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Abstract: Measuring the dissimilarity between two observations is the basis of many data mining and
machine learning algorithms, and its effectiveness has a significant impact on learning outcomes. The
dissimilarity or distance computation has been a manageable problem for continuous data because
many numerical operations can be successfully applied. However, unlike continuous data, defining
a dissimilarity between pairs of observations with categorical variables is not straightforward. This
study proposes a new method to measure the dissimilarity between two categorical observations,
called a context-based geodesic dissimilarity measure, for the categorical data clustering problem.
The proposed method considers the relationships between categorical variables and discovers the
implicit topological structures in categorical data. In other words, it can effectively reflect the
nonlinear patterns of arbitrarily shaped categorical data clusters. Our experimental results confirm
that the proposed measure that considers both nonlinear data patterns and relationships among the
categorical variables yields better clustering performance than other distance measures.

Keywords: geodesic distance; categorical data; mutual k-nearest neighbor graph; association-based
dissimilarity; Gower distance

1. Introduction

The measurement of the distance or dissimilarity between two data observations
plays an important role in clustering. In the literature, various distance measures have
been proposed for continuous data. The most widely used distance measure in practice
is the Euclidean distance [1]. For instance, K-means clustering is one of the easiest and
classical methods that use the Euclidean distance. However, the Euclidean distance cannot
work when the dataset is composed of categorical variables. Increasingly, the business
intelligence community is overwhelmed with a large collection of categorical data such as
those collected from the banks, health sector, web-log, and biological sequences [2]. Banking
sector or health sector data primarily contain categorical variables such as sex, smoking,
and marital status. Clustering categorical data into meaningful groups is a challenging
problem because it is difficult to define the distance measures that are efficiently reflected
in the data characteristics.

In this paper, we propose the context-based geodesic dissimilarity (CGD) measure, which
is useful for clustering categorical data that exhibit (1) correlations and (2) the manifold
structures in the dataset. The proposed method considers the correlation among the
categorical variables using a concept of comparing conditional probability distributions.
Additionally, the manifold structures in the dataset are accessed by using a mutual k-
nearest neighbor graph, starting with the early work of Tenenbaum et al. [3]. Therefore,
the proposed dissimilarity measure can improve clustering performance by considering
the relationship information among categorical variables and the intrinsic patterns and
arbitrary shapes of the categorical data clusters.

The rest of this paper is organized as follows. Section 2 provides a state-of-the-art
literature review on the topic of categorical data clustering. Section 3 explains the materials
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and methods for the proposed context-based geodesic dissimilarity measure in three
main phases. Section 4 presents the hyper-parameter setting and simple examples of key
components in the proposed method and the experimental outputs using real-world data
to show the characteristics of the proposed measure and compare it with the existing
measures. Section 5 presents the discussion of comparison results and additional findings
in the experiments. Section 6 shows our concluding remarks.

2. Literature Review

Categorical variables can be classified into nominal and ordinal variables. Nominal
variables have two or more values with no type of natural order, whereas ordinal variables
have two or more values with natural ordering, but the scale of difference is not defined.
The simplest distance measure for categorical data is the Hamming distance [4]. This
distance measure defines the distance between two categorical observations as the number
of mismatched categorical values. The Hamming distance is easy to understand and conve-
nient for computation but, in the case of ordinal variables, the Hamming distance ignores
the characteristics of the natural order of values. The Gower’s dissimilarity coefficient
(GD) [5] handles both nominal and ordinal variables but in different manners. The dissim-
ilarity between two nominal values can be computed by the mismatch (1) or match (0),
which is identical to the Hamming distance. For two ordinal values, the scale of difference
should be defined. To define the scale of difference, the original ordinal values must be
replaced by their ranks using the normalized rank method. The ranks obtained using the
normalized rank method are treated as continuous values and the dissimilarity between
two ranks is computed by the Manhattan distance method. However, the main drawback
of the Hamming distance and the Gower’s dissimilarity coefficient is that they are too
simplistic to consider complex relationships among the categorical variables because it
gives equal weights to all matches and mismatches.

One possible well-known way to cluster a categorical dataset is using the K-mode
algorithm [6], which is an extension of the K-means algorithm. It is the partition-based clus-
tering algorithm and uses a simple matching dissimilarity function such as the Hamming
distance and the Gower dissimilarity coefficient instead of using the Euclidean distance.
Modes are used to represent centroids, and a frequency-based method is used to find the
centroids in each iteration of the algorithm. The K-mode, an eminent algorithm, works well
for categorical datasets, whereas the K-means algorithm does not work well for categorical
datasets. It is famous for simplicity and speed and is linearly scalable with respect to
the dataset. There are also several variants of the K-mode algorithm with respect to how
to select the initial centroid and dissimilarity measure and how to decide the number
of clusters [7]. However, those variants of the K-mode algorithm still do not consider
the nonlinearity in manifold structures in datasets because they use a simple matching
algorithm. They usually focus on the compactness of objects in each cluster rather than
connectivity, which means how suitably connected the objects in the cluster are to one
another. Therefore, there is a limitation to reflecting the nonlinearity in manifold structures
in a dataset.

