurrent Neural
Networks) perform much better than CNNs and are capable of capturing long-term
dependencies for sequence data. Lample et al. [55] introduced Long Short-Term
Memory (LSTM), a popular implementation of RNN architecture, for this problem.
Wu et al. [4] evaluated the performance of CNNs, RNNs, and CRFs with different
features and concluded that the RNN implementation outperformed the other two.
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• Hybrid Approaches: here, any of the above approaches are combined and then used
to determine entities.

5.3. Clinical NER Models

• Savova et al. [46] proposed a dictionary look up algorithm, where each named entity
is mapped to a terminology. The dictionary was constructed using the terms from
UMLS, SNOMED CT, and RxNORM. This implementation also involves a parser in
which the output is used further to search for noun phrases. The limitation of this
implementation is that it fails to resolve ambiguities while working with results from
multiple terms in the same text. They datasets for NER are derived from Mayo clinic
EMR. For exact and overlapping matches F1-score reported were 0.715 and 0.824
respectively.

• Skeppstedt et al. [56] used CRF model and a rule-based approach to detect NER on
Swedish health records and identified four entities: Drug, Finding, Disorder, and Body
structure. They also compared it on English clinical text. They reported precision
and recall for all of their findings: 0.88 and 0.82 for body structure, 0.80 and 0.82 for
disorders, 0.72 and 0.65 for findings, and 0.95 and 0.83 for pharmaceutical drugs.

• Chen et al. [57] developed a rule-based NER system that was designed to detect
patients for clinical trial. They used the n2c2-1 challenge dataset for training and
achieved an F1-score of 0.90.

• Eftimov et al. [48] developed a rule-based approach to detect extraction of food,
nutrient, and dietary recommendations from text. They discussed four methods
FoodIE, NCBO, NCBO (OntoFood), and NCBO(FoodON). Based on their comparison,
they identified that FoodIE performs well. Their model was trained on the FoodBase
Corpus and was able to identify entities from dietary recommendation.

• Xu et al. [58] developed a joint model based on which CRF performs word segmen-
tation and NER. Generally, both systems are developed independently, but the joint
model used to detect Chinese discharge summaries performed well. There was no
score reported in this publication; they only reported that the joint model performance
is better when they compared it with the two individual tasks.

• Magge et al. [59] developed an NLP pipeline, which processed clinical notes and
performed NER using bi-directional LSTM coupled with CRF in the output layer. They
used 1092 notes from 21 cancer patients, from which 800 notes were used for NER
training. They reported NER precision, recall, F1-score for the entities individually
and reported a macro-averaged F1-score of 0.81.

• Nayel et al. [60] proposed a novel ensemble approach using the strength of one
approach to overcome the weakness of other approaches. In their proposed two-stage
approach, the first step is to identify base classifiers using SVM, while in the second
phase, they combined the outputs of base classifiers based on voting. They used the
i2b2 dataset and reported an F1-score of 0.77.

• Wu et al. [4] performed a comparison study between two well-known deep learning
architectures, CNN and RNN, with three other implementations: CRFs and two state-
of-the-art NER systems from the i2b2 2010 competition to extract components from
clinical text. The comparison created a new state-of-the art performance for the RNN
model and achieved an F1-score of 85.94%.

• Wang et al. [61] proposed a model to study symptoms from Chinese clinical text.
They performed an extensive set of experiments and compared CRF with HMM
and MEMM for detecting symptoms. They also used label sequencing and the CRF
approach outperformed the other methods.

• Yadav et al. [17] provided a comprehensive survey of deep neural architectures
for NER and compared it with other approaches including supervised and semi-
supervised learning algorithms. Their experiments showed good performance when
they include neural networks, and they claim that integrating neural networks with
earlier work on NER can help obtain better results.
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• Vunikili et al. [51] used Bidirectional Encoder Representations from Transformers
(BERT) [62] and Spanish BERT (BETO) [63] for transfer learning. This model is used
to extract tumor information from clinical reports written in Spanish. They reported
an F1-score of 73.4%.
Jiang et al. [64] developed ML-based approaches to extract entities such as discharge
summaries, medical problems, tests, and treatment from the clinical text. They used
a dataset comprising 349 annotated notes for training and evaluated their model
on 477 annotated notes to extract entities. They reported an F1-score of 0.83 for
concept extraction.

• Yang et al. [65] proposed a deep learning model to extract family history, and they
compared LSTM, BERT, and ensemble models using a majority voting.

All of the NER models discussed above are summarized and presented in
Tables A1 and A2.

