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Abstract: Voice Processing Systems (VPSes), now widely deployed, have become deeply involved
in people’s daily lives, helping drive the car, unlock the smartphone, make online purchases, etc.
Unfortunately, recent research has shown that those systems based on deep neural networks are
vulnerable to adversarial examples, which attract significant attention to VPS security. This review
presents a detailed introduction to the background knowledge of adversarial attacks, including the
generation of adversarial examples, psychoacoustic models, and evaluation indicators. Then we
provide a concise introduction to defense methods against adversarial attacks. Finally, we propose a
systematic classification of adversarial attacks and defense methods, with which we hope to provide
a better understanding of the classification and structure for beginners in this field.

Keywords: adversarial attack; adversarial example; adversarial defense; speaker recognition; speech
recognition

1. Introduction

With the successful application of deep neural networks in the field of speech process-
ing, automatic speech recognition systems (ASR) and automatic speaker recognition sys-
tems (SRS) have become ubiquitous in our lives, including personal voice assistants (VAs)
(e.g., Apple Siri (https://www.apple.com/in/siri (accessed on 9 September 2021)), Ama-
zon Alexa (https://developer.amazon.com/en-US/alexa (accessed on 9 September 2021)),
Google Assistant (https://assistant.google.com/ (accessed on 9 September 2021)), iFLY-
TEK (http://www.iflytek.com/en/index.html (accessed on 9 September 2021))), voiceprint
recognition systems on mobile phones, bank self-service voice systems, and forensic test-
ing [1]. The application of these systems has brought great convenience to people’s personal
and public lives, and, to a certain extent, enables people to access help more efficiently
and conveniently.

Recent research, however, has shown that the neural network systems are vulnerable
to adversarial attacks [2–5]. This will threaten personal identity information and property
security and leaves an opportunity for criminals. From the perspective of security, the pri-
vacy of the public is in danger. Therefore, for the purpose of public and personal safety,
mastering the methods of attack and defense will enable us to prevent problems before
their probable occurrence.

In response to the problems mentioned above, the concept of adversarial examples [2]
was born. The original adversarial examples were applied to image recognition sys-
tems [3,4,6,7] and then researchers expanded the adversarial examples to include speech
recognition, speaker recognition, and other systems. Compared with the problem of ad-
versarial example classification on pictures, the voice presents the following challenges:
first, when disturbance is added to audio, it can be heard by humans, but the disruption of
pictures is aimed at the pixels, and is harder to discover for humans. Secondly, in a practical
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sense, image classification systems are primarily used in medical imaging, etc. Still, voice
recognition systems are more valuable and are closely related to everyone who has a
smartphone. Wrong instructions may cause the loss of a large amount of users’ property.

With the further development of science and technology, new types of speech systems
may emerge in an endless stream, but the problem that neural networks are vulnerable
to attacks has not been solved. Therefore, before solving new issues, overview research
on existing technologies is essential and vital. This article upholds this original intention,
and the main contributions made in this paper are:

• In order to better illustrate the application of adversarial attacks and defenses in
sound processing systems, we introduce in detail the contents of adversarial attacks,
including methods for generating adversarial examples and metrics for adversarial
attacks. At the same time, we summarize the main methods of adversarial aggression
and defense in speaker recognition and speech recognition, respectively.

• Based on the above research methods, we systematically categorize the methods of
adversarial attack and defense.

This overview is organized as follows. We first review the background information
about attacks and VPSes by showing the basic concept of adversarial examples, automatic
speech recognition systems, speaker recognition systems, and defense. Moreover, we
introduce the threat model in detail. Accordingly, the methods of adversarial defense are
categorized through their characteristics.

2. Background

In this section, we briefly introduce the basic concepts of attack and defense and the ASR
system, and the speaker recognition system is explained to facilitate subsequent understanding.

2.1. Attack

Most of the attacks in the voice field are evading attacks. The basic concept is to
convert the target value of the system into non-targets. The most vivid example is to
add disturbance to the correct audio before passing the ASR system and result from the
wrong text context. Taking the particularity of audio into account, usually, people can
understand the task of attacking voice processing systems as having two points, (1) fooling
the neural network to produce false results, (2) avoiding being discovered by humans. We
review existing attack models, and we deem that the completion of the first task is based
on the audio adversarial with the addition small perturbations to input audio. Then we use
the principle of psychoacoustics [8] to achieve the goal that makes the attack unexpected
and silent.

Figure 1 illustrates the general working flow of an adversarial attack in voice process-
ing systems. The correct result of the original audio passing through the target system
is A, while the attacker adding perturbation to the original audio will make the target
system achieve the wrong result B, and B is different from A which means the attack has
an outstanding performance.

Figure 1. The general working flow of an adversarial attack in a Voice Processing system.
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Therefore, next, we mainly introduce the main generation methods of adversarial ex-
amples and the application of acoustic masking in adversarial examples, and the evaluation
metrics for attack models of voice processing systems.

2.1.1. Adversarial Examples

A breakthrough in attacks was made by Szegedy et al. [2]. For the first time it
was proven that the neural network can be misclassified by adding a small amount of
disturbance that is imperceptible to humans.

More formally, with a neural network f and an input x, we want to find a small
malicious perturbation δ:

x̃ = x + δ such that ||δ||p < ε (1)

with the goal of forcing the network to produce an erroneous output for x̃, where || · ||p is
the p− norm. In other words, if x has a true output y, then the attacker forces the network
to produce ỹ 6= y for the perturbed example x̃.

To systematically analyze approaches for generating adversarial examples, we analyze
the approaches for generating adversarial examples.