Although the Hamming distance for nominal variables and the Gower dissimilarity
coefficient for both nominal and ordinal variables are widely used for categorical data
clustering with variants of the K-mode algorithm, there may be some other important
information in categorical data that can be effectively used to define the level of similar-
ity [4]. In this direction, many researchers have attempted to measure the dissimilarity
for categorical data by considering the characteristics of the categorical variables, such
as the correlation between two categorical variables [8–10]. Le and Ho [8] proposed an
indirect method that defines the dissimilarity between two values from one categorical
variable as the sum of the dissimilarities between the conditional probability distributions
of other categorical variables, given these two values. Ienco et al. [9] first proposed the
concept of context: a subset that contains the relevant categorical variables to the given one.
Then, the dissimilarity between two values of a categorical variable is measured on the
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basis of the values of the categorical variables from the current categorical variable context.
The dissimilarity-measuring methods that consider the relationship among the categorical
variables are called context-based methods [11].

Although the context-based dissimilarity measures consider the relationship among
categorical variables, they do not consider the nonlinearity in manifold structures in
datasets. The explicit pattern of the data is difficult to visualize, especially for categorical
data, but there may be important information about the intrinsic pattern. To consider the
topological structure of the numerical data, Tenenbaum et al. [3] developed a geodesic
distance to seize the manifold structures in the numerical dataset. The geodesic distance is
calculated from the neighborhood graph, which is composed of numerical observations
(nodes) and edges that connect adjacent observations. A set of edge weights of the graph
can be obtained using the Euclidean distances between the observations, and the geodesic
distances between the observations are finally presented as the sum of the edge weights
in their shortest path between two observations. This geodesic distance can effectively
capture the manifold structures of the numerical dataset so that it can reflect nonlinear
patterns. To take advantage of this property, several algorithms for clustering numerical
data have adopted the geodesic distance [12–14]. Nonetheless, the traditional geodesic
distance has the numerical-only constraint, which is vulnerable to categorical data.

For many machine learning algorithms, preprocessing categorical variables is a crucial
task since most machine learning models consider only numerical variables. There are many
ways to encode categorical variables for modeling, and one of the most commonly used
encoding techniques is one-hot encoding [15]. This is where each level of the categorical
variable is compared to a specified reference level, especially when there is no natural
ordering between the categories. Categorical features are prevalent and frequently have
a high degree of cardinality. Some categorical encoding approaches have been studied
in the statistical-learning field in [16]. However, one-hot encoding produces extremely
high-dimensional vector representations, which makes handling the encoded data difficult.

Categorical data can be considered as a word in natural language processing (NLP).
Therefore, it can be embedded on the basis of word embedding techniques where each
word in a particular language is allocated to a high-dimensional vector in word embedding
models, with the geometry of the vectors capturing semantic relationships between the
words [17]. Many researchers have investigated word embedding [18], and the emergence
of artificial neural networks in NLP is mostly based on word embedding [19]. When
compared to one-hot encoding, this method brings words with similar meanings closer
together in a word space, improving word continuity. Recently, in the study by Dahouda
and Joe [20], a deep-learned embedding technique for categorical data encoding on a
categorical dataset was presented. Their technique is based on word embedding, which
is also a part of a deep learning model. They considered each categorical variable as a
single word or as a token so that the distributed word representations could be applied.
Although all those methods based on deep learning have self-learning capabilities that
enable them to produce better semantic vectorization to measure dissimilarities, the deep
learning-based method produces satisfactory results only when a massive dataset becomes
available. Therefore, when there is a relatively small dataset available, the deep learning
approach is not suitable.

3. Materials and Methods

The proposed context-based geodesic dissimilarity measure for clustering categorical
data is computed with three serial phases: (1) The first phase measures the association-
based dissimilarity between two observations composed of categorical variables. (2) The
second phase represents the observations as a mutual k-nearest neighbor graph based on
the association-based dissimilarity. In the mutual k-nearest neighbor graph, all observations
are depicted as nodes and an edge connects each node and its neighborhood. (3) The final
phase computes the dissimilarity measure between the nodes with the shortest path in
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the graph. The dissimilarity measure between the nodes is obtained as a sum of the edge
weights in the shortest path.