5.4. Clinical NER Evaluation Metrics

The outputs from clinical NER systems are usually compared with human annotations.
In general, a comparison can be either exact or relaxed matches [17]. A relaxed match only
considers the correct type and ignores the boundaries as long as there is an overlap with
ground truth boundaries. We observed from our cohort of selected articles on clinical NER
that all of them reported exact matches, which is the F1-score and variations such as macro
F1-score. In the case of an exact match, it is expected that the entity identified correctly
should also detect boundary and type correctly at the same time [17]. We also observed
that a few NER models report performance in macro- and micro-average. In macro-
averaging, the F1-scores of all entities are calculated independently and then averaged.
In micro-averaging, the sums of the false positive, false negative, and true positive across
all entities are taken. Other commonly used metrics in ML such as sensitivity, specificity,
ROC (Receiver Operator Characteristic), and AUC (Area Under the Curve) were not used
in the clinical NER articles reviewed here. There are however many studies such as [66] that
point to the limitations of using F1-score as an evaluation metric in NLP; one of the major
issues is that the F1-score metric is biased towards the majority class. The class imbalance
problem has been recently garnering attention for both binary and multi-class classification.
Accuracy and precision scores are relevant if we focus on majority classes; for a minority,
those metrics evaluations do not have any significant incluence. Branco et al. [67] provided
a comprehensive list of metrics both for binary class and multi-class classification such
as classes average accuracy, and Matthews Correlation Coefficient. Along with the list of
metrics provided, they claim that the metrics available are not suitable for all cases. We also
found very few papers that tested for statistical significance between experimental methods.

6. Discussion on Clinical Relationship Extraction

RE is a specialized task of collecting meaningful structured information from un-
structured text. In clinical and biomedical domains, RE has been applied to drug–gene
relationships [68], disease–gene relationships [69], semantic classes for radiology report text
identification [70,71], relation extraction for biological pathway construction [72], relation-
ship between lexical contexts and category of medical concepts [73], and disease–mutation
relationship from biomedical literature [74]. Temporal relationship extraction from clinical
texts is another important RE task [75]. In all these of different tasks, the NLP-based meth-
ods that are used to extract the relations between different entities are very much specific to
the particular dataset, i.e.,the particular combination of feature representation and learning
algorithm is very distinct from any other case. Due to this fact, the methods that are used
to extract relations such as an ML problem are not very generalizable. However, RE from
clinical texts has also been performed by using a domain invariant convolutional neural
network (CNN) [76]. Most RE tasks are based on finding the relationship between entities
inside the same sentence but there are some instances of RE tasks across sentences as
well [77–79]. Since, in most cases, RE is treated as a classification problem, both multi-label
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classification [80] and multi-class classification [76,81] were proposed to extract clinical
relations. An RE task consists of syntactic processing modules, which deals with the process
of text representation and feature generation such as tokenization, word embeddings, etc.,
and semantic processing modules, which deals with meaningful information collection
such as relationship identification and classification, in this case. In clinical texts, a variety
of feature generation techniques are used to extract relations from various data, which can
range from contextualized word embeddings, part-of-speech (POS) tagging, etc. The next
or the final step is to select a learning algorithm such as supervised, unsupervised, or even
rule-based methods on the features in order to identify the relations. The various feature
representation and learning methods used in the clinical and biomedical text are discussed
next. A pictorial representation of the different learning methods used to learn the different
relations from clinical texts is shown in Figure 6.

Figure 6. Different learning methods used for clinical RE.

6.1. Feature Generation

Feature generation is an important step for RE, where features are extracted from
the unstructured text and then represented only with numbers. This step is particularly
very important for the supervised and the unsupervised learning methods because these
methods require inputs in the form of numbers only. The performance of these ML models
depends not only on the actual algorithm but also on how the input features were repre-
sented. The first step before representing the features is preprocessing and tokenizing the
text. In many deep learning-based approaches, the whole instance is considered the input,
which is basically a featureless representation. The various features that can be considered
for RE tasks are the word, the words distance from both the entities, chunk tag of the word,
POS tag of the word, type of the word, n-grams, etc. Sahu et al. (2016) [76] introduced a
domain-invariant RE technique using CNN, where the inputs were represented with the
word, its distance from the first entity, its distance from the second entity, a Part-of-Speech
(POS) tag, chunk, and the type of the word. Singhal et al. (2016) [79] used Nearness to
Target Disease Score, Target Disease Frequency Score, Other Disease Frequency Score, Same
Sentence Disease-Mutation Co-occurrence Score, Within Text Sentiment Score, and Text
Sentiment Subjectivity Score as input features to the decision trees to extract the disease–
mutation relationship. Hasan et al. (2020) [82] used word embedding, POS embedding,
IOB embedding, relative distance, concept embedding, and dependency tree to represent
the input features. Alimova et al. (2020) [83] compared the performance of BERT with that
of random forest based on a multitude of features such as word distance; character distance;
sentence distance; punctuation distance; position distance; bag of words; bag of entities;
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entity types; entities embedding; concept embedding; sentence embedding; the similarity
between entities; and some knowledge features such as UMLS, MeSH, etc. Mahendran
et al. (2021) [70] also divided the sentences into five segments based on the location of the
context to represent the input features of the segment-CNN model. Textual input features
used for various ML algorithms are mostly a combination of the features mentioned above.