L-BFGS: Szegedy et al. [2] first introduced adversarial examples against a deep neural net-
work in 2014. They model the problem as a constrained minimization problem called L-BFGS:

min ||δ||22 s.t. f (x + δ) = ỹ δ ∈ [0, 1]m (2)

In general, the exact computation of min||δ||2 is a hard problem, so they use the addition
of the minimized loss function:

min c · ||δ||22 + loss f (x + δ, ỹ) s.t. δ ∈ [0, 1]m (3)

where, `((x + δ), ỹ) is a loss function of a deep neural network. One common loss function
to use is cross-entropy. A line search is performed to find the constant c > 0 that yields
an adversarial example of minimum distance: in other words, we repeatedly solve this
optimization problem for multiple values of c, adaptively updating c using bisection search
or any other method for one-dimensional optimization. This generation algorithm has the
characteristics of fast generation speed and low memory footprint, but there is still a lot of
room for improvement in terms of confrontation.
The fast gradient sign method (FGSM): The fast gradient sign method [6] has two key dif-
ference from the L-BFGS method: first, it has been optimized for L∞ distance measurement,
and second, its main purpose is to quickly generate the adversarial examples rather than
generate very close examples. Given an input x the fast gradient sign method sets:

x̃ = x + ε · sign(∇x J(θ, x, y)) (4)

where the perturbation is δ = ε · sign(∇x J(θ, x, y)); ε is chosen to be sufficiently small so as
to be undetectable; θ is the parameter of the classification model; y satisfies y = f (x) and
is the correct output of x; J(θ, x, y) is the loss function used in this deep neural network.
It is worth noting that this method is mainly focused on quickly generating adversarial
examples rather than getting the smallest disturbance.
Basic iterative method (BIM): Although FGSM is simple and computationally efficient
compared to other methods, it has a lower success rate with a nonlinear model. The reason
that leads to this phenomenon is that, for the linear model, the direction in which the loss
decreases is clear, and even if you iterate multiple times, the direction of the disturbance
will not change. However, for a non-linear model, the direction may not be completely
correct if you only perform one iteration, so multiple iterations are needed to determine
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the optimal situation. The BIM [9] method has been improved on FGSM, and one step is
divided into many small steps to iteratively obtain adversarial examples:

Xadv
0 = X

Xadv
N+1 = ClipX,ε{Xadv

N + α · sign(∇X J(θ, Xadv
N , y))} (5)

where the ClipX,ε(A) denotes element-wise clipping A. This method can generate the
adversarial examples in nonlinear model, while at the cost of expensive computation.
Deepfool: Moosavi–Dezfooli et al. [10] proposed DeepFool to compute a minimal norm ad-
versarial perturbation by the basic ideal of the distance from the input x to the boundaries
of the classifier. That is, they assume k̂(x) = sign( f (x)), where f is an binary classifica-
tion function and satisfies f (x) = wTx + b. It can be easily seen that its affine plane is
F = x : wTx + b = 0. When a disturbance is added to a point x0 and perpendicular to the
plane F , the disturbance added is the smallest and can meet the iteration requirements,
as in the formula:

δi(x0) : = argmin||δ||2

= − f (x0)

||w||22
Furthermore, in the overall iterative process, the generation of adversarial examples can be
expressed as:

arg min
δi

||δ||2 s.t. f (xi) +∇ f (xi)
Tδi = 0 (6)

DeepFool uses iteration to generate the minimum norm to counter the disturbance. At each
step, the data values located within the classification boundary are modified step by step
to outside the boundary until a classification error occurs. This method maintains almost
the same resistance as FGSM, while the disturbances generated are smaller.
Jacobian-based Saliency Map Attack (JSMA): JSMA [11] was proposed by Nicolas et al.
It is a method for generating adversarial examples for the type of deep neural network.
It uses the forward guide number to implement it. The generation of the forward guide
number uses the Jacobian matrix of the function function in the trained network. Given the
function of network F, we can obtain the forward derivative by this formula:

∇F(X) =
∂F(X)

∂(X)
= [

∂Fj(X)

∂xi
]i∈1..M,j∈1..N (7)

Universal adversarial examples: Methods such as FGSM, and DeepFool can only generate a
single audio against perturbations, while universal adversarial examples [12] can generate
perturbations almost imperceptible that attack any voice processing systems, and these
perturbations are also harmful to humans. The method used in this paper [12] is similar
to DeepFool, which uses anti-disturbance to push the image out of the classification
boundary, but the same disturbance is for all. Although this article only targets a single
network, ResNet, it has been proven that this malicious perturbation can be generalized to
other networks.
Genetic algorithm: It can be seen that the methods mentioned above for generating adver-
sarial examples are all based on the system loss function or the gradient of the system’s net-
work function. Unfortunately, the above method usually does not work when the attacker
does not know the prior information of the system’s loss function and network function.

Hence, researchers [13–15] use a genetic algorithm to generate a black-box adversarial
example. A genetic algorithm is a gradient-free optimization method, which avoids having
to grasp the prior information of the attacked systems. The algorithm accepts the original
audio clip x and target output label ỹ as entries. Adding random noise to a set of patterns in
a given audio clip creates many candidate adversarial examples. To minimize the impact of
noise on people, it is only necessary to place the sound in the least prominent position of the
random system of audio examples. Calculate the fitness score of each population member



Appl. Sci. 2021, 11, 8450 5 of 19

based on the predicted score of the target output label, and apply selection, crossover,
and mutation [16] to create adversarial examples from the current generation to the next
generation. Choice means that more adaptable members may become part of the next
generation. Crossover population members and mix them to produce new ‘child’ added
to the new population. In the end, mutation adds random noise to the child with a small
probability, then passed on to the next generation. The algorithm iterates on this process
for the preset number of epochs or before the attack is successful. Although this genetic
algorithm resolves the problem of no ideal of prior information, it introduces a huge
amount of calculation.
Signal processing methods: In addition to the methods mentioned above, there are also
methods for generating counter-samples based on traditional signal processing. The re-
searchers investigate the starting point for the characteristics of DNN input as frequency-
domain features. First, the relationship between the frequency spectrum and the time
domain waveform is used. For this advantage, Time domain inversion (TDI) [17] is
proposed, which is a method of changing the time-domain audio waveform to obtain
adversarial samples without changing the frequency spectrum. Secondly, it is considered
that in the complex frequency domain, a random phase method (RPG) [17] is proposed to
generate adversarial samples since the frequency spectrum can maintain the same ampli-
tude under different phases. The two methods for generating counter-samples are based
on the characteristics of the time domain signal from the FFT to the frequency domain.

