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Abstract: The performance of automatic speech recognition (ASR) may be degraded when accented
speech is recognized because the speech has some linguistic differences from standard speech.
Conventional accented speech recognition studies have utilized the accent embedding method, in
which the accent embedding features are directly fed into the ASR network. Although the method
improves the performance of accented speech recognition, it has some restrictions, such as increasing
the computational costs. This study proposes an efficient method of training the ASR model for
accented speech in a domain adversarial way based on the Domain Adversarial Neural Network
(DANN). The DANN plays a role as a domain adaptation in which the training data and test data
have different distributions. Thus, our approach is expected to construct a reliable ASR model for
accented speech by reducing the distribution differences between accented speech and standard
speech. DANN has three sub-networks: the feature extractor, the domain classifier, and the label
predictor. To adjust the DANN for accented speech recognition, we constructed these three sub-
networks independently, considering the characteristics of accented speech. In particular, we used
an end-to-end framework based on Connectionist Temporal Classification (CTC) to develop the
label predictor, a very important module that directly affects ASR results. To verify the efficiency
of the proposed approach, we conducted several experiments of accented speech recognition for
four English accents including Australian, Canadian, British (England), and Indian accents. The
experimental results showed that the proposed DANN-based model outperformed the baseline
model for all accents, indicating that the end-to-end domain adversarial training effectively reduced
the distribution differences between accented speech and standard speech.

Keywords: accented speech recognition; speech recognition; end-to-end domain adversarial training;
domain adversarial neural network; domain adaptation; connectionist temporal classification

1. Introduction

The performance of automatic speech recognition (ASR) has been continuously im-
proved because of neural network-based technological developments [1,2]. However, ASR
performance may be considerably reduced when recognizing abnormal speech such as
noisy, emotional, or accented speech. In particular, accented speech is very difficult to
recognize because it has some linguistic differences from standard speech in terms of
phonetic, morphological, and syntactic differences. Thus, many studies have proposed
some methods to improve the performance of accented speech recognition.

The initial approaches for accented speech recognition were focused on adaptations
from standard speech to accented speech. Several adaptation techniques such as maximum
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a posteriori (MAP) [3] and maximum likelihood linear regression (MLLR) [4] were mainly
used up to the early 2010s.

In recent years, neural network-based approaches have been widely used for accented
speech recognition. The most representative approach is accent embedding, in which
accent embedding features are directly fed into the ASR model. The authors of [5] built
a standalone network and a multi-task learning network to perform ASR and accent
classification simultaneously. The standalone network classified the type of accent and
produced frame-level accent embedding features. The output features of the standalone
network were then fed into the multi-task learning network as extra input feature vectors.
The authors of [6] advanced the approach by applying an end-to-end method to the ASR
model. In the real world, it is difficult to collect a large amount of accented speech data to
train deep neural networks, which is one of the challenges of accented speech recognition.
The domain adaptation technique can be a solution to this problem [7]. This technique aims
to enhance less-trained target domain models that are constructed with a small amount
of target domain data by utilizing the information learned from the source domain data
that can be collected abundantly. In accented speech recognition, standard speech can
be regarded as the source domain, whereas accented speech is considered as the target
domain. This study applied the Domain Adversarial Neural Network (DANN) as a domain
adaptation technique for accented speech recognition. It has been widely used for computer
vision studies [8]. The goal of DANN is to learn domain-invariant features to reduce the
distribution differences between the source and target domains with the help of domain
adversarial training. In contrast to accent embedding, DANN does not require extra input
features because the ASR model can be trained using only filter-bank features, which are the
basic features of ASR. In addition, this study proposed an end-to-end domain adversarial
training framework for accented speech recognition.

This study is organized as follows. Conventional accented speech recognition studies
and their drawbacks are discussed in Section 2. In Section 3, the main method proposed
in this study is explained. In Section 4, the experimental setup and results are reported.
Finally, the conclusions and further research work are discussed in Section 5.