6.2. Rule-Based Methods

Though rule-based methods are not the most popular method nowadays to extract
relations from clinical texts, they are still being used and have been used in the past in good
numbers. These methods require defining some rules in the beginning based on the nature
of the input dataset. These methods of extracting information by using well-defined rules
and patterns are often not very computationally efficient such as the machine learning
models with respect to their performance, and hence, these methods are not very popular
these days. Segura-Bedmar et al. (2011) [84] developed a linguistic hybrid rule-based
method to extract drug–disease interactions via the combined use of shallow parsing,
syntactic simplification, and pattern matching. A pharmacist defined the domain-specific
lexical patterns of the drug–disease interactions that were matched with the generated
sentences. This method did not perform well with an average precision and a very low
recall. Xu et al. (2011) [85] combined rule-based methods with ML to engineer features for
structured RE from clinical discharge summaries as provided by the i2b2 2010 challenge.
The RE task received a micro-averaged F1-score of 0.7326. Li et al. (2015) [86] matched the
drug names to their attributes in a prescription list, and then the matching was confirmed
by means of the co-location information and RxNorm dictionary. It helped in identifying
the medication discrepancies with very high performances. Veena et al. (2021) [87] used
NLP-based regular expressions to extract the words from the text document of different
medical data using scraping and POS tagging. Then, the relations between different
medical terms were extracted using a path similarity analysis. Mahendran et al. (2021) [70]
used the co-location information between the drug and the non-drug entity types by
using a breadth-first-search (BFS) algorithm to find the adverse drug effects. The left-only
rule-based approach (macro-average F1-score: 0.83) eclipsed the performance of other
rule-based models. Overall, the rule-based approaches for clinical RE can perform well,
depending on how the rules are defined. Some clinical RE tasks using rule-based methods
are tabulated in Table A3.

6.3. Supervised Learning Methods

As mentioned before, supervised learning algorithms have been extensively con-
sidered for RE. This method uses a classifier to determine the presence or absence of a
relationship between two entities. Computers cannot understand the unstructured text,
and hence, this kind of learning method requires features about the text as an input. As a
result of this, there is an absolute necessity to annotate the clinical texts by domain experts.
Annotating or labeling examples is a time-consuming procedure as it takes a lot of effort to
manually annotate the data. This is an important limitation of these methods although they
have high accuracy. These methods used in clinical RE however suffer from the difficulty
of adding new relations. Supervised learning algorithms can also be extended to include
distantly supervised RE or weakly supervised learning or semi-supervised learning.

6.3.1. Traditional Machine Learning and Deep Learning-Based Methods

Supervised learning is defined as an ML task to learn a function that maps the input
to the output of each input–output data point [88]. This requires the annotated data to
be divided into training and testing samples. The model learns the function based on
the values of the inputs and the outputs of the training examples. Analyzing the inputs
and the outputs, the model comes up with an inferred function. Then, the efficiency of
the inferred function is analyzed by testing the function on the testing set. Supervised
ML algorithms can be classified into two categories: (i) traditional supervised learning
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algorithms and (ii) Artificial Neural Network (ANN) based algorithms. The traditional
methods are heavily dependant on the well-defined features, and hence, their performance
relies on the efficacy of the feature extraction process. Moreover, these shallow algorithms
are found to be overshadowed by ANNs where data is large and of high dimension. Still,
the shallow traditional ML algorithms perform better in the case of low-dimensional data
or data with a limited number of training samples. ANNs can be very deep, depending on
the number of hidden layers between the input and the output, leading to deep learning-
based methods. The differences between the traditional shallow methods and ANNs are
surveyed by Janiesch et al. (2021) [89]. Examples of traditional algorithms include but are
not limited to Support Vector Machines (SVM), Linear Regression, Logistic Regression,
Naive Bayes, Linear Discriminant Analysis, Decision Trees, K-Nearest Neighbor (KNN),
Node2vec, etc., whereas Dense Neural Networks (DNN), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Graph Neural Networks (GNN), autoencoders,
etc. are some of the Deep Learning algorithms. These algorithms have been extensively
used in clinical domain for a variety of tasks [90–94].

