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����������
�������

Citation: Dodigović, F.; Ivandić, K.;
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Abstract: In this paper a modification of the reliability-based robust geotechnical design (RGD)
method is proposed. The intention of the proposed modifications is to simplify the method, make
it less computationally expensive, and harmonise of the results with Eurocode 7. The complexity
of the RGD method mainly stems from the calculation of the design’s robustness measure, which
is the feasibility robustness index (ββ). Due to this fact, the replacing of the existing robustness
measure with a generalised reliability index (β) is considered. It was demonstrated that β fits into the
robustness concept, and is traditionally used as a construction reliability measure, making it intuitive
and “user friendly”. It is proposed to conduct a sensitivity analysis using Soboli indices, with the
aim of freezing the variables whose contribution to the system response variance is negligible, which
will further simplify the method. By changing the robustness measure, the number of the required
reliability analyses is significantly decreased. Further reduction is achieved by conducting analyses
only for the designs chosen in the scope of the genetic algorithm. The original RGD method is used
as an extension of traditional reliability-based design. By applying the proposed modifications, the
RGD method can be used as an alternative to the classic and reliability-based design method.

Keywords: RGD method; geotechnical; reliability analysis; Eurocode 7; robust geotechnical design;
reliability index

1. Introduction

A new geotechnical design approach, called “reliability-based robust geotechnical
design method” (RGD) was suggested by Juang et al. [1] in 2012. The term “reliability-
based” stems from the fact that the aim of the method is “to ensure robustness of reliability-
based design even if uncertainties exist in the estimated statistical moments of noise
factors”. They prescribed the methodology of defining non-dominated and robust designs
of shallow foundations in cohesionless soil. The aim of the RGD method is to calculate a
set of non-dominated designs (Pareto front) through multi-objective optimisation, which is
conducted using the genetic algorithm NSGA-II. The Pareto front is composed of robust
designs that meet the prescribed safety requirements. The final design is chosen from this
set, and it is a trade-off between the cost and the robustness of the foundation.

The concept of robustness dates from the 1950s, when Genichi Taguchi set the basic
principles of the robust method, based on research in Quality engineering [2]. In this
context, a robust product is defined as “a product whose performance is minimally sensitive
to factors causing variability (at the lowest possible cost)” [3]. The application of the
robustness concept to the problems in structural and geotechnical engineering has resulted
in an adjustment of terminology and methodology, and an array of different definitions
connected to the usage of the term itself. A review of relevant literature has shown differing
approaches to the structural robustness, with some of them being fundamentally different.
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In the RGD method, a design is considered robust if the system response is insensitive to
the variation of noise factors and the correlations between them [1].

The RGD procedure is generally complex and computationally expensive. Different
authors therefore suggest its modifications, most commonly referring to the robustness
measure. Tan et al. [4] keep the existing robustness measure (feasibility robustness index
ββ), but suggest its calculation using the sensitivity of reliability index (SRI) incorporated
with FORM. The original method uses FORM with integrated PEM. In this case, the total
number of analyses is n = 7Mnc, where M is the number of possible designs, and nc is
the number of noise factors. The modified method has an M number of analyses, which
accelerates the calculation significantly.

Gong et al. [5] presume that the existing robustness measure is not fundamentally
sound and intuitive, and that it is often isolated from the analysis of design constraints.
Consequently, they suggest a gradient-based robust design approach, in which noise
factors are treated as random variables, and the design constraints are analysed using
advanced First Order Second Moment (AFOSM) method. The design robustness measure
is a gradient-based sensitivity index (SI), calculated within probabilistic analyses. Treating
noise factors as random variables eliminates standard deviations of their own standard
deviations from the procedure, which, in turn, simplifies input parameters significantly.
The total number of reliability analyses is reduced to the value of M, which improves the
computational efficiency of the method. The sensitivity index, as the design robustness
measure in the RGD of soldier-pile-anchor shoring system for deep excavation, is also
suggested by Gong et al. [6]. They simplify RGD by reducing multi-objective optimisation
to a sequence of single-objective problems. Yu et al. [7] apply the RGD for slope stabilisation
using piles. They use signal to noise ratio (SNR) for the design’s robustness measure,
which is calculated from the standard deviation and the mean value of the factor of safety
(FOS). The same robustness measure is applied by Zhou et al. [8] in geotechnical slope
design. Fan et al. [9] define a new robustness measure for application in the design of
rock wedge slopes—the sensitivity index of variability (SIV). The main shortcoming of
SIV, considering its more general application in geotechnics, is the assumption that all
random variables are independent and normally distributed, which is often not the case
in practice. Ravichandran and Shrestha [10] suggest a robust procedure of optimisation
for a typical foundation for wind turbines. The robustness of the design is measured
using a standard deviation of differential settlement and calculated using the Monte Carlo
method. The Monte Carlo method is generally simpler, but in a scenario with a large
number of random variables and complex objective functions, it becomes computationally
expensive. Peng et al. [11] simplify the RGD procedure by reducing the problem of multi-
objective optimisation to a sequence of single-objective optimisations, and by substituting
the FORM method with integrated PEM with the Monte Carlo method. This makes the
RGD procedure more intuitive and more user friendly, while maintaining the robustness
measure. An example of a rock slope design is given. Since the objective functions in
the example are mathematically simple, the suggested method is more efficient than the
original one. The authors suggest an assessment of the method’s efficiency in examples
with more complex objective functions and a greater number of random variables. The
summary of reviewed literature is presented in Table 1.

In this paper the RGD method is simplified, made less computationally expensive, and
its results are harmonised with the criteria prescribed in the Eurocode 7. The simplification
of the method’s application stems from the change of the robustness measure, where a
generalised reliability index (β) is chosen as a substitute of ββ. It has been used for years
in structural reliability analyses to express construction reliability. Due to this fact, its
value can be considered intuitive. Furthermore, the values are within the approximate
0–20 range, which means that it can also be considered “user friendly”. In this paper we
demonstrated that β, by definition, fits into the robustness concept.
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Table 1. The summary of reviewed literature.