2. Conventional Studies on Accented Speech Recognition

Up to the early 2010s, several adaptation techniques such as MAP and MLLR were
mainly adopted for accented speech recognition [3,4]. These techniques aimed to adapt
the standard ASR model to accented speech data. Although the approaches successfully
improved accented speech recognition performance, they operated on statistical pattern
models such as the Gaussian Mixture Model (GMM)–Hidden Markov Model (HMM),
which is a classic approach [9–11]. Thus, they have rarely been used in current studies that
focus on neural network modeling.

The authors of [5] proposed a multi-task learning network-based approach that per-
forms ASR and accent classification simultaneously. They built a standalone network to
produce accent embedding features, which were fed into the multi-task learning network,
expecting that asking (accent classification) and telling (accent embedding) the network
would improve the performance. In [6], the authors improved this approach by changing
the inner structure of the ASR model from two time delay neural network (TDNN) [12]
layers to a combination of two convolutional neural network (CNN) layers and four gated
recurrent unit (GRU) [13] layers.

The conventional approaches based on accent embedding build a multi-task learning
network and a standalone network. Figure 1 describes the model architecture proposed
in [5]. A multi-task learning network has two sub-networks ((A) and (B)), and each sub-
network performs different functions. As shown in this figure, the acoustic model (A) is
combined with the accent classifier (B), and these sub-networks share two TDNN layers.
Based on two sub-networks, the multi-task learning network performs phone recognition
and accent classification simultaneously. Next, the standalone network (C) produces
accent embedding features, which are fed into the multi-task learning network. Thus,
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mel-frequency cepstral coefficients, i-vectors, and accent embedding features are used as
input features in this approach.
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Figure 1. Architecture of the multi-task learning network and the standalone network in the accent embedding method.
(A) Acoustic model; (B) Accent classifier; (C) Standalone network.

The accent embedding method is helpful for improving ASR performance; however,
it has some limitations. To output the accent embedding features, the standalone network
needs to be built and trained independently. Moreover, the standalone network should
be constructed sophisticatedly, as ASR performance is considerably affected by the accent
classification accuracy of the network.

Accent classification accuracy has been reported according to the model specifications,
as shown in Table 1. When the model has more nodes, the accuracy becomes higher.
In other words, to achieve stable classification accuracy, a complex model that has high
computational costs and large memory space is required.

Table 1. Accent classification accuracy of a standalone network.

Model Specifications Accent Classification Accuracy

TDNN, 7 layers, 100-d nodes 78.4%
TDNN, 7 layers, 200-d nodes 78.4%
TDNN, 7 layers, 300-d nodes 80.0%

TDNN, 7 layers, 1024-d nodes 82.6%

Furthermore, a number of parameters should be estimated in the multi-task learning
network because additional feature vectors are added into the network. To accommodate
these parameters, the network should be complex, similar to the standalone network.
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3. Accented Speech Recognition Based on End-to-End Domain Adversarial Training
3.1. Domain Adaptation for Accented Speech Recognition

Deep neural networks require a large number of training data to construct the ASR
model. In standard speech recognition tasks, a lot of normal speech data are available,
while accented speech data are difficult to collect. Thus, it is difficult to construct the ASR
model for accented speech recognition using only accented speech data. Furthermore,
fully depending on standard speech data (i.e., non-accented data) for model training may
degrade the ASR accuracy when accented speech is inputted, as the acoustic characteristics
of standard speech data are quite different from those of accented speech data. Domain
adaptation can be a solution for this problem.

Domain adaptation is a technique used to train models when the training and test
data domains are mismatched [7]. This technique utilizes the well-organized information
provided by the source domain data to handle the target domain data. Thus, it aims to
obtain models that retain the characteristics of the target domain data from source domain
models that are well trained with a large number of source domain data. With the help of
domain adaptation, the distribution differences between the source and target domains are
reduced. Figure 2 shows the effect of domain adaptation. Through the domain adaptation,
the distance between the source and target domains becomes closer. In other words, the
districts of the two domains are almost integrated.
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Figure 2. Effect of domain adaptation.