Swampillai et al. (2011) [78] first used an SVM-based approach on adapted features to
extract relations between entities spread across different sentences. Their work showed
that the structured features used for intra-sentential RE can be adopted for inter-sentential
RE as they both performed comparably. Later on, inter-sentential RE tasks were defined
on clinical notes too. In the 2010 i2b2/VA challenge on concepts, assertions, and relations
in clinical text [38], SVM-based supervised learning algorithm performed the best with
an F1-score of 0.737 [39]. The domain-invariant CNN on multiple features for clinical RE
used by Sahu et al. (2016) [76] showed a decent performance with various filter length
combinations; filter combination of {4, 6} performed the best (precision: 0.7634, recall:
0.6735, and F1-score: 0.7116). Singhal et al. (2016) [74] used a C4.5 decision tree because of
its superior performance on the features extracted from various biomedical literature for
disease-mutation RE. It demonstrated improved performance when compared with the
previous state-of-the-art models with F1-scores of 0.880 and 0.845 for prostate and breast
cancer mutations, respectively. The performance of a sparse deep autoencoder-based model
introduced by Lv et al. (2016) [95] outperformed the performance of a deep autoencoder on
most of the clinical relation types. Lin et al. (2017) [80] presented a multi-label structured
SVM for Disorder Recognition in the 2013 Conference and Labs of the Evaluation Forum
(CLEF) textual dataset. This model achieved an F1-score of 0.7343, i.e., 0.1428 higher than
their baseline BIOHD1234 scheme. Mondal et al. (2017) [73] compared the performance of a
rule-based approach with a feature-oriented SVM-based supervised learning approach for
clinical RE, where the supervised learning model reported higher F1-scores. Magge et al.
(2018) [59] used a bidirectional LSTM-CRF for the clinical NER and a random forest-based
binary classifier for the clinical RE. The various features used for RE as an input to the
random forest classifier such as entity types, number of words in the entity, and an average
of the entity word embeddings resulted in a micro-averaged F1-score of 0.88 (precision:
0.82; recall: 0.94). Kim et al. (2018) [72] used node2vec to learn the features from texts in
networks in order to extract relations for biological pathways, which outshone the previous
methods to detect relationships in the type 2 diabetes pathway. Munkhdalai et al. (2018) [96]
compared the performance of an SVM model with a deep learning-based LSTM model to
extract relations towards drug surveillance. SVM showed better performance (89.1% F1-
score) on the test data compared with that of LSTM. Li et al. (2019) [97] introduced a novel
approach for RE in clinical texts by using neural networks to model the shortest dependency
path between the target entities along with the sentence sequence. This approach used
on the 2010 i2b2 relation extraction dataset improved the performance to an F1-score of
74.34%. The multi-class SVM model on this dataset, introduced by Minard et al. (2019) [81]
achieved an F1-score of 0.70, which is lower than the previous models. Christopoulou et al.
(2020) [79] proposed an ensemble deep learning method to extract the adverse drug events
and medications relations, which achieved a micro-averaged F1-score of 0.9472 and 0.8765
for RE and end-to-end RE, respectively. Hasan et al. (2020) [82] compared the performance



Appl. Sci. 2021, 11, 8319 18 of 30

of different deep learning methods such as CNN, GCN, GCN-CDT, ResNet, and BiLSTM
on various combinations of features, as mentioned in the previous subsection for clinical
RE. BiLSTM achieved the highest 9 class F1-score of 0.8808 in that dataset. Both CNN
models used by Mahendran et al. (2021) [70], segment-CNN and the sentence-CNN, failed
to surpass the performance of the rule-based model proposed for this dataset. Research
has shown that the traditional ML methods have outperformed deep learning methods in
many clinical RE tasks where the dataset has limited data instances, whereas in some cases
where more data is present, deep learning methods given better performance. Additionally,
the level of performance depends on the complexity of the data. Currently, it is not possible
to generalize whether traditional ML methods or deep learning methods perform the best
for clinical RE as the performance is very data-dependent. Some clinical RE tasks using
traditional machine learning and deep learning-based methods are tabulated in Table A4.

6.3.2. Language Model-Based Methods

Language model-based approaches have shown improved performance in many NLP
tasks as these language models use contextual information into account to represent the
features. Then, a classifier is added on top of the language model output to perform the
classification of relationships in the end. It is also a supervised learning model as the
inputs are well defined for each instance. The language models popularly used in NLP
tasks are ULMFit, ELMO, BERT, etc. Out of them, BERT [62], introduced by Google in
2019, has become extremely popular for various NLP tasks including RE. Its breakthrough
has resulted in improved performance in many NLP tasks because of its strong ability to
pretrain deep bidirectional representations of any unlabelled text by conditioning on its
context on both sides in all the 12 transformer layers. For biomedical clinical texts, two
BERT-based models were later introduced such as BioBERT [98], trained on biomedical
PubMed corpus, and Clinical BERT [99], trained on a biomedical corpus, clinical notes,
and only discharge summaries. These models have the same model architecture as that of
BERT, but they were trained on a medical corpus.

BERT and the biological and clinical versions of BERT gained high popularity for
RE tasks on clinical texts. Since these are language models, there is no need to generate
and represent the features. The entire text, i.e., the complete sentence or the complete
paragraph of each instance, is taken as input to the model. Lin et al. (2019) [77] established
state-of-the-art results in temporal RE in clinical domain using pretrained domain-specific
as well as fine-tuned BERT: 0.684F for in-domain texts and 0.565F for cross-domain texts.
Alimova et al. (2020) [83] used BERT-based models, including BioBERT and Clinical BERT.
The BERT models used there performed really well for some of the classes, but for other
classes, the Random Forest Classifier using different input features performed better. Wei
et al. (2020) [100] established that the Fine-Tuned BERT eclipsed the performance of
other models for RE on clinical narratives. Overall, the language models have shown
superior performances than other models on clinical RE tasks. BERT (cased and uncased),
BioBERT and Clinical BERT were the language models used by Mahendran et al. (2021) [70].
All of the BERT models, with an impressive macro-averaged F1-score of 0.93, outshone
the performance of all of the other rule-based or deep learning methods on this dataset.
Therefore, in most cases, language models such as BERT have outshone other ML and
deep learning methods for clinical RE due to their capability to learn from the context.
Some clinical RE tasks using traditional language model-based methods are tabulated in
Table A5.