3.1. Calculating the Association-Based Dissimilarities (AD) between Two Observations

For the notation, let us have a dataset with n observations, which is expressed as
x = {x1, x2, · · · , xn}, and composed by a set of categorical variables A = {A1, A2, · · · , Ap},
where p is the dimensionality of the data. Each categorical variable Ak can take an element
of the domain that contains all possible categorical values. Because the domains of the
categorical variables are finite and nominal (or ordinal), the domain of Ak with qk elements
can be expressed as Ak = {ak1, ak2, · · · , akqk

}. For convenience, we use Ak and aks to refer
to the k-th categorical variable and its categorical value, respectively. Then, each data
observation xi consists of (xi1, xi2, · · · , xip), where xik ∈ Ak. The dissimilarity between two
categorical values, aks and akt, with respect to a specific categorical variable Ak is expressed
by dA(aks, akt) and the distance between two data observations, xi and xj, is expressed by
d(xi, xj) [21].

Le and Ho [8] proposed an indirect method which is called the association-based
dissimilarity (AD), to measure the distance between two categorical values. It considers the
dissimilarity measure between two categorical values as a sum of dissimilarities between
two conditional probability distributions of other variables, given these two nominal
or ordinal values. In particular, their proposed method is suitable for datasets whose
categorical variables are highly correlated. The association-based dissimilarity measure is
composed of two iterative steps: (1) First, the dissimilarity between two values aks and akt
of a categorical variable Ak is calculated, denoted by dA(aks, akt). (2) Then, the dissimilarity
between two data observations xi and xj, which is denoted by d(xi, xj), is obtained as the
sum of dissimilarities for their categorical value pairs.

The dissimilarity between two observations xi and xj, denoted by d(xi, xj), can be
calculated using the association-based dissimilarity (AD), denoted by dA(aks, akt), between
two categorical values as follows.

d(xi, xj) =
p

∑
k=1

dA(xik, xjk), (1)

where ∀xik, xjk ∈ Ak. According to Le and Ho [8], an association-based dissimilarity (AD)
between two values aks and akt of a categorical variable Ak is the sum of the dissimilarities
between two conditional probability distributions of other categorical variables, given that
categorical variable Ak holds value aks and akt, in the form of

dA(aks, akt) =
p

∑
k′=1, k′ 6=k

ψ(P(Ak′ |Ak = aks), P(Ak′ |Ak = akt)), (2)

where ∀k, k′ ∈ {1, 2, · · · , p}, ∀s, t ∈ {1, 2, · · · , qk}, P(·|·) are the conditional probability
distributions, and ψ(· , ·) is a dissimilarity function for two probability distributions.

To date, several dissimilarity measures ψ(· , ·) between probability distributions have
been proposed [22–25]. Le and Ho [8] employed KL divergence [26] in a dissimilarity
function for two probability distributions. Although KL divergence is the most popular
dissimilarity measure between probability distributions, the direct use of KL divergence
in our study may cause a critical drawback in two different perspectives; (1) First, KL
divergence is not defined when the denominator in log term in the definition becomes zero.
In the original work of Le and Ho [8], they assumed that the number of observations is
large enough that the conditional probabilities can be approximately estimated from the
dataset. However, this assumption is not always valid when we have a small dataset. (2)
Secondly, KL divergence has values ranging from 0 to infinity. In our work, we treat several
categorical variables with equal weight without prior knowledge so that the relative scaling
among categorical variables is important. In order to avoid such undesirable properties
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of KL divergence, we employed the Hellinger distance [25] instead of KL divergence.
The Hellinger distance is, by definition, a metric that does not have the denominator
with conditional probabilities, and the range of values is from 0 to 1 for all probability
distributions so that the relative scaling among categorical variables becomes convenient.
Furthermore, it satisfies triangle inequality. In this paper, we use the Hellinger distance [25],
which is calculated as

ψ(P(Ak′ |Ak = aks), P(Ak′ |Ak = akt)) =
1√
2

√√√√ qk′

∑
l=1

(√
p(ak′ l |aks)−

√
p(ak′ l |akt)

)2
, (3)

where ∀k, k′ ∈ {1, 2, · · · , p}, ∀s, t ∈ {1, 2, · · · , qk}, ∀l ∈ {1, 2, · · · , qk′}, and p(ak′ l |aks)
refers to conditional probability p(Ak′ = ak′ l |Ak = aks). Then, a value of dA(aks, akt)
obtained from Equation (2) has a value of 0 to p− 1.

