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Abstract: The paper presents a framework for considering resilience as an integrated aspect in
the design of manufacturing systems. The framework comprises methods for the assessment of
resilience, supply chain and production planning, flexible execution and control as well as modular
and skill-based methods for automation systems. A basic classification of risk categories and their
impacts on manufacturing environments is given so that a concept of reconfigurable and robust
production systems can be derived. Based on this, main characteristics and concepts of resilience are
applied to manufacturing systems. As a lever of increased resilience on business and supply chain
level, options for synchronized production planning are presented in a discrete event simulation.
Furthermore, a concept to increase resilience on the level of business process execution is investigated,
allowing manufacturing tasks to be rescheduled during runtime using a declarative approach to
amend conventional business process models.

Keywords: resilience; production systems; matrix production; skill-based control systems; virtual
commissioning

1. Introduction
1.1. Increasing Necessity of Production System Resilience

The anticipation, prevention, and mitigation of risks and their corresponding threats
are an inherent part of decision making in economy and industry. It is not only the
current pandemic situation that demonstrates how vulnerable supply chain networks are.
International supply chain networks and customer markets require fast product transfer
with minimized delays. The manifold system elements and aspects inside of manufacturing
systems that are threatened by expected or unexpected events lead to chains of effects on
factories and the incorporated manufacturing systems.

The following chapter provides an overview on the technological and IT-related
counterparts for risk mitigation to increase resilience. Section 2 starts with the conceptual
description of risk management as well as resilience evaluation with its specific application
in the manufacturing environment. It also suggests the standardized automation pyramid
and its corresponding reference architecture model 4.0 as a guideline that covers the
relevant levels for production system description and the corresponding solutions that
are presented afterwards. It is completed with specific sections of measures for resilience
improvements, starting from the supply chain and enterprise down to field level.

Section 3 follows the same level-oriented structure and presents dedicated results that
were generated by the methods and technologies described before. The paper closes with a
discussion on the most critical aspects from the presented works, which are related to the
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representation of complex and interrelated information as well as the derivation of matrix
production as a future-oriented and resilient manufacturing system concept.

1.2. Technological Aspects and Requirements for Risk Mitigation

The established way of developing a production system was to design it according to
a specified task and to increase productivity to a certain or required level. This led and still
leads to static solutions in relevant domains such as process, structure, drive systems, and
controller engineering [1]. Furthermore, data flows and energy supply were designed once
and have remained more or less the same over the entire production system life cycle. A
secondary interest lies in energy and resource efficiency, but this also leads to monolithic
rather than modular solutions.

To effectively integrate resilience into the design of modern production systems,
various changes must be considered, especially in the mentioned domains. As the most
important aspect, the production system shall react to procurement, production, and
personnel risks and therefore adapt to dynamic changes in order sequence and processing.
Typical reasons are priority orders, changes in demands for products, shortages of raw
materials, or shortages of personnel resources. Hence, the new generation of production
systems must quickly adapt to changing processes and variations in throughput by using
techniques for fast reconfiguration, commissioning, and fault tolerance. For example, [2]
identified product and process modularity as key aspects to increase flexibility and hence
improve the tolerance towards supply disruption. In order to realize such adaptivity for
the whole production system, we propose leveraging modularity on all layers of hardware
design, automation, and shop-floor software.

Furthermore, hardware and software design need to be intertwined by applying con-
cepts such as decentralized controllers, self-description of modules, and the encapsulation
of controller code into the modules [3].

Regarding connectivity and data exchange, standardized interfaces and data models
should be established to support transparency and to complete traceability within a single
production system as well as along the supply network. To accomplish this, the standard
“Open Platform Communications Unified Architecture” (OPC UA) can be combined with
linked data approaches [4] for modeling system structures, components, processes, and
products as well as for linking them to related operating data.

Furthermore, manufacturing systems require a digital counterpart to enable fast
commissioning, optimization, and controller code review in parallel to the production
process. All of these aspects diffuse into a “framework for resilient manufacturing systems”,
which will be explained in detail in the following sections.