In accented speech recognition, standard speech data can be regarded as the source
domain data, whereas accented speech data are considered as the target domain data. The
main idea of this study was to construct a reliable model for accented speech recognition
with a small number of accented speech data from a standard ASR model by using the
domain adaptation technique.

3.2. Domain Adversarial Neural Network

A representative domain adaptation technique in neural network-based model train-
ing is DANN, which was first proposed in the field of computer vision [8]. Some speech
recognition studies then adopted the technique to handle noisy speech data [14]. Compared
with accent embedding, which was addressed in Section 2, DANN requires a lower compu-
tational cost, as it can be trained using only filter-bank features without the generation of
extra features. In particular, DANN performs more sophisticated training procedures con-
sisting of feature learning, domain adaptation, and label prediction, each of which is jointly
unified within the architecture. Figure 3 shows the architecture of DANN, which comprises
three sub-networks: the feature extractor, the domain classifier, and the label predictor. In
this figure, the green-colored, red-colored, and blue-colored parts are the feature extractor
G f (x; θ f ), the domain classifier Gd( f ; θd), and the label predictor Gy( f ; θy), respectively.
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First, the feature extractor aims to extract some useful features from the input data x
to train the model. These features are then forwarded to the domain classifier and the label
predictor. According to the backpropagation mechanism, the extractor reflects the gradient
of the domain classifier ϑLd

ϑθd
and the label predictor ϑLy

ϑθy
. Afterward, the extractor adjusts

the features to be domain-invariant in a number of training steps.
The domain classifier determines whether the domain of the input data is the source

domain or the target domain. The goal of DANN is to reduce the distribution differences
between the source and target domains, and it is achieved by making it difficult to distin-
guish between the source and target domains. The gradient reversal layer (GRL) plays an
important role in this step. The GRL is positioned at the bottom of the domain classifier
and reverses the gradient ϑLd

ϑθd
by multiplying it by a scalar λ during backpropagation. With

the help of the GRL, the feature extractor receives the reversed gradient −λ ϑLd
ϑθ f

. Thus,
the feature extractor can make the features become domain-invariant in the subsequent
training steps. The GRL is only activated during backpropagation and it does not change
any parameters during forward propagation.

Lastly, the label predictor predicts a label ŷ and calculates the loss value between
the predicted label and the original label y. The gradient ϑLy

ϑθy
is also backpropagated into

the bottom layers of the model. In summary, DANN has two main objects: to predict
the label correctly and to reduce the distribution between the source and target domains.
These objects are achieved by minimizing the loss of the label predictor (given by (1)) and
maximizing the loss of the domain classifier (given by (2)).

θy = argminθy E
(

θ f , θy, θd

)
(1)

θd = argmaxθd E
(

θ f , θy, θd

)
(2)

3.3. End-to-End Domain Adversarial Training Based on DANN for Accented Speech Recognition

This study proposes an efficient accented speech recognition approach using DANN
to handle domain adaptation. In particular, we propose an end-to-end domain adver-
sarial training framework targeting accented speech recognition. Figure 4 illustrates the
model training framework proposed in this study. In the figure, the green-colored, red-
colored, and blue-colored parts are the feature extractor, the domain classifier, and the label
predictor, respectively.
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3.3.1. Feature Extractor

We constructed the feature extractor using CNN, which is a useful neural network
for learning two-dimensional data while maintaining information. The general features
used in ASR are two-dimensional mel-spectrograms. Thus, in this study, mel-spectrograms
extracted from raw speech data were used as input features, then the features were used
to train four CNN layers. When the mel-spectrogram features were fed into the feature
extractor, a filter skimmed through the features in one stride. The filter moved forward
step-by-step and produced a feature map that had the weights of the parameters calculated
by the convolution between the mel-spectrogram features and the filter.