Study Authors Consideration of
Uncertain Parameters Robustness Measure Geotechnical Problem in

Consideration

The Method for
Calculating the

Robustness Measure

Juang et al. [1] Noise factors Feasibility robustness
index Shallow foundations FORM with integrated

PEM

Tan et al. [4] Noise factors Feasibility robustness
index Shallow foundations FORM

Gong et al. [5] Random variables Gradient-based sensitivity
index (SI) Shallow foundations AFOSM

Gong et al. [6] Random variables Gradient-based sensitivity
index (SI)

Soldier pile–anchor tieback
shoring system for deep

excavation
FEM

Yu et al. [7] Random variables Signal to noise ratio (SNR)
of FOS Piles for landslide stabilisation FOSM

Zhou et al. [8] Random variables Signal to noise ratio (SNR)
of FOS Design of the soil slopes Analytical

Fan et al. [9] Random variables Sensitivity index of
variability (SIV) Design of the rock wedge slopes N-dimensional equivalent

method

Ravichandran and
Shrestha [10] Random variables Standard deviation of

differential settlement Foundations for wind turbine Monte Carlo method

Peng et al. [11] Noise factors Standard deviation of
probability of failure Design of the rock slope Monte Carlo method

Based on the chosen robustness measure, the required number of reliability analyses
has been reduced. A modified PEM method (IPEM) has been suggested for the calculation
of β, which enables a use of simpler mathematical operations while maintaining a high
degree of accuracy. The total number of reliability analyses is further reduced by conducting
them only for the designs chosen in the process of optimisation, using a genetic algorithm.
Additional safety constraints are introduced into the optimisation process, to adjust the
designs to the ultimate limit state (ULS) and serviceability limit state (SLS) criteria, as
defined by Eurocode 7.

The suggested modifications can be applied to geotechnical problems in general;
however, for illustration purposes, the methodology in this paper is elaborated using the
example of shallow foundations in cohesionless soils.

2. Materials and Methods
2.1. Original Method—Reliability-Based, Robust and Optimal Design (RGD) Method of Shallow
Foundations in Cohesionless Soils

The procedure of applying the RGD method as defined by Juang et al. [1] is shown in
Figure 1. The first step requires a characterisation of noise factors, decision variables and the
design domain. Since there are uncertainties in the second statistic moment of geotechnical
random variables as well, they are considered to be “noise factors”, i.e., “hard-to-control”
parameters. Consequently, their standard deviations are treated as random variables, i.e.,
data on their statistical distributions, mean values and standard deviations is required.
Since engineering practice often lacks data for a quality statistical analysis, an estimation
is suggested using the statistic bootstrap method. Unlike the statistic characteristics of
geotechnical parameters, literature holds no information on typical statistic characteristics
of their standard deviations, and their estimation via the bootstrap method is not reliable.
This introduces additional uncertainties into the method, which impacts the final results,
attained conducting reliability analyses.
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Figure 1. The flowchart of the RGD method.

The middle part of the procedure features an inner and outer loop, which include
the calculation of the design robustness measures using the FORM (First Order Reliability
Method) with integrated PEM (Point Estimate Method). Design robustness is measured by
the index od feasibility robustness (ββ). Determining ββ requires the information on the
statistical distribution of β. The authors of the RGD procedure believe it is reasonable to
assume a normally distributed β, in which case ββ can be expressed as follows:

ββ =
µβ − 3.8

σβ
, (1)

In Equation (1), µβ and σβ are the mean value and the standard deviation of the
reliability index.

We would like to point out that a false estimate of the statistical distribution of ββ may
also result in a significant error in the estimation of its value.

The robustness measure is calculated for every design in the design space, followed
by a constrained, multi-objective optimisation using the NSGA-II genetic algorithm. The
objectives in the optimisation procedure are the maximisation of design robustness, and
the minimisation of the foundation construction price; foundation width and depth are
optimised. Within the procedure, the feasible region is limited by applying constraints
defined as follows: βULS ≤ βT

ULS and βSLS ≤ βT
SLS, where βULS and βSLS are reliability

indexes, and βT
ULS and βT

SLS target reliability indexses for ULS and SLS, respectively. The
optimisation result is a non-dominated set of designs which is called a Pareto front, or
Pareto-optimal set. The choice of the final design is a trade-off between robustness and
design costs.

2.2. A Modification of the RGD Procedure

As suggested in other studies [5,7,8], “noise factors” are treated as random variables in
this paper; the number of input parameters is therefore reduced and simplified. In the case
of insufficient data for a quality statistical analysis, the typical statistical characteristics of
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geotechnical parameters can be found in literature. The input data is further simplified by
applying a sensitivity analysis, based on which the random variables, whose contribution
to the considered system response variance is negligible, are “frozen”. As a robustness
measure, we use a generalised reliability index β, which is traditionally used as a reliability
measure in classic reliability analyses, and by definition fits into the robustness concept.
Introducing Eurocode 7 into the procedure additionally ensures the robustness of the
designs. Unlike the original procedure, the results are directly applicable in everyday
engineering practice. The key terms used in the procedure are defined as follows:

• Decision variables:

# Foundation length: L = {Lmin, Lmin + 0.1, Lmin + 0.2, . . . Lmax − 0.1, Lmax}
# Foundation width: B = {Bmin, Bmin + 0.1, Bmin + 0.2, . . . Bmax − 0.1, Bmax}
# Foundation depth: = {dmin, dmin + 0.1, dmin + 0.2, . . . dmax − 0.1, dmax}

• Design: a 3-tuple, D = (B, L, d),
• Design space: a set of all triples D, marked S3.
• Feasible region is a subset of S3, defined as F = {D|D satis f y all constraints}.
• Non-feasible region is a complement of F, defined as Fc = S3 − F.
• Constraints are the criteria that divide the design space into feasible and non-feasible

regions.

2.2.1. Harmonising the RGD Method Results with Eurocode 7

In the existing RGD method, a feasible region encompasses all designs that meet
the pre-defined target failure probability requirement (PT

f ), i.e., the associated value of

the target reliability index (βT). The connection between Pf and β is mathematically
defined, and these can therefore be used interchangeably. In this paper we use β because
it is more user-friendly than Pf . The associated range of Pf for 0.5 ≤ β ≤ 10 would be
0.3 ≤ Pf ≤ −7.6× 10−24.

Eurocode 0 [12], in Annex C, gives a recommendation on limit values for βT , in
accordance with the considered limit state, reference period and reliability class. Thus,
for a 50-year reference period and reliability class RC2, the following recommendations
for βT were given: βT

ULS = 3.8, βT
SLS = 1.5. The same values are used in the foundation

optimisation using the original RGD procedure.
Meeting the criteria for the aimed reliability index value does not necessarily ensure

meeting the criteria for ultimate and serviceability limit states defined in EC7. Forrest and
Orr [13] study the reliability of shallow foundation designed according to Eurocode 7, in
the case of ultimate limit state (ULS). In their study, they conduct a series of analyses, which
consider foundation’s reliability indexes according to EC7, and according to the allowable
stress design format, with overall Factors of Safety FOS = 2, and FOS = 3. Different
design situations are defined by the variance of the resultant force position (centric and
eccentric load), soil type (granular and fine grain soils), relative load sizes (large and small
loads), and the correlation tanφ′ − c′ (with and without correlation). They conduct multi-
parameter analyses for all the listed design situations, with the variance of geotechnical
parameters: vertical scale of fluctuation (δV), tangent of the angle of internal friction (Vtanφ),
characteristic values of φ′ (φk:mean and φ

′
k:low). The presented results indicate that there

are designs that meet the target reliability index, but do not meet the ultimate limit state
criterion defined in EC7.