The above is a more systematic description of the method of generating adversarial
examples. It can be clearly seen that the methods of generating adversarial examples
can be divided into these three categories, gradient-based methods, genetic algorithms,
and traditional algorithms. These methods have their advantages in terms of the amount
of calculation and the ease of implementation, and FGSM is a more widely used method.

2.1.2. Psychoacoustics

Psychoacoustics [8] is the science of how human beings perceive the sound with the
ear and what they perceive, and it explores the statistical relationships between acoustic
stimuli and hearing sensations. Whether the human ear can hear a sound signal depends
on its frequency, intensity, and interference from other sounds. The most recent attacks on
speech recognition were carried out without being noticed. The psychoacoustic model is to
find out the redundant information in the audio signal to not affect the auditory effect.

Research in psychoacoustics shows that hearing and understanding the human voice
has its strengths and weaknesses. If there are multiple sources of sound, humans are more
likely to focus on one source. The phenomenon is known as the Cocktail Party effect [18],
in which humans can set an inappropriate sound. According to the psychoacoustics, we
master the human voice frequency is limited to the band range 20 Hz form 20 kHz [8],
which means that, beyond this range, human ears cannot perceive it.

The acoustic principles are the critical frequency band, absolute hearing threshold,
frequency masking, and temporal masking. Therefore, a good understanding of the
sensory response of the human auditory system (HAS) is essential for the development of a
psychoacoustic model for generating the audio adversarial examples, where the perceptual
quality of adversarial examples must be at the lowest extent. Furthermore, we can take
advantage of auditory masking to better perturb the human voice:

• Frequency Masking. Frequency masking implies masking between two sounds of
close frequency, where a low-level maskee is inaudible by a simultaneously occurring
louder masker. In simple terms, the masker can be seen as creating a “masking
threshold” in the frequency domain. Any signals which fall under this threshold are
effectively imperceptible. Figure 2 gives a vivid example of simultaneous masking,
where sound S0 is the masker. Because of the presence of S0, the threshold in quiet is
elevated to produce a new hearing threshold named the masking threshold; in this
example, the weaker signal S2 and S3 are entirely inaudible, as their sound pressure
level is below the masking threshold.
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• Temporal Masking. In addition to frequency masking, auditory masking can also occur
when the maskee is present immediately preceding or following the masker. This is
called temporal masking or non-simultaneous masking. There are two kinds of non-
simultaneous masking: (1) pre-masking or backward masking, occurring just before
the onset of the masker, and (2) post-masking or forward masking, occurring after
the removal of the masker. In general, the physiological basis of non-simultaneous
masking is that the auditory system requires a particular integration time to build the
perception of sound, where louder sounds require longer integration intervals than
softer ones.

Figure 2. The masking effect of a pure tone with a 500 Hz loudness of 80 dB in the presence of other
pure tones, and this picture is cited from [8].

More specially, it can be seen from the above that most people speaking systems use
frequency domain features for processing, so we mostly use frequency-domain masking
when attacking. In the actual use of frequency masking, the maker we choose can be the
original voice so that only the adversarial example is below the threshold. However, in
a real physical voice environment, Yuan et al. [19] found that the adversarial examples
could not perceive in the presence of music and played music during the attack to mask
the sound of the adversarial examples.

2.1.3. Metrics

To evaluate the quality of adversarial examples, we use some standard metrics for
efficiency and inconspicuousness.

Word Error Rate (WER): The WER calculation is based on a measurement called the
“Levenshtein distance” [20]. The Levenshtein distance is a measurement of the differences
between two “strings”. We compute WER with the Levenshtein distance `:

WER = 100 · `
N

= 100 · S + D + I
N

(8)

where the sum overall substituted words is S, inserted words I, and deleted words D.
According to Equation (8), lower WER often indicates that the ASR software is more
accurate in recognizing speech. A higher WER, then, often indicates lower ASR accuracy,
while in the attack situation we except the high WER, which demonstrated a better attack
rate. Therefore, this is an intuitive and effective indicator for evaluating attack performance.
Segmental Signal-to-noise ratio (SNRseg): The WER can only measure the success of an
adversarial example in fooling an ASR system. Considering the ASV system, we find the
perturbation as a common factor. In addition, for adversarial examples, the smaller the
disturbance, the better the attack performance. Specifically, we use the Segmental Signal-
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to-Noise Ratio (SNRseg) [21] to measure the added perturbations. Given the original
audio signal x(t) and the adversarial perturbations δ(t) defined over the example index t,
the SNRseg can be computed via

SNRseg(dB) =
10
K

K−1

∑
K=0

log10
∑Tk+T−1

t=Tk x2(t)

∑Tk+T−1
t=Tk δ2(t)

(9)

It can be obtained from Equation (9) that, the smaller the SNR value, the smaller the
added perturbation.
Perceptual evaluation of speech quality (PESQ): PESQ [22] is an objective index of speech
quality, and after the PESQ analysis, a score is given ranging from −0.5 to 4.5. A higher
score means a better speech quality. The PESQ score is calculated from a stabilised ratio of
the Bark spectral density degraded to the reference signal in each time–frequency cell.