2. Materials and Methods
2.1. Risk Management and Resilience Concepts Transferred to Manufaturing Systems

Risk management as a measure and business discipline is typically known as corporate
risk management, which focuses on accounting and financial reporting (see, e.g., [5]) or as
a relevant step in project management processes (see, e.g., [6]). In order to evaluate risk
probabilities and their impacts, the identification and classification of risks are inevitable.
In a survey by Fries et al. [7], ten major challenges on future production systems were
identified that can be subsumed into complexity (of supply networks and products as well
as processes), changing customer behavior and expectations, market changes (globalization,
volatility and increased competition) as well as impacts caused by politics, natural disasters,
and unstable economics.

With reference to the aforementioned risk management, a structuring of risk categories
is required. Various descriptions of system structure and meta-level representations have
been developed in the context of factories (see, e.g., [8,9]).

A possible corresponding classification of risks refers to the depicted internal and
external flows of production systems. Thus, we propose the separation of risks into the
categories described in Table 1.



Appl. Sci. 2021, 11, 8457 3 of 23

Table 1. Risk categories and corresponding cause–effect relationships.

Category Cause Effect Expression

Procurement risk
Political regulation Raw material price

increase discrete

Market shortage Raw material price
increase continuous

Complex supply
networks Lack of transparency continuous

Production risk
Machine failure Production stop discrete
Complexity of
material flow

Increasing throughput
times continuous

Personnel risk
Increased competition Fluctuation continuous

Changing
expectations Fluctuation continuous

Sales risk
Increased competition Price reductions continuous

Volatility of markets Reduced forecast
precision continuous

Information
(Technology)-related risk

Data inconsistency Reduced forecast
capabilities discrete

IT-security hazards Data losses discrete

Ecological risk Climate Change
Temperature increase in

production facilities continuous

Increased probability of
extreme weather events continuous

In industrial practice, enterprises are possibly confronted with combined threats of
several risk categories. In addition to that, it should be highlighted that each of these
risk categories is translated into an economic evaluation, as corporate decision-making
ultimately depends on monetary performance metrics. Thus, each risk category requires
translation into specific cause–effect relationships in order to operationalize risk assessment
and to elaborate measures. Moreover, the effect of one risk may even express itself in further
categories. Conversely, causes may be relevant in several risk categories. Furthermore, the
risk effects can be separated according to their time-related behavior. According to this,
Table 1 illustrates a typical specification of risks.

With regard to production systems, these risks may cause external and internal tur-
bulence, increasing the necessity of short adaption and transformation times. This leads
to the necessity of flexibility and the quick configurability of elements and processes in
manufacturing facilities. From a system-based point of view, an overall production system
may be divided into several subsystems of interchangeable and reconfigurable components
based on standardized interfaces and a modular structure. Figure 1 depicts this system
concept as a framework to anticipate as well as to mitigate risk impacts and to generate a
common understanding of subsequent sections.
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Figure 1. Concept of a situationally optimized production system for increased resilience.

Resilience as a feature of systems covers multiple aspects and dimensions related to
the prevention and mitigation of risks. A conceptual distinction between “engineering
resilience” (“efficiency of function”) and “ecosystem resilience” (“existence of function”) is
traced back to Holling (1996) [10]. The first represents stability in the sense of efficiency,
continuity, and predictability in order to generate fail-safe (technical) designs and to always
remain close to a targeted state of equilibrium as a given measured variable. In contrast to
this, the second form describes resilience as persistence, change, and unpredictability, in
which a system can flexibly adapt to new conditions. In this case, resilience is measured
by the amount/extent of disturbance that can be absorbed prior to system change. Hence,
ecosystem resilience often refers to the assessment of complex social and ecologic systems.