An example of such designs is shown in Table 2, which lists selected final designs
attained through the application of the RGD procedure from the illustrative example given
in [1]. The designs marked grey fail to meet the ULS criterion defined by EC7; therefore,
additional assessments of limit states according to EC7 are necessary for the chosen design,
along with the RGD procedure.
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Table 2. The ULS analysis results for the selected final designs from [1].

Foundation Width (m) Foundation Base (m) ODF (EC7, DA3)
1.9 1.9 0.79
2.0 2.0 0.93
2.3 1.9 1.21
2.7 2.0 1.80

By introducing additional constraints into the optimisation process, it is possible to
exclude all designs that do not meet the ULS and SLS criteria defined in EC7 from the
feasible region. Figure 2 schematically illustrates the design space and the existing and
suggested feasible regions in the case of ULS.

Figure 2. A schematic illustration of the existing and the suggested ULS feasible region.

According to the existing RGD procedure, the feasible region is composed of regions 1
and 3 from Figure 2, and is defined as follows:

F =
{

D|β ULS(D) ≥ βT
ULS, βSLS(D) ≥ βT

SLS,
}

, (2)

Region 3 includes designs that meet the criterion concerning the aimed reliability index
value, while at the same time failing to meet the criteria defined by EC7. By introducing
additional constraints, region 3 is excluded from the feasible region, whose definition is
then altered as follows:

F =
{

D|β ULS(D) ≥ βT
ULS, βSLS(D) ≥ βT

SLS, ODFULS(D) ≥ 1, ODFSLS(D) ≥ 1
}

, (3)

2.2.2. Simplification of the RGD Procedure by Substituting the Robustness Measure

The most demanding part of the RGD procedure is the outer loop from Figure 1,
which is composed of M repetitions of FORM with integrated PEM, where M is the total
number of the designs in the design domain. Every design requires seven FORM and one
PEM analysis, done separately for ULS and SLS. The number seven refers to the number
of estimating points in PEM [14]. The aim of the mentioned procedure is the calculation
of the mean value and standard deviation of β, which are used to determine the design
robustness measure ββ. Such a procedure is extremely computationally expensive, and
includes differentiations of limit states’ functions, which are mathematically complex in the
case of shallow foundations. Furthermore, another shortcoming of applying ββ is the fact
that we need to estimate the probability density function (PDF) of β, which is unknown.
Making a wrong assumption considering the PDF of β can lead to a significant mistake in
the estimation of ββ.
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This paper explores the possibility of substituting the robustness measure ββ with a
generalised reliability index β [15], which is defined as follows:

β = −Φ−1
(

Pf

)
, (4)

In Equation (4), Φ−1 is the inverse Gaussian distribution and Pf is the probability
of failure.

Defining β is a part of the RGD procedure within the constraint verification part;
consequently, by applying it as the robustness measure, the whole procedure is significantly
simplified. We consider β to be a good indicator of the design’s robustness, since its value
is directly related to the standard deviation of the considered system response. Designs
with a smaller standard deviation of the system response are, by definition, more robust.

Figure 3 illustrates the relation of β to different values of the standard deviation of system
response in shallow foundations in cohesionless soil. In the given example, a factor of safety
(FS) was chosen for system response, with the assumption that it is lognormally distributed.

Figure 3. A graphic illustration of the relation of β, Pf for different values of system response.

The statistical distribution of the factor of safety in shallow foundations was studied
by Dodigović et al. [16]; based on comprehensive statistical analyses, they concluded that
such an assumption was justified. Figure 3 clearly shows that designs with higher β favour
lesser values of the standard deviation of system response, making them less sensitive to
the variations of input parameters—i.e., more robust.

In order to compare the results yielded from the application of the original robustness
measure, we analysed the relation ββ − β for different foundation widths and coefficients
of variations of the soil’s internal friction angle (COVφ). The results of the analysis are
shown in Figure 4. Due to a linear relation with a high correlation coefficient between ββ

and β, we conclude that the design within the Pareto front—but the shape of the Pareto
front as well—will be very similar for examples where the robustness measure is β or ββ.

It is possible to calculate the reliability index by using the PEM method, which is sig-
nificantly simpler and computationally less demanding than the other reliability methods
(FORM, SORM, FOSN, Monte Carlo). Zhao and Ono [14] suggest PEM with seven estimat-
ing points, used in the outer loop of the RGD procedure, whose accuracy is significantly
greater than the earlier instances of the method using 2, 3 and 5 estimating points.
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Figure 4. The relation β− ββ for different foundation widths and variation coefficients of the soil’s
internal friction angle.

The main shortcoming of PEM with seven estimating points is the fact that the random
variables are transformed into standard normal space using the Rosenblatt transformation.
In the example of correlated random variables, the transformation of random variables
requires having total probabilistic information data, which is almost never the case in
engineering. By substituting the Rosenblatt transformation with the Nataf transformation
in PEM, we enable the consideration of correlated variables with the knowledge of the
correlation matrix, their marginal distributions, mean values and standard deviations. The
data on correlations between geotechnical parameters, their statistical distribution and
standard deviation are available in literature, and the mean values can be determined from
the geotechnical investigation results. The modification of PEM by introducing the Nataf
transformation was suggested by Yu et al. [16], and they named the modified method
IPEM. The Nataf transformation and its inverse are expressed in the following equations:

TN : x = F−1
X [Φ(L0u)], (5)

T−1
N : u = L−1

0

{
φ−1[FX(x)]

}
, (6)

where FX(.) is the marginal cumulative probability density function (CDF) of X, Φ(.) is
the standard normal CDF of X, L0 is the lower triangle matrix yielded from the Cholesky
decomposition of the correlation matrix R0 =

[
ρ0,ij

]
. The procedure of determining the

correlation matrix R0 is composed of a series of complex function integrations [17], but
its approximation is possible, based on a set of semiempirical equations suggested by
Kiureghian and Liu [18]. R0 is approximated based on the known correlations of ρij and
the ratio of F in the following way:

F =
ρ0,ij

ρij
, (7)

The value of the ratio of F is given for different sets of marginal distributions, divided
into two groups. According to the distribution pair, tables are given which provide the
values/equations of F.