The simplified procedure of feature mapping is illustrated in Figure 5. If the CNN
has many layers, its output size is drastically reduced because each layer receives the
feature map of the previous layer and performs convolution again. To prevent drastic size
reduction, zeros are padded into the feature map to maintain the size of the feature map.
For each convolutional layer, the Gaussian error linear unit [15] is used as an activation
function to receive the parameter weights and produce output. After passing through
the four CNN layers, one fully connected layer changes the final two-dimensional CNN
outputs into one-dimensional feature vectors. These converted features are fed into the
domain classifier and the label predictor. Meanwhile, the feature extractor adjusts the
features to be domain-invariant in a number of training steps. Thus, it finally extracts
useful features characterizing the target accented speech.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 4. Model training framework for end-to-end domain adversarial training based on DANN. 

3.3.1. Feature Extractor 
We constructed the feature extractor using CNN, which is a useful neural network 

for learning two-dimensional data while maintaining information. The general features 
used in ASR are two-dimensional mel-spectrograms. Thus, in this study, mel-spectro-
grams extracted from raw speech data were used as input features, then the features were 
used to train four CNN layers. When the mel-spectrogram features were fed into the fea-
ture extractor, a filter skimmed through the features in one stride. The filter moved for-
ward step-by-step and produced a feature map that had the weights of the parameters 
calculated by the convolution between the mel-spectrogram features and the filter. 

The simplified procedure of feature mapping is illustrated in Figure 5. If the CNN 
has many layers, its output size is drastically reduced because each layer receives the fea-
ture map of the previous layer and performs convolution again. To prevent drastic size 
reduction, zeros are padded into the feature map to maintain the size of the feature map. 
For each convolutional layer, the Gaussian error linear unit [15] is used as an activation 
function to receive the parameter weights and produce output. After passing through the 
four CNN layers, one fully connected layer changes the final two-dimensional CNN out-
puts into one-dimensional feature vectors. These converted features are fed into the do-
main classifier and the label predictor. Meanwhile, the feature extractor adjusts the fea-
tures to be domain-invariant in a number of training steps. Thus, it finally extracts useful 
features characterizing the target accented speech. 

 
Figure 5. Simplified procedure of CNN feature mapping. Figure 5. Simplified procedure of CNN feature mapping.



Appl. Sci. 2021, 11, 8412 7 of 13

3.3.2. Domain Classifier

The domain classifier plays a role in deciding whether the input data are the target
(accented speech) or not. This binary classification problem does not require complex
algorithms; hence, we used a simple deep neural network (DNN) architecture with four
layers to construct the domain classifier, with the expectation that it would provide suffi-
cient conditions for binary classification. The features learned from the feature extractor
passed through four DNN layers, then the domain label d was outputted from the domain
classifier. Afterward, the domain loss Ld was calculated by the difference between the
predicted domain and original domain using the cross-entropy loss function. The gradient
ϑLd
ϑθd

was backpropagated into the downstream of the model, and the GRL reversed the

gradient and multiplied it by a scalar λ, delivering the reversed gradient −λ ϑLd
ϑθ f

to the
feature extractor. Thus, the feature extractor could learn accent-invariant features in the
next training steps.

3.3.3. Label Predictor

The label predictor is a very important module, as it actually recognizes the accented
speech data. This module aims to predict the character label among 28 labels (26 English
characters <A–Z>, <apostrophe>, and <space>) for features forwarded from the feature
extractor. The correctness of predicted labels directly affects the ASR results. In order to
simplify the label prediction procedures and improve the accuracy, we used the end-to-
end framework.