Fischer et al. (2018) [11] mention that resilience as a term is used in many variations,
depending on the scientific area. With a focus on urban environments and systems they
developed a mathematical resilience framework for evaluating and comparing different
prevention and reaction strategies for hazardous situations on a quantitative basis. The
derived resilience cycle comprises the phases prepare, prevent, protect, respond, and
recover and is based on a study published by the German Academy of Technological
Sciences (acatech) [12]. Thus, this cycle expands the formerly established social resilience
cycle, which comprised the four phases of preparedness, response, recovery, and mitigation,
that was described by Edwards (2009) [13]. Figure 2 illustrates the described resilience types
and cycle phases in a schematic manner, applied to the impact of hazards on production
system performance.
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Figure 2. Differentiation between resilience types and resilience cycle phases.

The illustrated time series helps to allocate terms and methods that aim to reduce
the effect of internal and external disturbances on manufacturing system performance.
In an exemplary scenario, the initial performance reduction—caused, e.g., by supplier
breakdown—may lead to the decision of preparation strategies such as (1) the improved
synchronization among supply chain partners. In case of assumed bottlenecks, prevention
methods such as (2) the increase of incoming stocks may be performed to reduce the impact
of interruptions in material supply. Protection methods (3) may comprise strategies of
supply chain management and production scheduling in order to mitigate performance
losses due to supply failures. As a response (4), product components are substituted
and lead to the necessity of system reconfiguration due to adapted production processes.
The corresponding recovery phase (5) essentially affects profitability and competitiveness.
However, market demand for the fictitious product may steadily decrease, caused by
changing customer demands and may finally lead to the transformation of an overall
production system, which is illustrated by shifting from dark to lighter green. Based on this
classification, the actions and reactions during dangerous impacts can be sorted along their
time-related occurrence. However, in order to develop a structured portfolio of measures,
the appropriate model as a guideline is required.

The automation pyramid is a well-established model for factory automation [14].
In accordance with the recent trend of Industry 4.0, this model was extended to a three-
dimensional expression, including more aspects than the level of automation. The resulting
RAMI 4.0 (Figure 3) includes elements and IT components in a layer and life cycle model.
It tries to decompose complex processes into modules and adds aspects of data privacy
and IT security. RAMI 4.0 is intended to elaborate the understanding and discussions of all
participants involved in Industry 4.0 [15]. Thus, it may also serve as a base model for the
definition and systematization of resilience-increasing measures.
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Related to the described resilience cycle phases, the subsequent section contains
simulation-based options that mainly focus on phases 1 to 3 on an enterprise- and supply
chain level. Afterwards, the necessary concepts in information modeling and control for
fast reconfiguration are described.

2.2. Concurrent Supply Chain and Production Planning

In order to investigate disturbances on production systems and the accompanying
supply chain networks, material flow simulation provides appropriate options to study
system behavior. According to Guideline 3633, Sheet 1 of the Society of German Engineers
(VDI) [16], simulation involves the recreation of a system with dynamic processes allowing
the investigation with experiments to generate findings that can, in turn, be transferred
to the real system. Thus, it becomes possible to investigate the temporal behavior of the
respective modeled system and to derive corresponding statements. For the investigation
of processes, discrete-event flow simulations are often used, in which the time-related
behavior of the system is represented by successive events of a processing list and the
associated state changes.

In an exemplary use case, a model was implemented in a Tecnomatix® Plant Simula-
tion, which contains its own user interface to select production scenarios depending on the
processing status of the implemented orders. A truck picks up the finished orders from the
last day based on the first-in-first-out (FIFO) principle. Depending on the destination of the
products, there is a separation between two different retrieval strategies. Inland locations
allow partial deliveries, whereas abroad destinations require complete order fulfilment in
one iteration. Disturbances can be turned on and off for the study of different scenarios
with a simple button. This means that once the orders run through as planned (determinis-
tically), there will be no delays in production. If the button is activated, disturbances with
a defined mean time to repair (MTTR) are switched on, stochastic effects generate impacts
on processes, and therefore, delays and unexpected events can occur.

In its standard version, the modelled factory works in a 2-shift system. A total of two
hours before end of production, a message is sent to the user to make a decision on how
to proceed with further production. The user can base this decision on the status of the
planned orders and the orders being processed at that time.