The IPEM procedure is conducted using simpler mathematical operations. The inverse
Nataf transformation, which is a part of IPEM, is required only at the estimating points,
and can be done simply, e.g., by using the built-in function of Microsoft Excel, or the Python
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program language used with the “SciPy” package. Since the accuracy of the calculations of
β is highly dependent on the method used [19], the accuracy of IPEM for ULS and SLS of
shallow foundation was examined. The Monte Carlo method was chosen as the control
method, and the results are given in Tables 3 and 4.

Table 3. The errors of the IPEM method for ULS.

Foundation
Width (m)

COVϕ = 0.05 COVϕ = 0.10 COVϕ = 0.15
βIPEM βMC |∆β| βIPEM βMC |∆β| βIPEM βMC |∆β|

2 2.903 2.869 0.034 2.321 2.298 0.023 2.201 2.173 0.028
2.2 4.026 3.988 0.038 3.184 3.163 0.021 2.949 2.83 0.119
2.4 5.241 5.196 0.045 4.114 4.077 0.037 3.75 3.753 0.003
2.6 6.548 6.478 0.07 5.108 5.072 0.036 4.603 4.634 0.031
2.8 7.943 7.878 0.065 6.167 6.135 0.032 5.508 5.397 0.111
3 9.427 9.343 0.084 7.289 7.233 0.056 6.464 6.469 0.005

* β IPEM , βMC—reliability indexes calculated using the IPEM and Monte Carlo methods.

Table 4. The errors of the IPEM method for SLS.

Foundation
Width (m)

COVϕ = 0.05 COVϕ = 0.10 COVϕ = 0.15
βIPEM βMC |∆β| βIPEM βMC |∆β| βIPEM βMC |∆β|

2 0.854 0.845 0.009 0.724 0.718 0.006 0.797 0.783 0.014
2.2 1.338 1.324 0.014 1.107 1.095 0.012 1.137 1.122 0.015
2.4 1.831 1.812 0.019 1.494 1.48 0.014 1.479 1.475 0.004
2.6 2.334 2.309 0.025 1.887 1.872 0.015 1.823 1.788 0.035
2.8 2.845 2.815 0.030 2.284 2.266 0.018 2.171 2.166 0.005
3 3.364 3.334 0.030 2.686 2.663 0.023 2.521 2.496 0.025

* β IPEM , βMC—reliability indexes calculated using the IPEM and Monte Carlo methods.

The average error in the estimation of the reliability index using the IPEM method
for ULS and SLS of shallow foundations, for different variation coefficients of the internal
friction angle, is approximately 1%—which is negligible.

2.2.3. The Optimisation of the Number of Random Variables Using a Sensitivity Analysis

Obtaining non-dominated designs by applying the genetic algorithm in the RGD
procedure can be optimised by reducing the number of random variables included in the
reliability analysis. In the reliability calculation, failure is a probabilistic event, and its
probability is given by:

Pf = Prob {g(X) ≤ 0}, (8)

where X is a random vector and g(.) is a limit state function.
In the case of a shallow foundation loaded by permanent and variable vertical action

in cohesionless soil, the function of the limit state for ULS can be expressed as follows:

gULS = qu · B · L−VG −VQ = RULS −Vg −Vq = q′Nqsq + 0.5 γ ′B′Nγsγ −VG −VQ, (9)

where Nq i Nγ are load capacity coefficients, sq and sγ are the coefficients of foundation
shape, γ′ is the effective unit weight of soil, B′ is the effective foundation width, q′ is the
effective overburden pressure at the foundation base level, Vg is the permanent vertical
load, Vq is the variable vertical load. The function of the serviceability limit state can be
defined by applying a formula developed by Akbas and Kulhawy [20], which is derived
from load-settlement behaviour of a shallow foundation under axial compression loading

gSLS =
RULS(st/B)
a(st/B) + b

−Vg −Vq, (10)

where st is the tolerated settlement, B is the foundation width, and coefficients a and b are the
parameters of the hyperbolic model that fit the normalised-settlement curve. Random vectors
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from Equation (8) for the ultimate limit state can be expressed as XULS =
(
φ′, γ ′, Vg, Vq

)T;

for the serviceability limit state, the following applies: XSLS =
(
φ′, γ ′, a, b, Vg, Vq

)T.
The Sobol sensitivity analysis is conducted, with the aim of determining the contri-

bution of the variance of each individual random variable to the total variance of limit
state functions for both ULS and SLS. The Sobol sensitivity analysis is a variance-based
method which determines the influence of uncertainties in the model input factors on the
uncertainty in the output of the model [21]. By determining the first order Sobol indices,
we determine the effect of the variation of individual random variables on the variance
of system response. The Sobol indices were calculated in the Python program, using the
open source package “OpenTURNS” [22]. The variables whose contribution to the system
response variance is negligible can be “frozen”, which will make the RGD procedure less
computationally demanding. Tables 5 and 6 show the results of sensitivity analyses for
different COVφ values, for both ULS and SLS. The presented results demonstrate that the
soil’s internal friction angle is the dominant variable and contributes most to the total
variance of system responses. The value of the first order Sobol index is similar for ULS
and SLS, and for different COVφ values it is within in the ≈ 0.84− 0.99 range, depending
on the value of the internal friction angle.

Table 5. First order Sobol indices of the ULS limit state function of shallow foundation in non-
coherent soil.

Variable COVφ = 0.05 COVφ = 0.10 COVφ = 0.15

φ′ 0.840 0.960 0.990
γ′ 0.037 0.009 0.002
Vg 0.069 0.018 0.005
Vq 0.054 0.013 0.003

Table 6. First order Sobol indices of the SLS limit state function of shallow foundation in non-
coherent soil.

Variable COVφ = 0.05 COVφ = 0.10 COVφ = 0.15

φ′ 0.845 0.970 0.994
γ′ 0.032 0.006 0.001
Vg 0.060 0.012 0.002
Vq 0.048 0.009 0.002
a 0.001 0.000 0.000
b 0.014 0.003 0.001

Due to the high values of first order Sobol indices of the soil’s internal friction angle,
reliability analyses of the ultimate and serviceability limit states were conducted for two
groups of random vectors, which differ in the number of random variables. The first
group of random vectors is composed solely of the soil’s internal friction angle, and
can be expressed as follows: XULS = (φ′)T and XSLS = (φ′)T . In the second group
the random vectors include all the random variables defined by limit state functions for
ULS and SLS: XULS =

(
φ′, γ ′, Vg, Vq

)T and XSLS =
(
φ′, γ ′, a, b, Vg, Vq

)T . The aim of the
analysis is to determine the influence of reducing the number of random variables on the
reliability analyses results, in order to optimise the RGD procedure. Reliability analyses
were conducted using the IPEM method, and the results are presented in Tables 7 and 8.
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Table 7. Comparison of the results of ULS reliability analyses with different numbers of random
variables.