6.4. Unsupervised Learning Methods

Unsupervised Learning is defined as an ML technique where users are not required to
supervise the model, but it allows the model to run and learn by itself to excavate interesting
patterns that were earlier undetected. These methods do not require annotated texts as
they are capable of working on unlabelled data on their own. The level of processing
needed for these kind of tasks is very high, but due to their simplicity, these algorithms
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are more suitable for simpler tasks and, hence, unsupervised learning algorithms can
be unpredictable for RE. The different types of unsupervised learning techniques are
Clustering, Anomaly Detection, and Association. In clinical RE, unsupervised learning
algorithms have been used to identify the different types of relations in the text that needs
to be later reviewed and annotated by domain specialists to evaluate the performance of the
model. In real life, the text contains a lot of noise and unsupervised learning is not always
effective in identifying the different relations with a high level of accuracy. However, this
method is less time expensive and is preferred in some cases.

Unsupervised learning has been the least popular in RE on clinical texts because of
the limitations of the unsupervised algorithms to identify relation patterns from complex
textual data. Without proper clinical annotations by the clinicians, this learning task is far
more ambiguous, which might result in the decreased accuracy of these models. Out of the
very few works, Quan et al. (2014) [101] were the pioneers in proposing an unsupervised
text mining method for RE on clinical data. The unsupervised clustering-based method that
is a combination of dependency and phase structure parsing for RE performed moderately
with respect to the previous models but their proposed semi-supervised model surpassed
its performance to become the second-best model on this dataset. Alicante et al. (2016) [102]
used unsupervised methods for entity and relation extraction from Italian clinical records.
The performance of the unsupervised clustering algorithm in the space of entity pairs,
being represented by an ad hoc feature vector, is found to be promising in labeling the
clinical records by using the most significant features. Since the dataset was not annotated
here, similarity measures such as Manhattan, Binary, and Cosine similarities are used to
measure the goodness of the clustering models. Not many other unsupervised methods
have been proposed for RE on clinical notes. Some clinical RE tasks using unsupervised
learning-based methods are tabulated in Table A6.

7. Trends and Future Research Directions

Our main observation from this review is that the clinical-NER community is more
focused on deep learning as it has shown promising results. The other approaches such as
dictionary or rule-based methods have lost popularity in the last few years. We believe
that the upcoming research on clinical NER will develop models using hybrid approaches
where the ML-based and rule/dictionary-based approaches can be combined. One of the
major challenges while evaluating different clinical NER models was how to measure their
effectiveness. The F1-score measure has its own limitations, as mentioned earlier; simply
comparing the F1-score does not give much insight into the models. We have seen recently
that there are few attempts to address the limitations of F1-score and suggest alternative
metrics such as [103]. However, currently, we did not see any attempts to standardize
an evaluation metric for clinical NER. For the class imbalance problem discussed in this
survey paper, we believe that the community should consider using metrics that address
the multi-class imbalance problem. We did see multiple metrics available; however, the se-
lection of correct metric is based on the user interest towards majority or minority classes.
Alternatively, we recommend using multiple metrics to obtain a better idea of the balanced
performance. We have seen many recent works published on performing clinical NER on
text from different languages apart from English and Chinese text such as [52] in Italian
text. There are attempts to use transfer learning from the text in different languages to
improve the performance such as [52]; although this is still in an initial phase, we believe
that, in the next few years, more work will follow this approach. As mentioned in the
Clinical NER section, one of the major issues in clinical NER is that most of the models
developed are only limited to specific clinics or centers, and specific domains. In order to
address this and to make clinical NER models widely available for usage, the clinical terms
should be standardized and widely adopted. We found a few attempts on the standard-
ization of clinical terms such as [53]; however, there is not much work currently available
that attempts to perform clinical NER on standardized clinical terms and is available for
adoption. We believe that the community will move towards a standardization of clinical
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terms and that future models developed will aim to use those terms. We also noticed that
the clinical NER tasks performed vary based on different domains; our survey found that
none of them have used transfer learning approaches to train their models from different
domains. We believe that, with the success of transfer learning in [52], the community will
be looking to develop their deep learning models using transfer learning from different
clinical NER tasks.

Most of the clinical NER tasks that we came across aimed to identify the entities
from clinical text and then to use them for other NLP tasks. Given the sensitive nature of
the clinical text, it is becoming difficult to publish models that are developed for clinical
NER. The community is trying to overcome this by developing clinical NER models that
identify sensitive terms/entities from clinical text, remove them, and make them available
for publishing. Recently, other ML communities are using GANs (Generative Adversarial
Networks) [104], which automatically discover patterns in the data and can develop
synthetic data that looks similar to the actual data. This approach has many benefits such
as handling privacy as no real data is compromised or used in a training phase, and it is
capable of handling under sampling and oversampling for multiple classes. We believe
that, in the future, clinical NER models will use GANs to develop more robust and scalable
models. Likewise, this approach can be one of the potential approaches for clinical RE.