3.2. Constructing the Mutual k-Nearest Neighbor Graph

The second phase is to represent the observations as a neighborhood graph. The
dissimilarity between two observations xi and xj, d(xi, xj), based on the association-based
dissimilarities (AD), is a good dissimilarity measure to reflect correlations among categori-
cal variables but does not capture the nonlinear pattern of data. Therefore, we combine
it with the concept of connectivity for the similarity explained below using the mutual
k-nearest neighbor graph.

A cluster may be assumed simply as a group of similar objects, but there is no universal
consensus on how a similarity should be measured. The best measure of similarity depends
on the application. That is, it depends on the structure of the data set being analyzed.
The most common measure of similarity may be the concept of compactness, which means
that how consistent the objects in the same cluster are and those in different clusters are
far away from each other. Rather than the concept of compactness, another concept to
measure cluster quality is the connectivity, which means how well connected the objects in
the cluster are to one another. The concept of connectivity deals with clusters of complex
shapes and allows finding clusters of arbitrary shapes using the more local concept of
clustering, which is based on the fact that adjacent data objects must belong to the same
cluster [27]. Several authors (Ding and He [28], Lee and Olafsson [27], Yu and Kim [14])
adopted a measure of cluster quality based on the concept of connectivity rather than
compactness. To this end, two concepts of the k-nearest neighbor consistency (k-NN
consistency) and k-mutual nearest-neighbor consistency (k-MN consistency) are necessary,
which are explained as follows.

According to Ding and He [28], the principle of kNN consistency is that all data objects
in a cluster must also have k-nearest neighbors in the same cluster. If objects in the same
cluster are close to each other, the closest neighbors of objects in the cluster are also likely
to be in the same cluster. Another related concept is the k-MN consistency. If the nearest
neighbor of an object A is the object B and the nearest neighbor of object B is object A, then
we say that they are mutual nearest neighbors. In general, if we assume that the object A is
in the set of p nearest neighbors of object B, and object B is in the set of q nearest neighbors
of object A, and k = max(p, q), then we say that the object A is in the k-mutual nearest
neighbors of the object B and vice versa. The principle of k-MN consistency states that
for any data object in a cluster, its k-mutual nearest-neighbors should also be in the same
cluster. The principle of k-MN consistency is stronger and more interactive than that of
k-NN, and it expresses the natural grouping more strictly in the definition of clustering.
The k-NN consistency and k-MN consistency can be visualized using the k-nearest neighbor
graph and the mutual k-nearest neighbor graph, respectively.

To create the mutual k-nearest neighbor graph, one should define the k-nearest neigh-
borhood and the mutual neighborhood set of each node (observation). First, the k-nearest
neighborhood of node xi, K(xi), is characterized as follows:
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K(xi) = {xj | d(xi, xj) ≤ dk
i }, (4)

where d(xi, xj) represents the dissimilarity measure between node xi and xj, and dk
i is the

kth smallest dissimilarity measure from node xi to the other nodes. Then, from Equation (4),
a mutual neighborhood set of nodes xi, Ψ(xi) is given by:

Ψ(xi) = {xj|xj ∈ K(xi) and xi ∈ K(xj)}. (5)

If node xj belongs to K(xi) and node xi belongs to K(xj) node xj is in the mutual
neighborhood of node xi. From the Ψ(xi), the mutual k-nearest neighbor graph with n
nodes is created using an edge, eij, between xi and xj, as follows:

eij =

{
1 if xi ∈ K(xj) and xj ∈ K(xi)

0 otherwise
. (6)

Equation (6) states that an edge is produced if and only if two nodes belong to their
Ψ(xi)s.

In the graph structure, the edge weight wij of an edge between xi and xj is defined
as follows:

wij =

{
d(xi, xj) if eij = 1
∞ otherwise

, (7)

where wij is the dissimilarity measure between nodes xi and xj, and the finite dissimilarity
measure is defined only when two nodes are connected with an edge in the mutual k-nearest
neighbor graph.

3.3. Calculating the Context-Based Geodesic Dissimilarity (CGD) Measure

The proposed dissimilarity measure, CGD, can be computed from the shortest path in
the mutual k-nearest neighbor graph. Actually, the mutual k-nearest neighbor graph itself
has the meaning of clustering, but there is still the necessity of measuring the dissimilarity
measure between the objects in a graph. For example, when there are l distinct and
separated graphs that connect similar objects, if we want to form more than l clusters, the
clustering method needs to partition a graph into more than or equal to two, based on the
information of dissimilarity matrix that is composed of gij in Equation (8). As a conclusion,
measuring the dissimilarity between objects for clustering is necessary even though the
mutual k-nearest neighbor graphs are already configured.