Foundation
Width (m)

COVϕ = 0.05 COVϕ = 0.10 COVϕ = 0.15
β1 β2 |∆β| β1 β2 |∆β| β1 β2 |∆β|

2 2.970 2.903 0.067 2.303 2.321 0.018 2.179 2.201 0.022
2.2 4.121 4.026 0.095 3.164 3.184 0.020 2.923 2.949 0.026
2.4 5.367 5.241 0.126 4.091 4.114 0.023 3.719 3.75 0.031
2.6 6.706 6.548 0.158 5.083 5.108 0.025 4.567 4.603 0.036
2.8 8.147 7.943 0.204 6.139 6.167 0.028 5.466 5.508 0.042
3 9.657 9.427 0.230 7.258 7.289 0.031 6.417 6.464 0.047

* β1, β2 —reliability indexes calculated for 1 and 4 random variables.

Table 8. Comparison of the results of SLS reliability analyses with different numbers of random
variables.

Foundation
Width (m)

COVϕ = 0.05 COVϕ = 0.10 COVϕ = 0.15
β1 β2 |∆β| β1 β2 |∆β| β1 β2 |∆β|

2 0.870 0.845 0.025 0.709 0.718 0.009 0.780 0.783 0.003
2.2 1.367 1.324 0.043 1.090 1.095 0.005 1.118 1.122 0.004
2.4 1.874 1.812 0.062 1.476 1.480 0.004 1.458 1.475 0.017
2.6 2.390 2.309 0.081 1.867 1.872 0.005 1.800 1.788 0.012
2.8 2.915 2.815 0.100 2.263 2.266 0.003 2.146 2.166 0.020
3 3.449 3.334 0.115 2.664 2.663 0.001 2.494 2.496 0.002

* β1, β2 —reliability indexes calculated for 1 and 6 random variables.

The average difference in reliability indexes β1 and β2 of the results presented in
Tables 7 and 8 for ULS is 1.3%, and 1.42% for SLS, with maximum deviations of 2.36% and
3.25%. For the value of COVφ = 0.1, as suggested in literature, deviations are smaller—
0.56% for ULS and 0.41% for SLS. Such small deviations are in line with the results of
sensitivity analyses presented in Tables 3 and 4. We therefore conclude that the errors in
calculating the reliability index, stemming from freezing random variables γ′, Vg and Vq
in the ULS reliability analysis and γ′, Vg, Vq, a and b in the SLS reliability analysis, are
negligible. Consequently, we propose conducting reliability analyses for ULS and SLS in
which the internal friction angle is the only random variable. An analysis of the influence
of ODF values on first order Sobol indices was also conducted. The results of this analysis
are not presented, but it was confirmed that ODF has no significant influence on the value
of the first order Sobol indexes for both ULS and SLS.

We would like to point out that the limit state functions for shallow foundations can
also be determined by using other calculation models. This paper used the analytical
expression for estimating the bearing capacity of a shallow foundation which is recom-
mended in Eurocode 7, Annex D [23] (Equation (9)). This expression is based on a theory
extrapolated from the results of laboratory tests on the behaviour of small footings in
dense sand and under 1 g condition [24]. Altaee and Fellenius [25] are researching soil
behaviour in such conditions and conclude that it has little relevance to the behaviour of
a full-scale prototype. The main reasons for this are inadequate stress levels in soil and
non-linear stress–strain soil behaviour. With small-scale tests, the depth of model influence
is relatively small, so soil behaves as if unconsolidated—after an initial volume assessment,
soil dilates and then contracts. This results in a stress–strain curve which suggests ultimate
resistance; this has not been proven in full-scale tests to this day. Due to all of the above,
Fellenius [26] recommends bearing capacity analysis to be used only as a simple estimate
for comparing the design with previous designs.

Despite the mentioned shortcomings and simplifications, Eurocode 7 recommends
using the expression from Equation (9) for determining the bearing capacity of a shallow
foundation; it is consequently used in everyday engineering practice. Since the aim of
this paper is to present the procedure of the modified RGD method whose results have
been harmonised with EC7, the bearing capacity of a shallow foundation is determined
according to the recommendations from this technical standard. Limit state functions can
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also be defined using other calculation models following the same principle, which will
result in different mathematical expressions of limit state functions.

2.2.4. Optimisation Using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

Genetic algorithms (GA) are the heuristic optimisation and search techniques that
mimic nature’s evolutionary principles. The concept of the genetic algorithm was devel-
oped by John Holland, and it is used in solving problems from various problem domains,
including sciences, commerce, and engineering [27]. The non-dominated sorting genetic
algorithm II (NSGA-II) was first suggested by Deb et al. [28] with the aim of improving
the existing multi-objective evolutionary algorithms that use non-dominated sorting. A
flowchart of the NSGA-II algorithm is shown in Figure 5.

Figure 5. A flowchart of the NSGA-II algorithm.

In the original RGD procedure, objectives are calculated for every design in the design
space, followed by non-dominated sorting to determine the Pareto front (Figure 1). Such
an approach results in a high number of reliability analyses, which depends on the number
of designs in the design space, as well as on the number of noise factors. In the example
from [1], the number of designs is 450, and the number of noise factors is 4 and 5 for ULS
and SLS, respectively. In that case, the RGD procedure includes 7× 4× 450 = 12,600 FORM
and 450 PEM analyses, and 7 × 5 × 450 = 15,750 FORM and 450 PEM analyses for SLS (the
number 7 refers to the 7 estimating points according to the PEM procedure).

We suggest calculating objectives only for the designs chosen in the procedures
included in the NSGA-II algorithm. In that case, the number of computations for every
objective depends on the given termination criterion, which can be, e.g., the number of
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function evaluations, the number of iterations, or an advanced criterion based on the
defined performance metric.

Due to a number of reasons, applying any of the algorithmic methods will rarely
enable determining the true Pareto front, with only its approximation being possible.
The approximation quality can be measured using various indicators, among which the
hypervolume indicator (HI) [29] is highly important. An increase in the value of HI is an
indicator of convergence towards the true Pareto front. When its value ceases to change
significantly, in relation to the number of evaluations of objective functions, the algorithm
is considered to have converged. An example of the hypervolume indicator for a two-
objective case is shown in Figure 6, and includes a hatched region bound by the reference
point r.