There are two end-to-end ASR approaches: connectionist Temporal Classification
(CTC) [16] and Listen, Attend and Spell (LAS) [17]. Of these two approaches, we used CTC
because of two reasons. First, CTC can be trained more efficiently and conveniently than
LAS. CTC is a kind of loss function, and no weights are required to train it. Meanwhile, LAS
requires weights to train a joint model comprising the encoder, the attention mechanism,
and the decoder. Second, LAS has a long delay in decoding the output sequence, as it does
not proceed to the alignment and decoding processes until all the encoding results have
been generated. Thus, LAS is not suitable for streaming applications. In contrast, CTC has
a short delay because it can begin decoding the output sequence once an encoding result
has been received. For these reasons, this study concentrates on CTC for constructing the
label predictor.

The label loss Ly is calculated by the difference between the predicted label and the

original label using the CTC loss function. The gradient ϑLy
ϑθy

is then backpropagated down-
stream from the model. In the next training step, the feature extractor uses the gradient
information to correctly predict the label. Unlike the domain classifier, we constructed
the label predictor using bi-directional GRU (BiGRU) layers because recognizing speech
requires a more complex algorithm than classifying the domain.

The Recurrent Neural Network (RNN) is known as useful model for handling time
series data such as speech data, but it has a drawback. When the time step becomes longer,
RNN cannot remember the information inputted a long time ago, as long-term information
fades so that recent information can be learned. In this case, the model cannot be perfectly
trained for long time series data and it cannot correctly output the front parts of the label
sequence. To solve this problem, some advanced RNN models have been introduced. The
most famous models are LSTM [18] and GRU [13]. Both LSTM and GRU can remember
long-term memory, but they have a difference in complexity. GRU has a simpler structure
than LSTM, so it requires fewer parameters to train the model. LSTM has two kinds of
states: the hidden state and the cell state; GRU combines the two states. In addition,
GRU has a smaller number of gates than LSTM. GRU has two gates (reset and update),
whereas LSTM requires three gates (forget, input, and output). Thus, this study adopted a
GRU-based model called BiGRU to build the label predictor. BiGRU is an advanced GRU
that considers the context bi-directionally both from past to future and from future to past,
thus enhancing speech recognition accuracy.
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4. Experiments and Results

We conducted several experiments to verify the efficiency of the proposed accented
speech recognition approach. The experimental setup is described first, then the experi-
mental results are reported.

4.1. Experimental Setups
4.1.1. Speech Corpus

In this study, all experiments were conducted using the Common Voice corpus [19],
which is an open-source speech database released by Mozilla in 2019. As this corpus
consists of a significant amount of well-refined speech data, it is widely used for various
speech recognition tasks [20]. In particular, this corpus can be effectively utilized in the
field of accented speech recognition because speaker information such as age, gender,
language, and accent type are provided. The Common Voice corpus has speech data for 60
languages ranging from widely used languages such as English and Spanish to relatively
unfamiliar languages such as Basque and Welsh. This study targeted English accents, using
speech data from five English accents including US (US accent), AU (Australian accent), CA
(Canadian accent), EN (British English (England) accent) and IN (Indian accent). Hereafter,
the accent names are denoted by their respective abbreviations for convenience. For domain
adaptation, US was determined as the source domain, while the other four accents were
regarded as the target domains, because the quantity of US data is much larger than that of
other accents. All the speech files were pre-processed for the experiments. The downloaded
speech files (.mp3) were converted into wav format and sampled at 16,000 Hz. The files
were then divided into the training set (Table 2), the validation set (Table 3), and the test set
(Table 4).

Table 2. Summary of the training set.

Dataset Region Number of Files Hours

US-160k US 160,000 196
AU-20k Australia 20,000 26
CA-20k Canada 20,000 25
CA-32k Canada 32,000 43
EN-20k England 20,000 24
EN-40k England 40,000 53
EN-60k England 60,000 77
EN-80k England 80,000 101

EN-100k England 100,000 126
IN-20k India 20,000 26
IN-40k India 40,000 57

Table 3. Summary of the validation set.