The distance gij between node xi and xj is defined as follows:

gij = min
p∈Pij

|p|−1

∑
l=0

wi+(l),i+(l+1), (8)

where Pij is the set of all paths between node xi and xj, and p = (xi+(0), xi+(1), · · · , xi+(|p|))
is one of the paths between node xi and xj. |p| is the number of edges in the path. xi+(|p|)
and xi+(0) are the destination (xj) and origin (xi) of the path, respectively.

The context-based geodesic dissimilarity measure, gij is the minimized sum of the
edge weights in the path between node xi and xj. The shortest path between two nodes
in the mutual k-nearest neighbor graph is a path with the smallest number of edges. If
the graph is weighted, it is a path with the minimum sum of edge weights. The length
of a geodesic path is called the geodesic distance or shortest distance. Geodesic paths are
not necessarily unique, and there can be many, but there is no problem with the geodesic
distance being well-defined since all geodesic paths have identical lengths. There exist
various algorithms to find the shortest paths in a neighborhood graph [29–32]. Among
these algorithms, Dijkstra’s method [32] has often been used to search for the geodesic
distance when the graph is constructed with nonnegative edge weights [33,34]. For a given
source node (observation) in the graph, Dijkstra’s method finds the shortest path between
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that node and every other node. It can also be used to find the shortest paths from a single
node to a single destination node by stopping the iterative algorithm once the shortest path
to the destination node has been figured out.

The key difference between the traditional geodesic distance and the proposed context-
based geodesic dissimilarity (CGD) measure is as follows; the traditional geodesic distance
is defined based on any graph structure using the Euclidian distance between two numer-
ical data nodes. However, in our study, to accommodate the categorical data clustering
problem, the proposed context-based geodesic dissimilarity (CGD) measure is obtained
based on the mutual k-nearest neighbor graph using the association-based dissimilarities
between two categorical data nodes.

4. Results

For illustrative purposes, we first present a simple example of calculating the association-
based dissimilarities between two values in a categorical variable using an artificial dataset.
Secondly, we demonstrate the development of the mutual k-nearest neighbor graph with
various k values. Then, finally, we conducted experiments to study the characteristics of
the proposed method (CGD) and compared it with other conventional categorical distance
measures in the literature: Gower distance (GD) [5], association-based dissimilarity (AD) [8],
and a variant of the geodesic distance using Gower distance (hereafter, Gower-based
geodesic distance (GGD)).

These four different dissimilarity measures can be categorized in terms of context/non-
context for consideration of correlations and compactness/connectivity for similarity
concepts, as shown in Table 1.

Table 1. Categorization of four dissimilarity measures.

Compactness Connectivity

Context Association-based dissimilarity Content-based geodesic dissimilarity
(AD) (CGD)

Non-context Gower distance Gower-based geodesic distance
(GD) (GGD)

4.1. Association-Based Dissimilarity (AD) between Two Values in Categorical Variable

To illustrate the calculation of the dissimilarity between two values with respect to a
categorical variable, we introduce a simple artificial example as follows. Suppose that the
dataset x consists of only two categorical variables “Shape” and “Color”. Shape has three
categorical values: square (�), diamond (♦) and triangle (4). Color has two categorical
values: white (W) and black (B).

Table 2 displays the contingent table and contingent probability table. Then, the dissimi-
larities of the value pairs (�,♦), (�,4), and (♦,4) can be obtained using Equations (2) and (3)
as follows:

dA(�,♦) = 1√
2

√(√
3/7−

√
2/3

)2
+
(√

4/7−
√

1/3
)2

= 0.170

dA(�,4) =
1√
2

√(√
3/7−

√
1/2

)2
+
(√

4/7−
√

1/2
)2

= 0.051

dA(♦,4) =
1√
2

√(√
2/3−

√
1/2

)2
+
(√

1/3−
√

1/2
)2

= 0.120

4.2. Mutual k-Nearest Neighbor Graph with Various k Values

The following example demonstrates the development of the mutual k-nearest neigh-
bor graph with various k values. Table 3 shows a fragment of the Mushroom dataset from
UCI Machine Learning Repository (http://archive.ics.uci.edu, accessed on 5 May 2021).

http://archive.ics.uci.edu
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Let us assume that there is a dataset with 12 observations, which consist of five categorical
variables; Cap-shape, Cap-surface, Cap-color, Bruises, and Odor.

Table 2. Co-occurrence and conditional probability between Color and Shape.

Contingent Table Contingent Probability Table

White (W) Black (B) Sum p(W |.) p(B|.) Sum

� 30 40 70 3
7

4
7 1

♦ 20 10 30 2
3

1
3 1

4 25 25 50 1
2

1
2 1

Table 3. Fragments of the Mushroom dataset.