NER reconciliation is a process of collecting data from multiple sources, gathering and
mapping them to a real-world object. In clinical NER, this problem can be more severe,
as in the radiation oncology domain, different physicians can assign different names to
the same structure. Most of the datasets discussed in this paper are annotated and follow
the standard naming convention, but this process is not scalable if multiple data sources
are used for integration. We performed an extensive search to find any literature on
clinical NER reconciliation. To date, we did not find any attempts to perform clinical NER
reconciliation. However, we found a few attempts for NER reconciliation in other domains
such as Isaac et al. [105] and Van Holland et al. [106]; these approaches are geared towards
vocabulary reconciliation. We believe that clinical NER reconciliation is an open research
problem. As mentioned earlier, there are ongoing attempts to standardize the clinical terms,
and if such a standardization is widely adopted by physicians, it can make the integration
process a lot simpler.

After surveying the clinical RE papers, it was found that, lately, the community is
most interested in investigating traditional ML-based approaches, deep learning-based ap-
proaches, and language models to perform clinical RE. Very little research using rule-based
approaches are coming up but unsupervised learning-based methods for clinical RE have
become somewhat dormant because of the uncertainty in the results generated by these
methods. Rule-based methods were used in many research works before 2016. With the
introduction of newer techniques and newer research over the years, the performance of
the clinical RE tasks kept on improving. Later on, traditional ML-based methods and deep
learning methods along with different feature representation techniques were adopted for
this purpose. It was observed that the traditional methods outperformed the deep learning
methods in many cases. In some cases, deep learning methods performed poorer than
rule-based methods. This may be due to the limited data used in most of these works.
Deep learning methods generally perform better than traditional methods in case of a large
amount of data, but clinical data is often limited. This is a practical limitation of using deep
learning methods for clinical RE. In this era of supervised learning on clinical texts, it was
found that the language models such as BERT and its variations vastly perform the best in
extracting relations from clinical texts. This shows that the language models are somewhat
capable of understanding the intricacies of the language better. However, experimentation
with newer and advanced supervised algorithms for relationship classification in the clini-
cal domain should continue in the future as the performance of the algorithms often vary
with the data.

In all of the articles we found on clinical RE, F1-score is the metric used for evaluating
the performance of the methods. Although other statistical metrics can be used for this
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purpose, these works chose to only use the F1-score perhaps because of its popularity.
When the dataset is not annotated and unsupervised learning-based algorithms have to
be used [102], only then other statistical measures are used to quantify the goodness of
those measures; for example, Manhattan, Binary, and Cosine similarities were used for
comparing the performance of the various clustering models such as Model-Based, K-
Means, and Hierarchical Clustering. However, these measures are only used for assessing
the goodness of unsupervised learning-based clustering algorithms to provide high-level
model performance estimates as they do not serve as a direct evaluation metric for NER/RE
tasks. It was observed that most of the clinical RE tasks from a computational point of view
are multi-class classification tasks. However, multi-label classification tasks are not used in
large numbers for clinical RE because most datasets are annotated into multiple classes but
not into multiple labels most of the time.

8. Conclusions

In this paper, we present the first review of the various interrelated NER and RE
methods in the context of clinical text. Our literature survey highlights the increasing
popularity of various traditional machine learning-based approaches and deep learning
models over the past few years, which has somewhat led to a sharp decline in the usage
of rule-based methods for both NER and RE or dictionary-based methods for NER only.
Hence, hybrid approaches by combining machine learning-based and rule/dictionary-
based approaches have the potential to be one of the dominant approaches for these tasks
in the future. On top of that, various other machine learning approaches, deep learning
approaches, and language model-based approaches for clinical NER and RE will most
probably continue to come up in good numbers in the next few years. GANs, which can
automatically discover patterns in the data, can potentially also be a good architecture for
clinical NER and RE.

In the case of both NER and RE, the F1-score is the most frequentlly used evaluation
metric. For unsupervised clinical RE, some work used different similarity measures such
as Manhattan, Binary, and Cosine similarities to measure the goodness of the various
unsupervised clustering approaches. A few clinical NER papers have mentioned the usage
of t-tests on the models to find out their statistical significance. Other popular metrics used
in ML-like sensitivity, specificity, ROC, and AUC can also be used in the future to evaluate
the performance of the different approaches used for both NER and RE.