Figure 6. The hypervolume indicator in the case of a two-objective optimisation.

We analysed the performance of the NSGA-II algorithm in the case of the RGD
procedure, modified as described in Sections 2.2.1–2.2.3. An optimisation was conducted,
with three objectives defined as follows: minimise foundation cost, maximise ULS and SLS
robustness with the decision variables being foundation width (B) and depth (D).

Since the choice of genetic algorithm parameters directly influences the quality of
solutions and convergence [30], we conducted a parametric analysis of crossover and
mutation of operator parameters, with the aim of determining their optimum values.
The analysis was conducted for different COVφ values. The work included the usage of
a simulated binary crossover (SBX) operator, which was shown to be efficient for real
variables [31]. The parameters of the SBX operator are crossover probability (pc) and
distribution index (ηc). Crossover probability is the number of realised crossovers in one
generation. If its value is 0%, then the entire new generation equals the preceding one; if
the crossover rate is 100%, the entire generation is substituted with new offsprings, yielded
from the crossover of units in the previous generation. The distance of the offsprings from
the parent solution will depend on the value of ηc: if ηc is large, the resulting offsprings
will be near the parent solution, with the opposite being the case for smaller values. The
mutation operator ensures the maintaining of genetic diversity in the genetic algorithm
population. Deb and Deb [32] analyse the usage of polynomial and Gaussian mutation
operators for real-parameter genetic algorithms. They conclude that both operators are
equally efficient, and this work used the polynomial mutation operator with a defined
mutation probability (pm) and distribution index (ηm). The value of the pm parameter was
chosen according to the proven efficient expression pm = 1/n, where n is the number of
decision variables [30]. The parametric analysis yielded optimal parameters of the NSGA-II
algorithm: pc = 0.9, ηc = 30, pm = 0.5 and ηm = 20. The relation between normalised
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hypervolume and the number of evaluations of objective functions, for the mentioned
parameters, is shown in Figure 7 and Table 9.

Figure 7. The relation between a normalised hypervolume and the number of evaluations of the
modified RGD procedure.

Table 9. The required number of evaluations and the number of non-dominated solutions of the
modified RGD procedure.

COVφ Number of Non-Dominated Solutions Number of Evaluations

0.05 71 227
0.10 52 280
0.15 28 275

Figure 7 and Table 9 both show the quick convergence of the NSGA-II algorithm.
Compared to the original RGD procedure, which requires 450 evaluations for the same
input parameters, the suggested approach reduces that number by 40–50%.

By adopting the modification suggested in the Sections 2.2.1–2.2.4, the RGD proce-
dure is simplified, and its flow diagram is shown in Figure 8. During the first step, it is
necessary to determine the statistic characteristics (mean value, standard deviation, statis-
tical distribution) for all random variables and their mutual correlations. The number of
random variables depends on the chosen geotechnical model of ultimate and serviceability
limit state. The next step is conducting a sensitivity analysis with the aim of freezing the
variables whose contribution to the variance of system response is negligible. When all
the random variables are defined, we need to choose a decision variable, which makes
the optimisation problem completely defined. The final step is composed of conducting a
multi-objective optimisation using the NSGA-II algorithm. Unlike the original procedure,
the inner loop (Figure 1) is not conducted and determining the robustness measures from
the outer loop is done within the NSGA-II algorithm, which reduces the required number
of objective functions evaluations. The result of the optimisation is a set of non-dominated
solutions, out of which the final design is chosen.
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Figure 8. A flowchart of the modified RGD method.

3. Results
3.1. Illustrative Example 1—Design of Shallow Foundation

The problem of optimising a shallow foundation on non-coherent soil was considered,
similar to the one presented by Juang et al. [1], from which we took the characteristics of
the used variables. As shown in Figure 9, the foundation is subjected to vertical permanent
(VG) and variable (VQ) loads. Aside from the soil’s internal friction angle, all other random
variables are “frozen”, since their contribution to the total system response variance is
negligible, as shown in Section 2.2.3. A three-objective, constrained optimisation was
conducted (ULS, SLS, foundation cost) with two decision variables: foundation width (B)
and depth (D). A square foundation layout is assumed (B = L).

Figure 9. The geometry of the computation model.
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The ultimate and serviceability limit states are defined in Equations (5) and (6), and
maximum tolerated settlement is set at 25 mm. The estimation of foundation cost is
conducted using the expression defined by Wang and Kulhawy [33]:

Z = Qece + Q f c f + Qccc + Qbcb, (11)

where Qe, Q f , Qc, Qb signify the quantities of excavation, formwork, concrete and com-
pacted backfill, respectively, and ce, c f , cc, cb the associated unit prices. More on the cost
calculation for a shallow foundation can be found in [33].

The foundation soil is dry sand with the following statistical characteristics of the
internal friction angle: µφ = 34.4◦ and σφ = 0.59. The characteristics of the deterministic
variables are shown in Table 10.

Table 10. The characteristics of the deterministic variables used in foundation optimisation.

Description Symbol Value

Permanent load VG 2000 kN
Variable load VQ 1000 kN

Soil unit weight γ 18.5 kN/m3

Fitting parameters of the
load-settlement curve

a 0.6992
b 1.7675

The problem of shallow foundation optimisation in the case in question can be written
out as follows:

Find: d = [B,D]
Subject to: B ∈ {1.0 m, 1, 1 m, . . . , 5.0 m} and

D ∈ {1.0 m, 1, 1 m, . . . , 2.0 m}
βULS ≤ 3.8
βSLS ≤ 1.5
ODFULS ≤ 1.0
ODFSLS ≤ 1.0

Objectives: Maximising βULS and βSLS
Minimising cost of shallow foundation

The solutions for the optimisation are shown in Figures 10 and 11. A set of non-
dominated designs (Pareto front) in objective space is shown in Figure 10 on the left, and in
decision space in Figure 10 on the right. Aside from the Pareto front (magenta), also shown
are the dominated feasible designs (green) and infeasible designs (black). The design space
is composed of a total of 451 designs, 311 of which are feasible and 140 infeasible. The
optimisation resulted in 71 non-dominated designs which make up the Pareto front. The
minimal foundation dimensions from the Pareto front are B × D = 2.1 × 1.8 m, with the
maximum being 5.0× 2.0 m, at the costs of USD 1160 and USD 5687, respectively. Figure 10,
on the right, shows the grouping of non-dominated designs in the vicinity of the maximum
prescribed depth of D = 2.0 m, which is in accordance with the original method’s solutions
presented by Juang et al. in [1].