PESQ, as a subjective speech quality evaluation method, can directly and genuinely
reflect the real situation of speech quality, so it is a practical assessment index on the
question of whether the adversarial example is inaudible.

2.2. Attack on ASRs

As a key technology of human–computer interface in information technology, an ASR
system can convert raw human audio to text, which has is a great achievement and is
widely used in various fields. Benefiting from the rapid development of deep neural
networks, speech recognition has also made good progress. Existing ASR systems, like
DeepSpeech2 [23] and Kaldi [24], have shown good recognition performance in the real
physical world. Correspondingly, many state-of-the-art end-to-end speech recognition
systems are represented by the transformers model [25] and CTC structure [26,27] also
show good recognition performance. However, this also brings security risks to the speech
recognition system, and there are recognition attack systems like [13,19,28–30], which force
people to think more about the security of applications in the physical world.

As indicated in Figure 1, the ASR system can be attacked at the input stages. Fur-
thermore, ASRs employ the Mel-frequency Cepstrum Coefficient (MFCC) [31] algorithm,
for feature extraction, because of its ability to extrapolate important features, similar to the
human ear. The feature vector is then sent to the model for either training or inferencing
and obtains the recognized text.

There are many examples of successful attacks based on speech recognition systems.
Carlini et al. [28] introduce the concept of adversarial examples to audio for the first
time, inputting the waveform, which directly adds tiny distribution into the DeepSpeech
model of the white-box, and using the gradient optimization FGSM method to generate
targeted adversarial examples. Although this method develops adversarial examples
for application in speech recognition systems for the first time, it is the only state-of-art
technology. Therefore, In response to the situation encountered when the adversarial
example is spread in the air, Yakura et al. [32] proposed the generation of countermeasure
examples in a physical world on their basis. They simulated background noise with the
white noise, the Bandpass filter, and impulse when the counter audio is attacked in the
natural environment. The experimental results also achieved good results. However,
the research is still in the experimental simulation stage, and a more extensive data set
needs to be tested on this method.

Regarding attacks in a natural physical environment, CommanderSong [19] con-
sidered the distance of the attack in the real environment and whether the adversarial
examples can be detected. For the first time, they used music to carry adversarial exam-
ples so that the adversarial examples can be hidden in the music without being noticed.
Although this method is also under the white-box setting, it shows advantages in the
attack results it produces.

This method of using music to carry adversarial examples has also been applied when
others discuss the problem of black-box attacks in the real physical world. The authors



Appl. Sci. 2021, 11, 8450 8 of 19

of [33] use more advanced but target-independent white-box models to approximate the
target models, and their most essential idea is to take advantage of the transferability [34]
of adversarial examples.

In the attack on the black-box speech recognition system, the authors of [13] first
introduced the genetic algorithm to the black-box speech recognition system. The genetic
algorithm is a method of solving optimization problems based on the principle of natural
selection. The primary approach is to rely on biologically-inspired operators, such as
mutation, crossover, and selection. At each step, the genetic algorithm will select some
elite groups as the parents of the current population and, from them, the next generation
will be generated. For each generation, it will retain the excellent genes of the previous
generation so that after, the loop iteration, the optimal solution can be obtained. Since the
black-box model does not know the system’s parameter structure and other characteristics,
the genetic algorithm is used as a gradient-independent algorithm that can iteratively
apply noise to raw audio examples, pruning away poor performers at each generation,
and ultimately end up with a troubled version of the input that successfully fooled a
classification system, yet was still similar to the original audio. This attack was conducted
on the Speech Commands classification model [13]. The genetic algorithm avoids attacking
without prior knowledge, but the main problem of the genetic algorithm is that it requires
a lot of calculation time to generate adversarial examples.

Extensive research was conducted by the research [14], which proposed a method
combining genetic algorithms with gradient estimation. They also applied this method to a
more complex DeepSpeech system. However, this method achieved a limited success rate
with strict length restriction over the voices. The article shows that a high success rate is
obtained at the cost of calculation.

For counterattacks in real-time [35], the real-time input system is a streaming problem.
The previous attack methods only focused on the static input of the target model. However,
the attacker cannot observe the entire original example for streaming input systems and
can only receive past data. In [35], they use imitation learning and behavioral cloning
algorithms for the whole of the problem and train real-time adversarial jamming generators
through simulation demonstrations to obtain adversarial examples. The results prove the
effectiveness of this method.

Although the above attacks achieve a high success rate through misleading classifiers,
most of them exhibit a high degree of distortion, as they ignore the impact of hostile
disturbances on human perception. Hence, the subsequent research [30] discussed and
studied the inaudibility, robustness, and targetability of the adversarial examples, using
the frequency in the acoustic model. The frequency masking effect is used for masking so
that the user does not find that the system is being attacked. When calculating the masking
threshold, the original method is optimized to make the masking threshold more accurate,
strengthening the robustness and considering reverberation. Moreover the impact of the
room impulse response, a robust and imperceptible directional adversarial example, was
obtained. On Lingvo [36], a 100% success rate was obtained, but the method only remained
at the laboratory stage and did not attempt an actual physical attack.

At the same time, as an attacker in a physical attack, sometimes one does not know
when a user uses the attacking system and what the content of the system is. Based on this
problem, AudiDoS [37] and other companies use a method to generate general interference
in the external environment, continuously launching interference at any time to achieve
the purpose of the attack. According to the experimental results, ASR uses the Librispeech
data set, and an error rate of 78 appears. When an attack is needed, the solution is always
to play a general interference to solve the problem.