No. Cap-Shape Cap-Surface Cap-Color Bruises Odor

1 convex smooth yellow yes almond
2 bell smooth white yes anise
3 convex smooth gray no none
4 convex scaly yellow yes almond
5 bell smooth white yes almond
6 bell scaly white yes anise
7 convex smooth white no creosote
8 convex smooth pink no creosote
9 convex fibrous gray no foul
10 convex fibrous gray no foul
11 convex fibrous gray no creosote
12 convex scaly yellow no foul

Figures 1–3 illustrate the results of mutual neighborhood sets and the corresponding
mutual neighborhood graphs when k is 3, 6, or 9, respectively. The neighborhood links
between nodes (observations) are represented by the arrows. For example, no node belongs
to the 3-mutual nearest neighbors of node x12 in Figure 1. The 6-mutual nearest neighbors
of node x12 are node x7, x8, x9, and x10 in Figure 2. The 9-mutual nearest neighbors of node
x12 are nodes x1, x3, x4, x7, x8, x9, x10, and x11 in Figure 3. Thus, the structure of the graph
depends on the parameter k. When k increases, the size of the mutual neighborhood set
of a node increases. As mentioned previously, the mutual k-nearest neighbor graph itself
can produce clusters, and the number of clusters depends on the parameter k. However,
if we intend to produce a larger number of clusters, the proposed context-based geodesic
dissimilarity (CGD) measure between the objects in a graph is still required.

Figure 1. Mutual k-nearest neighbor graph with k = 3.
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Figure 2. Mutual k-nearest neighbor graph with k = 6.

Figure 3. Mutual k-nearest neighbor graph with k = 9.

4.3. Comparative Study Using Real-Life Datasets

In our experiments, a clustering algorithm is applied to four benchmark datasets:
(1) Breast cancer, (2) Soybean, (3) Lymphography, and (4) Mushroom, which were from the
UCI Machine Learning Repository [35]. All datasets, except the Lymphography dataset,
have missing values. In this study, we simply eliminate the observations with missing
values. Furthermore, the Lymphography dataset is originally composed of eighteen variables
in total, including three continuous variables and fifteen categorical (nominal) variables so that
three of these continuous variables are forcibly discretized into categorical (ordinal) variables.

Table 4 summarizes these datasets, including the results of the dependency analysis.
Before we conducted the experiments of applying a clustering algorithm to those four
benchmark datasets, we performed a dependency analysis in the same manner in [8] to
find how significantly correlated several categorical variables are. For each dataset x, we
evaluate the categorical data dependency using the dependency factor ρ(x), which is the
proportion of the number of dependent categorical variable pairs in the total number of
categorical variable pairs. The dependency factor is calculated by the following equation

ρ(x) =
Number of dependent categorical variable pairs

p(p− 1)
, (9)

where p is the number of variables. To test the dependency of two categorical variables, we
used the chi-square statistic with a significance level of 0.05. The dependency factor has a
value of 0–1, where 0 indicates that all categorical variable pairs are independent, and 1
indicates that all categorical variable pairs are dependent at the significance level of 0.05.
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Most of the categorical variables in the selected real-life datasets are correlated, as shown
in Table 4. We believe that these real-life datasets can adequately illustrate the usefulness
of the proposed method.

Table 4. Dataset information including the dependency factor.

Breast Cancer Soybean Lymphography Mushroom

Number of Nodes 683 562 148 5644
Number of Nominal variables 4 30 15 22
Number of Ordinal variables 5 5 3 0
Number of Classes 2 15 4 2
Dependency factor (ρ(x)) 100% 61.18% 47.76% 97.62%

For clustering, we used the Partition Around Medoid (PAM) clustering algorithm [36]
to study the performance of the proposed method.

The PAM algorithm is the most well-known heuristic solution for the k-medoids
clustering [14,37]. The k-medoids clustering is more robust to outliers than the k-means
clustering algorithms [38] and can work using a dissimilarity matrix, which is defined by
any dissimilarity measure (our proposed method provides only a dissimilarity matrix, not
the node (observation) coordinates). Hence, the PAM algorithm is used to compare our
proposed method with the existing ones.

A brief explanation of the PAM can be provided as follows; given K initial medoids
that create K clusters, each node becomes assigned to one of the K medoids that is nearest
to the node. A medoid can be defined as the node of a cluster whose average dissimilarity
to all nodes in the cluster is minimal. The PAM minimizes the objective function by
iteratively swapping all non-medoid points and medoids until convergence [36]. The
objective function of the PAM is to minimize the sum of the dissimilarities from a node to
its cluster medoids.