Dataset Region Number of Files Hours

AU-val Australia 2000 3
CA-val Canada 2000 3
EN-val England 2000 3
IN-val India 2000 3

Table 4. Summary of the test set.

Dataset Region Number of Files Hours

AU-test Australia 2000 3
CA-test Canada 2000 3
EN-test England 2000 3
IN-test India 2000 3



Appl. Sci. 2021, 11, 8412 9 of 13

There were no duplicated files in these three sets. The training set was used to train the
ASR model. The names of the datasets in Table 2 indicate the accent type and the number
of files. For example, AU-20k indicates an Australian accent dataset with 20,000 files. The
validation set was used to calibrate the hyperparameters of the ASR model. It played a role
in enhancing the credibility of the experimental results. To obtain reliable experimental
results, the hyperparameters needed to be calibrated in detail using the validation set.
Finally, the ASR model was evaluated using the test set.

4.1.2. Hyperparameters

To obtain the best experimental results, the hyperparameters were calibrated in detail
using the validation set. The hyperparameters were heuristically determined by the system
developers, whereas the feature parameters were calculated within the model and they
can be determined from the data. In deep learning, the representative hyperparameters
include the learning rate, epoch, batch size, and dropout rate.

To find the lowest loss L, the weights W were updated with a learning rate η. The
weight wt+1 in the next time step was updated by subtracting the multiplication of gradient
ϑL
ϑw and η from the current weight wt, as described in (3). The weights were optimized by
the Adam optimizer [21].

wt+1 = wt − η × ϑL
ϑw

(3)

Setting an appropriate learning rate is very important, as the learning rate affects
variations in the loss value and helps to find the global minimum loss value. After conduct-
ing several experiments by calibrating the learning rate, this study determined the most
appropriate learning rate to be 0.0001.

Epoch means a count of how often the total training samples have been passed forward
and backward through the model. As each epoch proceeds, the loss value is expected to
gradually decrease. However, there is a period in which the model does not show any
significant improvement. Thus, an appropriate number of epochs needs to be determined
when investigating the improvement in performance. This study confirmed that 100 epochs
were sufficient to achieve the lowest loss.

Batch size refers to the number of training samples that are sequentially entered into
the training stage, and it is generally set to a power of two such as 2, 4, 8, 16, 32, etc. In
general, a larger batch size makes the training faster but it requires more memory for
calculation. Thus, the batch size should be determined considering the memory capacity
of the computer. In this study, the batch size was empirically set to 32. Thus, 32 training
samples were in a single batch.

Dropout is a type of regularization technique [22]. It helps to prevent the overfitting
problem, which arises when the network excessively fits into the training data and thus
fails to correctly recognize test data. Overfitting problem often occurs when the network
has a large capacity and the amount of training data is too small to meet the capacity.
Hence, this issue needs to be handled in the accented speech recognition task, where a
smaller amount of accented speech data have been provided. Dropout deactivates some
neurons (nodes) to reduce the capacity of the network, making the network simpler. This
operation is performed according to a dropout rate, which is the ratio of the deactivated
nodes to all nodes. In this study, the dropout rate was empirically set to 0.1.

The last hyperparameter in this study was a domain adaptation parameter λ used
in DANN. When the gradient of the domain classifier ϑLd

ϑθd
is backpropagated into the

downstream of the ASR model, the gradient is multiplied by λ, which can be set between 0
and 1. The parameter controls the influence of domain adversarial training. A higher value
makes the effect of the domain adversarial training more dominant. However, an excessive
dependence on domain adversarial training may lead to performance degradation. Thus,
the parameter should be set precisely via experiments. In this study, λ was empirically set
to 0.01.
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4.2. Experimental Results