In the latest black box attack, Ishida et al. [38] proposed to use multi-objective opti-
mization to solve the problem of not knowing the prior information of the system. The first
goal is the probability when the adversarial target example is the target mean we expect,
the second goal is the variance. The third objective function is that the gap between the
MFCC of the adversarial example and the MFCC of the original audio should be the
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smallest. In this article, the use of genetic computing is compared with the first black box
attack. Their proposed method uses an automatic adjustment method to obtain adversarial
examples. Compared with the mutation of the genetic algorithm, it is easier to obtain
adversarial examples using this method.

2.3. Attack on Speaker Recognition System

Different from speech recognition systems, speaker recognition mainly focuses on
extracting individual dependent voice characteristics through embedding methods to iden-
tify speakers’ identities regardless of their speech content. Specifically, Speaker recognition
systems (SRS) [39–41] can be developed either for identification or verification [42] of
individuals from their speech. In a closed set speaker identification scenario [42,43], we are
provided with train and test utterances from a set of unique speakers. The task is to train a
model that, given a test utterance, can classify it to one of the training speakers. Speaker
verification [40,41], on the other hand, is an open set problem. A more straightforward
introduction, the former is to determine one of the N reference speakers according to the
speaker’s voice, which is a selection problem; the latter is to verify whether the speaker’s
identity is consistent with its declaration, which is a decision problem of choosing one or
the other.

Speaker recognition system has became one of the indispensable technologies in
biometric identification and other fields. Unfortunately, speaker recognition also brings
security concerns because of the adoption of deep neural networks. Studies specifically
focused on adversarial attacks on SRS have come up only very recently [44] and some
of this work has revealed new, potential threats. Apart from studying robust spoofing
countermeasures, it is important to study the weak links of attacks.

The adversarial attack on SRS aims to generate adversarial examples from the voice of a
specific source speaker so that the attacked system will misclassify it as a registered speaker
(non-target attack) or target speaker (targeted attack), but it is still correctly identified
as a source speaker by ordinary users. Due to the significant attack results of audio
adversarial examples in speech recognition, there have been many successful attacks in
speaker recognition. The first is that [45] used the FGSM method to generate adversarial
examples with the MFCC under the prior knowledge of the speaker recognition system
and achieved a high attack success rate based on an end-to-end DNN-based speaker
verification system. This study demonstrated the ability of the adversarial attack to deceive
the automatic speaker verification (ASV) system.

Wang et al. [46] crafted the adversarial examples using FGSM and Local Distributional
Smoothness (LDS) [47] to attack the well-trained speech verification model and proposed
an adversarial regularization method by the adversarial examples. From the perspective of
the attacker, although this approach improves the performance of the speaker verification
system, the FGSM method is employed to attack, and similar to the above method [45].

In [48], inspired by imperceptible adversarial examples in a white-box environment,
they make the best use of the psychoacoustic principle of frequency masking and constrict
the perturbation under the masking threshold of original speech to produce targeted and
imperceptible confrontational examples directly to the raw waveform. Furthermore they
achieved a 98.5% success rate. In addition, they also tried to use music in non-human
languages to attack, this also achieving good attack results, but these methods are still in
the development stage.

In this study [49], the method of FGSM is used to produce a white box system based
on GMM i-vector speaker certification, and the portability of the adversarial examples is
verified in different networks. The adversarial examples of various features and vector
models are tested in this paper, proving that the characteristics of an adversarial example
can be used directly for an attack. However, the authors did not attack more recent
DNN-based speaker recognition frameworks shown to have state-of-art performances.

In addition to the methods mentioned above, recently, the authors of [50] have bor-
rowed from the technical methods of speech steganography, using a gated convolutional
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autoencoder [51] to generate imperceptible audio adversarial examples, and using a multi-
objective loss function for training. This method bypasses the gradient requirements as
the general generation of adversarial examples. This network is used to generate adver-
sarial examples. From the results, the PESQ score of 4.30 for targeted and non-targeted
adversarial examples can achieve a high success rate.

In a real physical environment, and for the success of the attack, it is necessary to
consider factors such as reverberation, noise, etc. Therefore, the authors of [52,53] base
their work on the white box, which solves the impact of the room impulse response on
the adversarial example in the actual attack. However, in comparison, the study [52] also
considers that non-universal adversarial examples require a lot of time to train and the real-
time nature of the attack—they both utilized a gradient optimization method to generate
robust universal adversarial examples. However, both were still in the experimental stage
and did not attack in the real world.

In the black-box setting, to take advantage of practical gradient information for
gradient descent, to solve the optimization problem of adversarial example generation,
Guangke et al. [54] used the gradient estimation algorithm (NES) based on the evolution
strategy. They found an impressive attack success rate on Kaldi with their proposed
method, but the problem of this article is that all the test data sets are small. As their
study only included five speakers, an extensive study with a much higher number of test
speakers is still needed.

The above content briefly describes the existing adversarial attack methods that some
authors believe mainly occur speech recognition and speaker recognition. Researchers
firstly start from the generation of audio adversarial examples to the generation of ag-
gressive adversarial examples which to the human auditory system are imperceptible,
and consequently many adversarial attack methods have been trialled successfully. Al-
though many methods have achieved high attack success rates, each method still has
comparatively more or less shortcomings.

2.4. Defence against Adversarial Attack

Both the positive and negative aspects of contradiction are symbiotic. Since neural net-
works are vulnerable to attacks from adversarial examples, adversarial attacks pose a new
threat to the security of DNN-based sound processing systems. Therefore, effective defense
is very necessary.