We also believe that the community will move towards a standardization of clinical
terms and that the future models developed will aim to use these terms. Standardization
will help us integrate data from multiple sources and will also help in NER reconciliation.
Clinical NER tasks vary based on different domains; we observed that none of them use
transfer learning approaches to train their models from different domains. Developing
deep learning models using transfer learning from different clinical NER tasks can be a
promising future research direction. In the case of clinical RE, relationships are mostly
extracted between entities present in a sentence and the types of relationships are mostly
multiclass but not multilabel in most cases. Therefore, from the computational angle, it may
be worthwhile to carry out more research on RE across sentences besides also multilabel
RE but these tasks require data preparation and annotation in some specific formats.
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Appendix A

Table A1. Summary of previous works in clinical NER.

Publication Task Methods Performance

Savova et al. [46] Extraction of entities from
EMR using NLP tools

Dictionary look-up
algorithm

Conducted multiple performance
evaluation on different NLP tasks;
for NER, the F1-scores reported
were 0.71 (exact match)
and 0.82 (overlapping matches).

Skeppstedt et al. [56]

Detecting disorders,
findings, and body
structures from Swedish
clinical text

Rule-based and CRF
approach

Precision and recall for detecting
body structure are 0.88 and 0.82,
respectively, while for disorder,
they were reported as 0.72 and
0.65; for finding, they are 0.72 and
0.65; and for drug, they are 0.95
and 0.83

Chen et al. [57] Detecting patients who are
qualified for clinical trial

Rule-Based approach using
knowledge input defined
by lexical, syntactic, or
meta-level tasks

F1-score reported was 0.90

Eftimov et al. [48]

Extraction of food entity,
nutrient entity, and
quantity/unit from dietary
recommendations

Rule-based approach

TP for food, nutrient, and quantity
was reported as 538, 557, and 86.
FN for food, nutrient, and quantity
was reported as 25, 17, 11. FP for
food, nutrient, and quantity was
reported as 5, 2, and none.

Xu et al. [58] Combined Segmentation
and NER on Chinese text CRF using three features

96% F1-score was recorded as the
best performance; the authors also
provided a comparison between
individual, incremental, and joint
models.

Magge et al. [59]

Identification of specific
entities from clinical notes
such as drug, dose,
and route; a total of
nine terms were used for
identification

Machine ;earning-based
approach: bidirectional
LSTM-CRF

F1-score average for all nine terms
is 0.81; they used the standard
gold annotated dataset available
at the University of Massachusetts
comprising about 1092 medical
notes. Around 800 notes were
used for training, 76 was for
validation, and the rest was used
for testing.

Table A2. Summary of previous work for clinical NER.

Publication Task Methods Performance

Nayel et al. [60] Detection of annotated
data from clinical text

Designed an ensemble
approach which combined
the results of base
classifiers and used SVM
for learning base classifiers

The proposed ensemble learning
model reported an F1-score of
77%.

Wu et al. [4]
Concept extraction from
clinical text by using and
comparing CNN and RNN

Deep learning-based
approach

RNN model performed better
when compared with CNN and
achieved an F1-score of 86%.
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Table A2. Cont.

Publication Task Methods Performance

Wang et al. [61]
Studying symptoms and
parthenogenesis in Chinese
EHR

ML-based approach used
CRF, SVM, and Maximum
Entropy (ME)

Among all three methods applied,
CRF outperformed the others.

Yadav et al. [17]
Advancement and
improvement in NER from
deep learning models

ML-based approach but
focus was more on using
deep learning

Better performance reported using
deep learning compared with
other supervised and
semi-supervised learning
algorithms.

Vunikili et al. [51]
NER on Spanish Clinical
Text to extract tumor
morphology

Transfer learning using
BERT and BETO

73% F1-score was reported
without any features.

Jiang et al. [64]

Extraction of clinical
entities from 349 clinical
annotated notes with
different features

ML-based approach (SVM
and CRF)

CRF outperformed SVM and their
hybrid system achieved an
F1-score of 0.84 for concept
extraction and 0.93 for assertion
classification.

Yang et al. [65] Extraction of family history
from clinical narratives

Deep learning-based
models such as LSTM,
BERT, and ensemble
models using majority
voting strategy

Micro-averaged F1-score of 0.7944
for concept extraction.

Table A3. Summary of the rule-based approaches for clinical RE.

Publication Task Methods Performance

Segura-Bedmar
et al. (2011) [84]

Drug–disease interaction
extraction from clinical
texts

Linguistic hybrid
rule-based method using
shallow parsing, syntactic
simplification, and pattern
matching

Did not perform well with an
average precision and a very low
recall

Xu et al. (2011) [85] Clinical RE on 2010 i2b2
dataset

Combination of Rule-based
and ML methods

Model performed decently with a
micro-average F1-score of 0.7326

Li et al. (2015) [86] Automated extraction of
medication discrepancy

Matching of drug names
with their attributes from a
prescription list and
confirming it by means of
co-location information

Performed well in identifying the
medical discrepancies

Veena et al.
(2021) [87]

RE between different
clinical words

Path similarity analysis on
the terms extracted by
scraping and POS tagging

Successfully converted the data
into a classified form

Mahendran et al.
(2021) [70]

Adverse drug event
extraction on 2018 n2c2
dataset

BFS based on the
co-location information
between the drug and the
non-drug entity types

Left-only rule-based approach
(macro-average F1-score: 0.83)
performed the best amongst other
rule-based models
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Table A4. Summary of the machine learning-based approaches for clinical RE.