Figure 11 shows the projections of the Pareto front onto axes βULS and βSLS. The
minimum values of the reliability index for ULS and SLS are 9.4 and 3.2, respectively,
which is significantly higher than the prescribed 3.8 and 1.5, respectively. This fact is a
consequence of a relatively high value of the internal friction angle’s standard deviation,
along with the fact that the prescribed condition ODFULS ≥ 1 is more critical than the
criteria associated with the reliability indexes.
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Figure 10. The Pareto front, along with the dominated and infeasible designs in objective space (left)
and decision space (right).

Figure 11. The projections of the Pareto front, the dominated and infeasible designs onto planes
βULS − cost and βSLS − cost.

We analysed the influence of individual constraints on the position of non-dominated
designs in the decision space, and the results are shown in Figure 12. The four broken lines
represent the boundary between feasible and infeasible designs for different constraints.
Left of the line are infeasible designs, with feasible designs being right of the line and
on the line itself. Figure 12 clearly shows that the constraint ODFULS ≥ 1 defines the
position of the Pareto front in the design space. Comparing to the other constraints, to
meet ODFULS ≥ 1 constraint, a wider foundation width at the same depth is needed. Such
a relation among constraints is the consequence of a relatively low value of the standard
deviation of the soil’s internal friction angle (σφ). Reliability indexes are more sensitive to a
change in standard deviations of random variables than ODF. To illustrate this point further,
Figure 12—on the right—shows lines that represent the boundaries of the distribution of
design space into feasible/infeasible designs, in the case of a larger standard deviation
of the internal friction angle, σφ = 3.44. In that case, the number of feasible designs is
greatly decreased (from 311 to 236), and the main reason behind the decrease is a significant
reduction of the reliability index, which led to an additional filtering of the designs. In this
case, the position of the Pareto front is defined by the constrains βULS ≥ 3.8 and βSLS ≥ 1.5,
while the constraints relating to ODFULS and ODFSLS are not as critical.
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Figure 12. The analysis of constraints on the position of feasible/infeasible design in design space
for σφ = 0.59 (left) and for σφ = 3.4 (right).

A comparison was made between the optimisation results yielded from the original
and the modified RGD procedure. The feasible region of the original RGD procedure
is composed of 331 designs, while the modified RGD procedure includes 310 designs.
The results of the comparison are presented in Figure 13. The modified RGD procedure
resulted in more conservative solutions, as seen from the boundary between the feasible
and infeasible region, which is shifted slightly towards the right (Figure 13). A reduced
number of designs in the feasible region in the modified RGD procedure, as opposed to the
original procedure, is the consequence of additionally introduced constrains, according to
the criteria of limit states prescribed in Eurocode 7.

Figure 13. The result comparison of the original and modified RGD procedure for the decision space.

Figure 14 shows the comparison of the Pareto fronts in the decision space, which
illustrates how the non-dominated designs of the modified method are moved to the right,
when compared to the original method. The Pareto front of the original method includes
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a total of 63 non-dominated designs, with 72 in the modified one; 54 of them are present
in both Pareto fronts. In both cases, the non-dominated designs are grouped close to the
prescribed maximum foundation depth.

Figure 14. The comparison of Pareto fronts obtained by applying the original and the modified RGD
method in the decision space.

3.2. Illustrative Example 2—Design of Axially Loaded Pile

The modified RGD method is applied for the design of an axially loaded pile in a
stiff clay, whose geometry is shown in Figure 15. The soil parameters and external action
are taken from the example given in [34]. It is necessary to optimise pile length (D) and
diameter (B), with the aim of maximising robustness while minimising pile cost.

Figure 15. Pile geometry.

The “α method” [35] is used for determining the bearing capacity of the pile, and the
ULS limit state function is defined as follows:

gULS = Rb + Rs −Wp −VG −VQ = (Nccu + σv0) D2 π/4 + αucuDπL−VG −VQ (12)

where Rb = (Nccu + σv0) D2 π/4 and Rs = αucuDπL are the pile base and shaft resis-
tances [35], Wp is the weight of the pile, Nc = 9, cu is undrained shear strength, σv0 is total
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vertical stress at the depth of the pile base, αu is the coefficient used to relate cu to the
adhesive stress along the pile shaft.

The SLS limit state function is defined by using the equation which connects the
bearing capacities of ULS and SLS, attained through the statistical analyses of the results of
pile load tests [36]:

QSLS
QULS

=
sa

a + bsa
(13)

where QULS and QSLS are the bearing capacities for ULS and SLS, sa is allowable set-
tlement (20 mm), a and b are hyperbolic curve-fitting parameters for the normalised
load-settlement curve.

Using Equation (13), the SLS limit state function can be expressed as follows:

gSLS =

(
sa

a + bsa

)
QULS −VG −VQ (14)

The cost of the pile (C) is related to the concrete volume. In the presentation of
applying of the RGD method to the case of an axially loaded pile, Equation (15) was used,
in which the cost is estimated by the following expression [34]:

C =

(
π B2D

4

)
unit (15)

The pile is subjected to axial permanent (VG) and variable (VQ) loads. Undrained
shear strength cu is determined from a triaxial test, and its mean value increases linearly
with depth, and according to the following expression: cu = 13.0z, where z is depth. The
characteristics of random variables are shown in Table 11.

Table 11. The characteristics of random variables.

Variable Distribution Mean Value Coefficient of Variation (COV)

VG Normal 258 kN 0.1
VQ Normal 116 kN 0.15
γ Normal 19.0 kN/m3 0.05
cu Normal 13.0z kPa/m 0.2
α Normal 0.55 0.05
a Lognormal 2.79 0.7
b Lognormal 0.82 0.1

In order to determine the influence of individual random variables on the variance
of ULS and SLS limit state functions, a sensitivity analysis was conducted using Soboli
indices. The analysis results are given in Table 12.

Table 12. First order Sobol indices for ULS and SLS analyses.

Variable/Analysis cu γ α VG VQ a b

ULS 0.95 ≈0 0.045 ≈0 ≈0 - -
SLS 0.64 ≈0 0.03 ≈0 ≈0 0.19 0.14

Based on the conducted sensitivity analysis, the variables with small contributions
to the system response variances are frozen. The reliability analyses are conducted us-
ing random vectors with a reduced number of random variables, defined as follows:
XULS = (cu, α)T and XSLS = (cu, a, b)T . The next step in the implementation of the RGD
method is the identification of decision variables and their lower and upper boundaries. In
this case, the following decision variables were chosen:

– length of the pile: 9 ≤ L ≤ 18 m;
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– diameter of the pile: 0.5 ≤ D ≤ 0.8 m.