To a certain extent, defense and attack are similar and they both need to find loopholes
in the network. The difference is that defense performs repair and protection for loopholes,
and attacks play a destructive role. The defense against adversarial attacks is mainly
carried out in the field of pictures, and there are many successful cases of defense [55–57].
However, not all of these methods can be applied to audio. The main difficulties are
as follows: first of all, in terms of the coverage of digital representation, the range after
audio sampling in terms of amplitude is much wider than the range of (0, 256) of images.
Secondly, in terms of content repeatability, audio is more complicated. The performance is
much higher than that of pictures, which makes audio more sensitive than images, which
makes it difficult to protect the original audio in defense.

The authors of Ref. [58] first discussed the robustness of the targeted adversarial audio
examples generated in [28]. Their hypothetical confrontational voice is fragile. Given
adversarial audio, the two parts will be transcribed separately if the audio is divided
into two parts. The result is that spliced transcription is very different from the original
intact transcription.

Based on the above ideas, it is natural to consider that the most significant feature
of adversarial examples is that disturbances are added to the original audio, and these
disturbances can also be quantified [10]. Therefore, a simple idea in the defense process is to
remove the disturbances; in [59], the input transformer method of image adversarial attacks
is used to deal with the disturbances in the audio adversarial examples, which dramatically
reduces the attack rate of adversarial examples but, at the same time, they also have
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weaknesses that cannot be ignored. This method is also very fragile when the adversarial
example is generated in consideration of the problem of gradient disappearance [60].
Therefore, the author also proposed a time-domain-independent method to detect whether
the input audio is an adversarial example. The author was famous at the time and detailed
experiments have been performed in the confrontation environment for different white
box or black box attack methods, and good results were achieved in the detection of
confrontation audio.

The authors of [61] are inspired by MVP, and the phenomenon in which an adversarial
audio inputting into different speech recognition systems has different recognition results.
Combined with the characteristics of MVP, the authors proposed to input one audio into
multiple different ASR systems and then performed the output results. The similarity is
calculated and passed through a two-classifier to determine whether the input audio is
adversarial in order to achieve anti-audio detection.

The authors of [62] used an audio modification method to detect adversarial samples.
Firstly, the method has two steps: verify the initial audio samples against the recognition
system and present the initial classification results. Subsequently, a modified audio signal
is generated by audio modification of the initial audio sample. The generated modified
audio signal is compared with the classification result of the original audio sample. If the
classification results differ significantly, the initial audio sample is regarded an adversarial
example. If the difference is slight, the initial audio sample is considered to be the original
sample. The original audio and adversarial examples were passed through simultaneously,
and the frequency spectrum and waveform of the audio were analyzed in this method.
The experimental results show that the CW method at the laboratory detection level is
effective in a DeepSpeech attack.

3. Attack Threat Model Taxonomy

In this section, depending on the adversary’s background, prior knowledge, etc., we
introduce the existing attack models in VPSes and classify them, and we hope to build an
overall attack framework for comparison in future research. In addition, we also list some
existing attack methods in Table 1 for intuitive understanding.

Table 1. The taxonomy of attack in speaker and speech recognition. ‘Box’ indicates the prior knowledge which the attacker
master, which can be categorized by a white box, a gray box and a black box. ‘Platform’ is the certain attacked system.
‘System’ means the targeted system, especially the voice control system (VCs); ‘Real/Simulated’ shows whether the attack is
in the real physical world.

Work Year Box Target Platform Corpus System Real/Simulated Feature

[63] 2017 Black/White Both DeepSpeech2 Librispeech ASR Simulated STFT
[28] 2018 White Targeted DeepSpeech MCVD [64] ASR Simulated Waveform
[19] 2018 White non-target Kaldi Random choice ASR Both Waveform
[45] 2018 White Targeted ASV YOHO [65] ASV Simulated MFCC
[32] 2018 White Targeted Deepspeech Music Clips ASR Real waveform
[13] 2018 Black non-target CNNs [66] Speech commands ASR Simulated Waveform
[29] 2018 White Targeted Kaldi WSJ ASR Simulated STFT
[45] 2018 White non-target SVs [39] YOHO [65] ASV Simulated MFCC/Mel-Spectrum
[14] 2019 Black targeted DeepSpeech MCVD ASR Simulated Waveform
[15] 2019 Grey non-target Kaldi TTSREADER ASR Simulated Waveform
[67] 2019 Grey Both Alexa [68] LJ [69] VAs Both Waveform
[30] 2019 White Targeted Lingvo [36] Librispeech [70] ASR Simulated Waveform
[37] 2019 White non-target DeepSpeech Librispeech ASR Simulated Waveform
[54] 2019 Black Targeted Talentedsoft [71] Voxceleb1 [70,72] SRS Real Waveform
[46] 2019 White non-target SVs [73] NTIMIT [74] ASV Simulated feature
[75] 2019 White Targeted VGGVox [72] Voxceleb SRS Simulated Spectrogram
[76] 2020 White non-target CTC-based [66] MCVD ASR Simulated MFCC
[52] 2020 Grey non-target VCs [66] Speech commands [77] VCs Simulated Waveform
[33] 2020 Black Targeted Alex, Google, Cortana CommanderSong [19] ASR Real Spectrum
[48] 2020 White Targeted DNNs [40] Aishell-1 [78] SRS Simulated Waveform
[49] 2020 Both non-target SVs [79] Voxceleb1 ASV Simulated MFCC
[53] 2020 White Both Kaldi CSTR VCTK [80] SRS Both MFCC
[52] 2020 White non-target DNNs [40] CSTR VCTK SRS Simulated MFCC
[81] 2020 Gray Targeted SincNet [82] NTIMIT/Librispeech SRS Simulated Waveform
[50] 2021 White Both DNNs [40] Voxceleb SRS Simulated Waveform
[38] 2021 Black Targeted CNNs Speech Command [66] VCs Simulated MFCC
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3.1. Adversarial Knowledge