Publication Task Methods Performance

Roberts et al. (2011) [39]

2010 i2b2/VA challenge
on concepts, assertions,
and relations in clinical
text [38]

SVM-based supervised
learning algorithm

Best performance with an
F1-score of 0.737

Sahu et al. (2016) [76] Clinical RE on 2010 i2b2
dataset

Domain invariant CNN on
multiple features

Decent performance: filter
combination of [4, 6]
performed the best (F1-score:
0.7116) amongst CNNs

Singhal et al. (2016) [79] Disease-mutation RE on
biomedical texts

C4.5 decision trees on
various features

State-of-the art performance
thus far; F1-score of 0.880 and
0.845 on prostate and lung
disease mutations

Lv et al. (2016) [95] Clinical RE on 2010 i2b2
dataset

Deep autoencoder-based
model and sparse deep
autoencoder-based model

Sparse deep
autoencoder-based model
performed better with an
F1-score above 80%

Lin et al. (2017) [80]
Disorder Recognition in
the 2013 CLEF task-1
dataset

multi-label structured
SVM

Improved Performance:
F1-score: 0.7343, i.e., 0.1428
more than the baseline
BIOHD1234 scheme.

Mondal et al. (2017) [73]
Clinical RE based on the
categories of medical
concepts

Feature-oriented
SVM-based supervised
learning

Better performance (F1-score:
0.86) than the rule-based
approach (F1-score: 0.79)

Kim et al. (2018) [72] Clinical RE for biological
pathway

Node2vec to learn the
features from texts in
networks

Best performance for type 2
diabetes pathway

Munkhdalai et al.
(2018) [96]

Clinical RE towards drug
surveillance

SVM model and a deep
learning-based LSTM
model

SVM performed better (89.1%
F1-score) than all of the LSTM
models

Li et al. (2019) [97] Clinical RE on 2010 i2b2
dataset

NNs to model the shortest
dependency path between
entities and sentences

Resulted in an improved
performance with an F1-score
of 74.34%

Minard et al. (2019) [81] Clinical RE on 2010 i2b2
dataset Multi-class SVM

Poor performance (F1-score:
0.70) compared with the
previous models

Christopoulou et al.
(2020) [79]

Extraction of the adverse
drug events and
medications relations

An ensemble deep
learning method

Achieved a micro-averaged
F1-score of 0.9472 and 0.8765
for RE and end-to-end RE,
respectively

Hasan et al. (2020) [82] Clinical RE on 2010 i2b2
dataset

Deep learning methods
such as CNN, GCN,
GCN-CDT, ResNet, and
BiLSTM

BiLSTM performed the best
with a nine-class F1-score of
0.8808 and a six-class F1-score
of 0.8894

Mahendran et al.
(2021) [70]

Adverse drug event
extraction on 2018 n2c2
dataset

Sentence-CNN and
segment-CNN

The CNN models did not
perform better (micro-average
F1-score: 0.78 and
macro-average F1-score: 0.77)
than the other models
mentioned
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Table A5. Summary of the language model-based approaches for clinical RE.

Publication Task Methods Performance

Lin et al. (2019) [77] Temporal RE in clinical
domain

Pretrained domain-specific
as well as fine-tuned BERT

State-of-the art performance;
0.684 F1-score for in-domain
texts and 0.565 F1-score for
cross-domain texts

Alimova et al.
(2020) [83]

Drug–disease RE from
biomedical and clinical
texts

BERT, BioBERT and
Clinical BERT and Random
Forest

The BERT models performed
much better on the MADE
corpus

Wei et al.
(2020) [100]

RE on two clinical corpus:
2018 n2c2 dataset and 2010
i2b2 dataset

Fine-tuned and
feature-combined BERT
along with some deep
learning methods

MIMIC fine-tuned BERT
performed the best: F1-score of
0.9409 and 0.7679 on the n2c2
and the i2b2 datasets,
respectively

Mahendran et al.
(2021) [70]

Adverse drug event
extraction on 2018 n2c2
dataset

BERT (cased and uncased),
BioBERT, and Clinical
BERT along with other
methods

All of the BERT models
performed the best, with a
micro-averaged F1-score of 0.94
and a macro-averaged F1-score
of 0.93

Table A6. Summary of the unsupervised learning approaches for clinical RE.

Publication Task Methods Performance

Quan et al.
(2014) [101]

Protein–protein interactions
and gene–suicide association
extraction

Clustering based on
dependency and phased
structure parsing

Performed moderately but the
proposed semi-supervised model
surpassed its performance

Alicante et al.
(2016) [102]

Domain-relevant entities and
RE from Italian clinical
records

Model Based, K-Means,
and Hierarchical
Clustering for pattern
discovery

Promising performance to
introduce a semi-automatic
relation labelling
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