After defining limit state functions, random and deterministic variables, and decision
variables, the problem of optimisation according to the modified RGD method can be
expressed as follows:

Find: d = [L,D]
Subject to: L ∈ {9.0 m, 9.1 m, . . . , 18.0 m} and

D ∈ {0.4 m, 0.5 m, . . . , 0.8 m}
βULS ≤ 3.8
βSLS ≤ 1.5
ODFULS ≤ 1.0
ODFSLS ≤ 1.0

Objectives: Maximising βULS and βSLS
Minimising cost of the pile

After optimisation, it was determined that the design domain for the case in question
includes a total of 455 designs, 253 of which are within the feasible, and 202 in the infeasible
region. Figure 16 illustrates the convergence of the NSGA-II algorithm by measuring
hypervolume indicators. After conducting 337 evaluations, the algorithm converged. The
yielded Pareto front is composed of a total of 107 non-dominated solutions. Since the
feasible region is defined according to Equation (3), all non-dominated solutions meet the
ULS and SLS criteria prescribed in EC7.

Figure 16. The convergence of the NSGA-II algorithm.

The optimisation was also conducted by applying the original RGD method. Since the
feasible and infeasible regions match the modified RGD method’s results completely, they
are not shown separately.

Figure 17 shows optimisation solutions in objective and decision space. Figure 17,
on the right, illustrates a tendency of grouping non-dominated solutions with bigger pile
lengths for all considered diameters.

Interruptions in the Pareto front, visible in Figure 17 on the left and in Figure 18,
are the consequence of the discretised space of the decision variables, and the significant
influence the diameter has on pile cost. Each of the curves show designs with the same
diameter. The lowest curve matches pile diameter D = 0.4 m, while the highest matches
pile diameter D = 0.8 m.
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Figure 17. The Pareto front, along with the dominated and infeasible designs in objective space (left)
and decision space (right).

Figure 18. The projections of the Pareto front, the dominated and infeasible designs onto planes
βULS − cost and βSLS − cost.

4. Discussion

This paper presented the modified RGD method, which is used in geotechnical engi-
neering to determine optimal, robust designs which meet the safety and cost requirements.
The method is computationally expensive and its application in everyday engineering
practice is complex. This fact is mainly the consequence of a large number of reliability anal-
yses within the inner and outer loop of the RGD method, which needs to be performed to
calculate the feasibility robustness index ββ. The procedure consists of the FORM method
with integrated PEM, as shown in Figure 1. To calculate ββ, we need to know the standard
deviations of “noise factors”. In the RGD method, aside from geotechnical parameters, their
standard deviations are also treated as “noise factors”, so a knowledge of their statistical
characteristic is required. In everyday practice we often do not have sufficient data for
a quality statistical analysis, so their values can only be roughly estimated. Tan et al. [4]
simplify the calculation of ββ by applying the sensitivity of reliability index. Doing so
reduces the number of reliability analyses for M (the number of designs in the design
space), but still uses mathematically complex operations, and input parameters remain
unaltered. Different authors introduce changes into the design robustness measure [5–10],
which also greatly reduces the number of reliability analyses for M, and simplifies the input
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parameters; however, complex mathematical procedures are still applied, unlike the ones
used in everyday engineering practice.

Unlike previous modifications, we—for the first time—suggest a modification of
the RGD method that harmonises the optimisation results with the criteria prescribed
in Eurocode 7. By doing so, we eliminated the need for additional assessments of the
designs, i.e., the RGD method can be used as an alternative to the traditional geotechnical
analysis. As the design robustness measure, we suggest using a generalised reliability
index (β), which is traditionally used in engineering practice as the measure for structural
reliability. We demonstrated that β by definition fits into the reliability concept, and its
relation to ββ is linear, as shown in Figure 4. Due to the linear relation β− ββ, the feasible
and infeasible regions, as well as the Pareto fronts yielded from the original and from the
modified methods, are similar—as illustrated in Figures 13 and 14. We suggest calculating
the generalised reliability index using the modified PEM method (IPEM), which is simpler
to use, i.e., it does not include mathematically complex operations, while maintaining a
high degree of accuracy—as presented in Tables 2 and 3. We introduce a sensitivity analysis
into the RGD method, with the aim of “freezing” the random variables whose contribution
to system response is negligible. For this purpose, we suggest calculating first order Soboli
indices, which can also be estimated using the IPEM method. To further reduce the number
of conducted reliability analyses, we suggest conducting them only for the designs chosen
via the genetic algorithm NSGA-II. This reduced the number of analyses in the example of
a shallow foundation on coherent soil from M to 0.5− 0.62M, as presented in Figure 7 and
Table 9. The given illustrative example 1 shows a good match of results yielded from the
original and modified methods, illustrated in Figures 13 and 14. According to expectations,
and due to the introduction of additional constraints, the feasible region of the modified
method was moved right in relation to the original method.

In the case of the axially loaded pile shown in the illustrative example 2, the feasible
and infeasible regions calculated using the original and modified methods were the same.
The reason behind this is a relatively high variance of the random variable (cu), which
is why the position of the Pareto front in decision space is defined exclusively by the
constraint related to βULS.

A satisfactory result match was achieved, with significantly simpler input parameters,
a smaller number of conducted reliability analyses, the usage of simpler mathematical
operations, and greatly improved computational efficiency. The suggested modifications
simplify the RGD method, drawing it closer to engineers and its usage in everyday engi-
neering practice.

The paper gives two simple examples with the aim of presenting the procedure
of conducting the modified RGD method. In case soil conditions are more complex,
the procedure remains the same, provided there are analytical expressions of limit state
functions. When these expressions are unknown, i.e., when it is impossible to express them
mathematically, their estimation is made possible by using more sophisticated methods,
such as the finite element method. This can be conducted using the Plaxis software, which
enables conducting analyses by running scripts written in the Python program language.
For further research, we recommend exploring the possibilities of integrating the finite
element method into RGD, which could be used for more complex geotechnical tasks.

To further improve the RGD method, we suggest researching the influence of substi-
tuting a discretised design space with a continuous one. Since the designs included in the
Pareto front are grouped close to the maximum prescribed foundation depth (Dmax), there
is a possibility that the proposed substitution results in a Pareto front consisting only of
designs with the foundation depth of Dmax. This could potentially reduce the number of de-
cision variables. Furthermore, we noticed that the variation of the crossover and mutation
parameters significantly influences the convergence of the NSGA-II algorithm. We suggest
further research into the application of the improved NSGA-II algorithm with self-adaptive
crossover and mutation parameters, with the aim to further reduce the number of the
required reliability analyses.
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