Whether to master the prior knowledge of the attacking system during the attack is
vital information for the attacker. The grasp of prior knowledge has a significant impact on
the efficiency and success rate of the attack. Therefore, according to the different levels of
the attacker’s prior knowledge of the speech system, the method of attack can be divided
into the following categories:

White-box: When the attacker has full knowledge of the target system, including
the model type, network architecture, and the values of all the parameters and training
weights, etc., we call that such an attack one carried out in a white-box setting. An example
of this access-type is an open-source model like DeepSpeech [83] and Kaldi [24]. Many
white-box attack methods [13,19,28,29,45,46,52,76] have shown to a certain extent their
great advantages in the context of prior knowledge. The white-box attack method of attack
is an important foundation for our research, but it has limitations in real attacks.

Black-box: Conversely, when the attacker has almost no prior information about the
system, we only know what the task of the system is. For example, we only know that
Siri [84] is a system that can recognize speech, but its model, parameters, etc. are completely
unknown. There are also many attack methods against black boxes like [13,14,33,54].
Considering the actual attack environment, the black box situation is reasonable.

Grey-box: Gray box is a situation in which we only know some of the parameters of
the model, network architecture, etc., but not all of them. A typical example is the Azure
Speaker Recognition model [85], in which we only understand its task category and its filter
extraction but are limited with other information. The method similar to those addressed
in [15,52,67,81] attacked the grey-box and achieved great performance.

In a black-box setting, when an attacker only has access to the logits or outputs, it
is much harder to consistently create successful adversarial attacks. In specific unique
black box settings, white box attack methods can be reused if an attacker creates a model
that approximates the original targeted model. However, even though attacks can transfer
across networks for some domains, this requires more knowledge of solving the task that
the original model is solving than an attacker may have.

3.2. Adversarial Goal

Considering whether the adversarial example needs to become the excepted output
after passing through the system, we group the attack into two different attacks.

Non-targeted: Non-targeted means that an arbitrary result that is different from the
original output can be generated after the adversarial example passes through the attacked
system. For example, in [13,15,19,76], the attacker only requires the system is to recognize
as other text content. Non-target adversarial examples are usually generated in two ways:
(1) perform several targeted attacks, obtain the least interference attack from the results;
(2) maximize the possibility of misclassification.

Targeted: The adversarial example is required to output a desired result through the
system. In other words, for the input x and the network model f (·), the output ỹ = f (x+ δ)
is the expected result. Using a simple example to illustrate, the correct text information of
the audio we originally entered is “Hello”, but the output converts it into “World” after
the perturbation is added. Correspondingly, the non-target attack only requires output is
not “Hello”. During the past few years, many related works [4,32,33] have emerged to take
advantage of the targeted adversarial example to finish the task of attack.

Targeted adversarial examples help the attacker obtain the desired output, especially
in critical situations such as identifying a specific person whose information to tamper
with. However, the targeted adversarial examples require more calculations to solve than
the non-target adversarial examples. The degree and calculation time are longer, which
also puts forward higher requirements for the attack. Non-target adversarial examples are
easier to implement because they have more options and space to directly aim at the output.
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3.3. Adversarial Perturbation Scope

The classification of attack also can be divided into two categories: individual and
universal attack. This is mainly based on the scope of application of the perturbation added
when the researcher generates the adversarial examples.

Individual: Individual attacks usually craft different perturbations for each clean
input audio. The solution of the adversarial examples of this attack is often a conditional
optimization problem. Therefore, the gradient optimization problem (FGSM) is often used
in the white-box system, and the genetic algorithm is used to generate the problem in the
black-box system.

Universal: This example is not limited to a specific example; it is suitable for all audio
that needs to be attacked, so it has a huge advantage regarding time, not only in the process
of adversarial example generation but also solving the problem of the attacker not knowing
when to attack [37]. However, the ensuing problem is that the accuracy of the adversarial
example is not high enough, and the disturbance may be relatively large.

Most current attacks generate adversarial examples individually. However, the per-
vasive perturbation makes it easier to fight against examples in the real world. When
the input example changes, the adversary can achieve the purpose of the attack without
changing the disturbance.

3.4. Real or Simulated World

Based on the classification of the attack environment, it can be divided into the internal
laboratory and the real physics. The two complement each other and promote each other.

Real world: Real world means that the researchers put the attack in the real physical
situation. When we consider the attack in the real physical world, whether from the propa-
gation medium of the adversarial examples or the distance from the adversarial example
attack, the physical Attacks in the world are relatively brutal to complete. Ref. [32] simu-
lates the human ear effect, impulse response, and other issues that need to be considered
when the adversarial example is spread in the air. The point of attack distance is also
considered in [19] and the ideal environment is to perform close-range attacks without
being noticed by the user.

Simulated world: Simulated world means an attack on the laboratory stage. If it is
not attacked in a real physical environment, we can use a computer to simulate an attack.
Many of the existing studies are on the state-of-art, and some are forward-looking studies
to lay the foundation for future research. More are towards being able to attack this target
in a real environment, in [32] The first is to consider the impact of room impulse response
that may be encountered in an attack in a real environment. Simulations were carried out at
the laboratory stage, but it laid a good foundation for subsequent real environment attacks.

4. Defense

This section will categorize defense methods in the audio domain from different
perspectives, hoping to give a systematic classification method. Figure 3 shows that
researchers usually use audio data processing and network model retraining to achieve the
purpose of adversarial defense. Furthermore, we also listed some existing representative
adversarial defense methods in Table 2.