To quantify the PAM clustering performance, the clustering validity measure is re-
quired. Based on the available knowledge about the true class membership of the dataset,
the whole clustering validity measures can be divided into two sets; internal and external
validity measures [39]. Internal validity measures only exploit the distribution of the
dataset. On the other hand, external validity measures assume some external information,
such as class membership information. It is obvious that external validity measures give
less vague results than the internal validity measures as the association of the cluster points
with the class membership is assumed to be known in the case of external validity measures.
In our study, since the main contribution that we intend to make is to investigate the po-
tential of using our proposed dissimilarity measure, we assume that the class information
and class correspondence of the observations are already known, and the number of true
clusters K is known to be equal to the number of true classes. In [39], they compared five
external validity measures (namely Rand index, Jaccard index, Folkes–Mallows index,
Rogers–Tanimoto index and Kulczynski index) to observe the performance of different clus-
tering validity measures as the number of attributes increased for the same algorithm when
others such as the number of instances and the number of classes were almost invariant. As
a conclusion, the external validity measures were all consistent [39]. The authors reported
that all of the external validity measures produced different values but the same ranks. In
the same manner as in [39], we applied all five external validity measures (Rand index,
Jaccard index, Folkes–Mallows index, Rogers–Tanimoto index and Kulczynski index) for
our comparison study, as shown in Table 6. The results were consistent with [39], that is,
the ranks of each dissimilarity measure were identical no matter which external validity
measure is used. Therefore, here we explain only the Rand index among the external
validity measures, which is the most popular external validity measure.

The Rand index (RI) [40] has been widely used to calculate the clustering perfor-
mance [41–43]. The RI is basically a measure of the similarity between two clusterings
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results. Let us assume that two clustering results share a cluster membership; then the
similarity between two clustering results is calculated as follows

RI =
a + b
(n

2)
, (10)

where a is the number of pairs of nodes with the common cluster memberships, b is the
number of pairs of nodes with nonidentical cluster memberships, and n is the number of
nodes. The RI has a value of 0–1, where 0 implies that the two results do not agree on any
pair of clustering memberships, and 1 indicates that the two clustering memberships are
exactly identical. If the dataset has a true cluster membership, this true cluster membership
becomes a reference membership. Therefore, the RI evaluates the agreement between the
true cluster membership and the PAM clustering results [44]. A large RI indicates that the
true cluster membership can be correctly recovered by the PAM clustering results.

To apply the PAM with a geodesic distance framework such as the GGD and the
proposed CGD, two parameters must be predetermined, such as the parameter k for
the mutual k-nearest neighbor graph construction and K for the number of clusters. As
mentioned earlier, we assumed that the number of true clusters K is known to be equal
to the number of true classes. However, there is no concrete guideline for selecting the
optimal parameters k. Hence, we attempted to heuristically decide only the parameter k, in
a similar manner used in Yu and Kim [14]. They varied the values of k from 3 to 30 and
determined the parameter k that yielded the best performance. Thus, we focus on only
determining a proper k that yields the largest RI while varying the values of k. In our study,
the RI was calculated by changing k from 3 to 60. The smallest k obtained from the largest
RI is summarized in Table 5.

Table 5. Smallest k with the largest Rand index.

Data Set Gower-Based Proposed Method
Geodesic Distance (Context-Based Geodesic Dissimilarity)

Breast cancer 9 52
Soybean 36 40
Lymphography 14 39
Mushroom 13 21

Table 6 shows the comparative results of the PAM algorithms in terms of five different
external validity measures using various distance/dissimilarity measures (GD, AD, GGD,
and CGD). The results shown in Table 6 will be discussed in the following section.

Table 6. Comparison of the clustering performance on four real-life datasets.

Data Set

Rand Index

Gower Association-Based Gower-Based Proposed
Distance Dissimilarity Geodesic Distance Method

(GD) (AD) (GGD) (CGD)

Breast cancer 89.22% 91.32% 90.00% 94.86%
Soybean 89.45% 91.30% 90.44% 91.54%
Lymphography 55.08% 56.94% 61.11% 63.33%
Mushroom 74.81% 74.76% 74.16% 74.16%
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Table 6. Cont.