To verify the efficiency of the proposed approach, baseline and DANN models were
built. The baseline model performed standard end-to-end speech recognition, and it
comprised four CNN and four BiGRU layers, as shown in Figure 6. The DANN model was
constructed according to Figure 4, illustrated in Section 3.3.
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The performance of the two model types was first investigated. As described in Table 5,
two baseline models were compared with the DANN model. Baseline-src was trained using
only the dataset of the source domain (US-160k), whereas baseline-src-tgt was trained using
both the datasets of the source domain (US-160k) and each target domain (AU-20k, CA-20k,
EN-20k, and IN-20k). DANN was also trained using the same datasets as baseline-src-tgt.
The performance of the models was assessed using two measures: the character error rate
(CER) and the word error rate (WER), which were measured by the edit distance based on
the Levenshtein algorithm [23] between the predicted labels Ŷ = {ŷ1, ŷ2, . . . , ŷn} and the
original labels Y = {y1, y2, . . . , yn}.

Table 5. Performance (CER/WER) comparison between the baseline and DANN models.

Accent
Model

Baseline-src Baseline-src-tgt DANN

AU 28.85%/65.95% 25.09%/61.06% 24.22%/59.80%
CA 14.76%/43.16% 13.77%/40.68% 13.55%/40.15%
EN 25.49%/61.53% 24.43%/59.78% 21.60%/54.67%
IN 36.41%/76.03% 30.52%/69.41% 28.83%/66.49%

The results are presented in pairs of CER and WER (CER/WER) in Table 5. As shown
in the table, baseline-src-tgt achieved a better performance than baseline-src for all accents.
Although the amount of target domain data was much smaller than that of the source
domain data, the model applying the target domain data was effective for recognizing the
test data corresponding to the target domain. Moreover, compared with the two baseline
model types, DANN achieved significant performance improvements for all accents. In
particular, compared with baseline-src-tgt, the proposed DANN approach showed a notable
performance for EN and IN accents, with WER reductions of approximately 5% and 3%,
respectively. Meanwhile, it had a very slight performance improvement for the CA accent,
with a WER reduction of 0.53%. These results indicated that the linguistic differences
between the source and target domain accents affected the performance. The source
domain accent (US) has linguistically more similar characteristics to CA than the EN
and IN accents. As a result, domain adversarial training provides better conditions for
recognizing target accents that are linguistically different from the source domain accents.

Although our proposed approach demonstrated superior performance compared with
the baseline, it is necessary to examine whether the results are sufficiently meaningful. In
particular, the CER and WER are quite high for practical purposes. In general, standard
speech recognition systems providing stable performance use vast amounts of training data.
The study in [16], which was based on end-to-end speech recognition, used over 10,000 h
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of standard speech data to train acoustic models. However, it is a challenge to construct
reliable models for different accent types, as it is difficult to collect a sufficient amount
of speech data for each target accent. For this reason, most studies have concentrated
on finding efficient methods under the conditions of limited amounts of accented speech
data. In this study, we used approximately 200 h of source domain data and 25 h of target
domain data to train the models.

Nevertheless, it is necessary to compare the performance of our approach with that
of conventional studies. We investigated the results given in [6], in which the accent
embedding technique, known as the most representative approach for accented speech
recognition, was adopted; the end-to-end method was applied for training acoustic models;
and the Common Voice corpus was used for evaluation. We selected the Indian accent for
our performance comparison as it was the only target accent for which performance was
reported in both studies. In the conventional study, the WER of the Indian accent was 52%,
which outperformed our approach (63.56%). However, a direct comparison may not be
meaningful, as the two studies conducted experiments on different experimental setups in
terms of the training dataset and hyperparameters. For this reason, we concentrated on
relative improvements in the baseline system. The baseline performance of the conventional
study was 55.2%, providing a relative improvement of 6.15%. On the other hand, our
approach achieved a relative improvement of 14.35% compared with the baseline. These
results show that our proposed approach improved the baseline system more efficiently
with less computational cost compared with the conventional study.