4.1. Defensive Result

The results of defense are often more important to us. Whether the security of the
targeted system is successful can be directly expressed from the effects of defense. Therefore,
we can categorize the defense methods of the sound processing system from the perspective
of whether it can ultimately withstand the attack:

Detecting: When we detect adversarial examples, we only completed the task of
discovering adversarial examples. From the resulting perspective, adversarial examples
can still produce wrong output results when passing through the target system. Detecting
is also called an incomplete defense. In the testing process, the researchers transformed the
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problem of detecting adversarial examples into a crisis of binary classification. In these kind
of paper, the author obtains a reference example by using methods such as Multi-version
programming (MVP) [61], CNN-based [86], dropout uncertainty [87] and uncertainty
quantification [88] to compare the similarity with the adversarial example. If the similarity
between the input audio and the reference audio is low, it means that the input audio is an
adversarial example.

Complete defense: Unlike detection, the complete defense can still obtain correct
recognition results in the adversarial sample input. In [46,59,89], the authors mainly use
techniques such as quantization, local smoothing, down-sampling, and automatic encoding
of the input audio signal to fight against the slight disturbance in the sample is eliminated.
Audio that can be output correctly is obtained.

Figure 3. The general method of defense including filtering, detect–reject, retrain.

4.2. Classification from the Content of Defense

In the process of defense, we can process the data in two stages before and after the
input to achieve the effect of protection:

Data preprocessing: The data modification is that which modifies the training set in
the training stage or the input data in the test stage through adversarial training, gradient
hiding, transferability blocking, audio data compression [89], data randomization, etc.
The adversarial example passes through the system after preprocessing and achieves the
correct result to achieve an invalid attack of the target system.

Model modified: Modification of the network model is performed, which adjusts the
target model directly to increase its robustness. Commonly used methods are through
regularization [46], audio squeezing [59], or audio turbulence [19]. By modifying the
network model, the protected system can be more robust, making the system less damaged
by adversarial attacks. Studies such as [19,46] have also achieved more significant results
in this regard.

Table 2. The taxonomy of defense in speaker and speech recognition. ‘Task’ indices whether the defense method is
completely defense or detection. An adversarial example is the generating method of the attack method.

Work Year Defense Method Task System Adversarial Example

[59] 2018 Temporal dependency Detecting ASR Genetic algorithm [13]/FGSM/
Commander Song [19]

[46] 2019 Adversarial regularization Defense ASV FGSM/LDS
[61] 2019 MVP-EASR Detecting ASR FGSM
[62] 2019 Audio modification Detecting ASR Carlini and Wagner Attacks [4]
[90] 2020 Adversarial training/Spatial smoothing Defense ASV Projected Gradient Descent Method [91]
[92] 2020 Self-attention U-Net Defense ASR FGSM/Evolutionary optimization [93]
[94] 2021 Hybrid adversarial training Defense SRS FGSM
[95] 2021 Audio transformation Detecting ASR Adaptive attack algorithm [95]
[96] 2021 Self-supervised learning model [97] Defense ASV BIM
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4.3. From Different Areas of Defense Methods

Due to the threat of adversarial attacks to ASR and ASV systems based on deep neural
networks, researchers have proposed different methods of defense against adversarial
attacks from different sound research fields, mainly the including detect–rejection, filtering
and retraining, as shown in Figure 3.

Detect–rejection: This method is from the perspective of the ASV field. Since the role
of the speaker authentication system itself is to confirm whether the input audio is the
target speaker, it is an alternative problem. Based on this idea, the input of the adversarial
sample into the ASV system is in the original In the case of prior knowledge, and the
adversarial examples can be output as a type of rejection so as to protect the security of the
system. Recently, in [90,96,98], the use of ASV systems to detect adversarial examples has
achieved remarkable results.

Filtering: Considering that the essential task of speech enhancement is to remove
the mixed noise in the input audio, and the essence of the adversarial sample is to add
disturbance to the pure audio, so the researchers target the added perturbation from the
perspective of speech enhancement, using speech separation and the method of speech
enhancement to eliminate the added disturbance; ref. [92] adopted the self-attention U-Net
method to enhance the ASR system in the face of adversarial attacks.

Retraing: The retraining method is to fine-tune the network by augmenting the
collected or simulated adversarial audio clips in a training set with explicit labels of noise.
Based on the DNN adaptation fundamentals, it can make the network more robust to
similar attacks. Wang et al. [99] generate adversarial examples using the fast gradient
signal method(FGSM) and use these adversarial examples as augmented data to retrain
the model to enhance the robustness of KWS model.

5. Future Working

Based on the existing literature, topics such as the large amount of calculation and
space storage required in generating adversarial examples, the practical application of
adversarial examples also lacking corresponding explanatory nature and the method of
black-box attack are gradually adapting into long-standing problems of the attack direction.
Therefore, we expect there will be a multitude of works directed to address these problems
in the future to improve the real-time performance of an attacker. From the perspective of
the defender, the adversarial defense is of great significance for increasing the robustness
of the system, and we look forward to seeing the integration with other directions in future
work, such as speech separation, speech conversion speech scene analysis, etc.

6. Conclusions

In this article, we researched adversarial attacks and defenses from the perspec-
tive of the security of the ASR and ASV systems in voice processing systems. We first
demonstrated the generation methods of adversarial examples, psychoacoustics models,
and existing forms of attack and defense against ASR and SRS. Secondly, we systematically
classified adversarial attacks and, last but not least, analyzed the existing defense methods
from the different defense perspectives.

In future work, this article systematically organizes the methods of adversarial attacks
and defenses, laying a solid foundation for subsequent research, and will further follow-up
research, which will focus on the adversarial attack and defense of the voice processing
systems in the physical world.
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