Data Set

Jaccard Index

Gower Association-Based Gower-Based Proposed
Distance Dissimilarity Geodesic Distance Method

(GD) (AD) (GGD) (CGD)

Breast cancer 82.34% 85.36% 83.08% 90.97%
Soybean 21.98% 34.81% 27.14% 35.22%
Lymphography 24.60% 26.25% 29.80% 33.01%
Mushroom 64.37% 64.34% 63.92% 63.92%

Data Set

Folkes–Mallows Index

Gower Association-Based Gower-Based Proposed
Distance Dissimilarity Geodesic Distance Method

(GD) (AD) (GGD) (CGD)

Breast cancer 90.34% 92.11% 90.76% 95.27%
Soybean 37.16% 52.16% 43.87% 52.79%
Lymphography 40.86% 43.14% 48.11% 51.74%
Mushroom 78.66% 78.64% 78.39% 78.39%

Data Set

Rogers–Tanimoto Index

Gower Association-Based Gower-Based Proposed
Distance Dissimilarity Geodesic Distance Method

(GD) (AD) (GGD) (CGD)

Breast cancer 80.53% 84.03% 81.82% 90.22%
Soybean 80.91% 84.00% 82.55% 84.40%
Lymphography 38.01% 39.80% 44.00% 46.34%
Mushroom 59.76% 59.69% 58.94% 58.94%

Data Set

Kulczynski Index

Gower Association-Based Gower-Based Proposed
Distance Dissimilarity Geodesic Distance Method

(GD) (AD) (GGD) (CGD)

Breast cancer 90.36% 92.11% 90.76% 95.27%
Soybean 38.31% 52.69% 45.07% 53.49%
Lymphography 42.29% 44.76% 50.40% 53.93%
Mushroom 78.99% 78.98% 78.79% 78.79%

5. Discussion

The results shown in Table 6 indicate that the proposed method shows better per-
formance compared to the other measures, since it produces larger RI values than other
measures for three of four datasets (Breast cancer, Soybean, and Lymphography), with the
exception of the Mushroom dataset. That is, for Breast cancer, Soybean, and Lymphogra-
phy datasets, the proposed method yields the highest scores 94.86%, 91.32%, and 63.33%,
respectively. For the Mushroom dataset, various distance measures yield almost identical
Rand indices with less than 1% point differences (GD 74.81%, AD 74.76%, GGD 74.16%, and
the proposed method CGD 74.16%). This result demonstrates that the proposed measure
generally facilitates the discovery of the natural groupings well compared to the other
dissimilarity measures.

Figure 4 presents a visual comparison using the result of the Rand index in Table 1
and categorization in Table 6. Except for the Mushroom dataset, in general, the dissimilar-
ity measures with context-based method considering the correlation between categorical
variables (such as AD and CGD) show better performances than others (such as GD and
GGD). This result may indicate that since these three datasets (Breast cancer, Soybean,
Lymphography) have highly correlated categorical variables (as shown in Table 4, that
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is, dependency factor (ρ(x)) for Breast cancer 100%, Soybean 61.18%, and Lymphogra-
phy 47.76%), the context-based methods outperform the non-context-based methods. In
addition, the dissimilarity measures that consider the concept of connectivity of data obser-
vations (such as GGD and CGD) perform better than those that do not (such as GD and
AD). This result may also indicate that these three datasets have clusters of complex shapes
in their manifold structure.
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Figure 4. Rand index on four real-life datasets; Gower distance (GD), association-based dissimilarity
(AD), Gower-based geodesic distance (GGD), and content-based geodesic dissimilarity (CGD).

In the case of the Mushroom dataset with a high value of dependency factor (97%
as shown in Table 4), all four dissimilarity measures showed similar performances with
slight differences. That is, the concept of context did not improve the performance of
clustering. We might interpret it in a way that this dataset has many correlated variables
but no high correlation between variables. The reason why the concept of connectivity was
not effective in the performance of clustering for this dataset may also be interpreted in
a way in which the dataset has significant noise and does not reveal complex shapes in a
manifold structure.

Overall, the proposed context-based geodesic dissimilarity (CGD) measure that con-
siders the correlations among categorical variables and the concept of connectivity has, in
general, better clustering quality when categorical variables are highly correlated and the
dataset has clusters of complex shapes.

6. Conclusions

In this study, we have proposed a novel dissimilarity measure for the categorical data
clustering problem. The proposed method can effectively accommodate the nonlinear and
complex patterns of the categorical dataset. It discovers the implicit topological structures
in the categorical data and considers the relationships among the categorical variables. Our
experimental results reveal that the categorical data can also have implicit data patterns and
confirm that the dissimilarity measure that considers both data patterns and relationships
among the categorical variables generally yields better clustering performance than other
dissimilarity measures.
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Despite its successful performance in categorical data clustering, there are some open
issues with the current research. For example, the issue of computation burden of our
proposed method is not theoretically investigated. If the data consist of many categorical
variables, variable selection may be necessary to avoid the curse of dimensionality. Mean-
while, a context-based approach such as the proposed method cannot guarantee successful
performance for the data that are composed of completely independent categorical vari-
ables. Although these research ideas are beyond the scope of this paper, they will be an
interesting direction for future research.
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