The next experiment was conducted to investigate the effect of the amount of target
domain data on performance improvement. The performance was observed when larger
amounts of target domain data were applied to the DANN model. The model was called
DANN-inc and it was compared with the DANN model (DANN) shown in Table 5. The
Common Voice corpus provides different amounts of speech files according to accents.
For a fair evaluation, we balanced the amount of data for different accent types when
constructing the DANN-inc model. As a result, the amount of data for each target accent
was set to about 40k. Table 6 summarizes the results. When more target domain data
were used to train the DANN model, the model’s performance was significantly improved
for most accents. Among the four accent types, the IN accent demonstrated the most
significant improvement, with a WER reduction of approximately 3%.

Table 6. Performance (CER/WER) of DANN models by adding more target domain data.

Accent
Model

DANN DANN-inc

AU 24.22%/59.80% 22.72%/57.38%
CA 13.55%/40.15% 13.63%/40.02%
EN 21.60%/54.67% 19.96%/52.53%
IN 28.83%/66.49% 26.24%/63.56%

Although Table 6 shows that the amount of target domain data affected the accuracy
of DANN, it is difficult to say that the experiments perfectly observe the tendency, due to
the limited amount of data for some accents. The final experiment focused on investigating
the effect of the amount of target domain data in detail. This experiment was conducted
using only the speech files of EN, which is the accent with the largest amount of target
domain data among the four target accents. Five models were constructed, ranging from
DANN-EN1 to DANN-EN5, while varying the amount of EN accent data (20k, 40k, 60k,
80k, and 100k for EN1, EN2, EN3, EN4, and EN5, respectively). In all the DANN-EN
models, the amount of source domain (US) data was 160k. For example, DANN-EN3
was trained with US-160k and EN-60k data. Table 7 presents the performance of the five
models. As the amount of target domain data increased, the accuracy of accented speech
recognition consistently improved. In particular, DANN-EN5 achieved a WER reduction of
about 9% in comparison with DANN-EN1. This result shows the possibility that collecting
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a larger amount of target accent data will improve the performance of accented speech
recognition, enhancing the correctness of DANN models.

Table 7. Performance (CER/WER) of DANN models according to the amount of EN accent data.

Accent
Model

DANN-EN1 DANN-EN2 DANN-EN3 DANN-EN4 DANN-EN5

EN 21.60%/54.67% 19.96%/52.53% 18.65%/49.91% 17.15%/47.32% 16.35%/45.68%

5. Conclusions

This study proposed an efficient accented speech recognition approach using end-to-
end domain adversarial training of neural networks based on DANN. The goal of DANN is
to learn domain-invariant features to reduce the distribution differences between the source
and target domains. In this study, we proposed an efficient DANN model architecture to
carefully handle accented speech recognition. Each of the three sub-networks of DANN was
constructed with appropriate neural networks considering the characteristics of accented
speech data. CNN was used for the feature extractor, DNN for the domain classifier, and
BiGRU for the label predictor. In particular, we used a CTC-based end-to-end framework to
construct the label predictor, which is a very important module in DANN, as the accuracy
of the predicted labels directly affects the ASR results.

To verify the efficiency of the proposed approach, we performed several experiments
of accented speech recognition using the Common Voice corpus for four English accents
(Australian, Canadian, England, and Indian accents). For all accents, the proposed DANN
model outperformed the baseline model constructed according to a standard end-to-end
speech recognition scheme. In addition, in experiments performed with varying amounts
of target accent data, we observed that the accuracy of the proposed model improved
significantly as the amount of the target domain data increased.

In a further study, we will investigate an efficient DANN approach for an unsupervised
accented speech recognition task in which data labels are not required. We expect that
this further study will help to make larger datasets because unlabeled accented speech
data are easier to collect. Furthermore, we will utilize the transformer architecture used
for end-to-end speech recognition to enhance the end-to-end domain adversarial training.
In particular, since the transformer-based decoder is applicable to the label prediction
module of DANN, we expect that this further study will greatly improve accented speech
recognition performance.
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