In doing so, the user can select a scenario (e.g., start next shift) in the interface. This
means that a third shift is run because the user assumes that the orders cannot be completely
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processed until the end of the second shift. In general, the user has three options as coping
strategies for disturbance-related delays:

• Option 1: Start third shift (as described above);
• Option 2: Increase production speed by a certain percentage. The default value in this

case is 15%. Hence, orders may be completed by 10pm after all or will continue to be
processed the next day;

• Option 3: Continue as planned; in this case, it could be the case that the orders become
behind schedule and have to be processed within the next day.

The implementation and operationalization of the described options in a short-cycled
and complex production environment necessitates the sophisticated description and mod-
eling of system elements and their corresponding production processes. Therefore, an
appropriate modeling approach and the derived process generation functionalities are
described in the subsequent section.

2.3. Modelling and Execution of Resilient Production Processes

Mitigating risks and increasing resilience on the level of workflow management and
process execution requires that an erroneous process can be returned to a defined state
and—if possible—the defined goal of the workflow can still be reached. For example, if a
single machine fails within a production process, it is in the interest of the plant operator
that the error is remedied as soon as possible, reducing the loss of production and therefore
reducing costs. Additionally, it might be feasible to reschedule single tasks within the
production process in order to reduce downtime further. With the example of a model
machine that allows for rescheduling the tasks performed by its modules, we examine
how resilience can be provided on the level of process execution. On the one hand, this
approach requires an amendment to the models used to describe production processes,
and on the other hand, the information flow between the involved components of the
Manufacturing Execution System (MES) needs to be taken into consideration.

Classic business process modelling consists of a sequence of activity nodes, which
are intertwined with decision nodes, allowing for as much as flexibility as possible to
be considered at compile time. In case erroneous events take place during the process
execution, those events must be an explicit part of the process model. Consequently, an
equally explicit mitigation strategy is required to be modelled at compile time as well,
meaning that even “the unforeseen” must be foreseen. However, several approaches have
been explored to allow for more flexible process execution and to provide resilience on
the level of process execution in the domains of software engineering [17], emergency
management [18], logistics [19], and cyber-physical systems [20]. Notably, [18] advocate
a declarative approach, annotating single activities with “preconditions and effects”, al-
lowing for a dynamic workflow generation by utilizing these annotations as constraints
between those activities.

However, the domain of cyber-physical production systems (CPPS) imposes further
conditions since tasks executed by production machines or human operators usually affect
artifacts existing in the real world—such as work pieces—and thus manipulate their state.
Furthermore, these artifacts may be impacted by influences that are outside of the scope
of the defined workflow, leading to cyber-physical deviations that need to be addressed
during process execution [21]. Therefore, we propose the generalization of the declarative
approach used in [18] by considering the condition of the artifacts and by utilizing their
context for applying constraints on the tasks within the production workflow. For this
matter, we use the definition of “context” provided by Dey and Abowd (2000), who define
context as “any information that can be used to characterize the situation of an entity” [22].
They further define an entity as “a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves”, but given the nature of CPPS, interactions do not only take place between
users and applications, but also in-between applications. For this reason, we suggest not
limiting this definition to interactions in which a user participates.
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Within the research project “RESPOND”, we evaluate the declarative approach out-
lined above with the aid of a model machine consisting of four modules. These modules
are traversed by a work piece made of aluminum (approx. 65 mm × 20 mm × 3 mm) in a
skid on a conveyor belt. The four modules and their respective tasks are as follows:

1. A drill that drills a hole into the work piece;
2. A milling machine that mills an engraving into the surface of the work piece;
3. A camera that measures the diameter of the drilling;
4. A knuckle joint press to manually press a steel ball into the drilling.

Furthermore, a human operator is responsible for loading and unloading the machine.
In order to execute task 4, tasks 1 and 3 must have been executed successfully before.
However, task 2 is independent of the other tasks and is only crucial for the success of the
whole workflow. This means that if task 2 fails (e.g., due to a malfunction of the milling
machine), the other tasks can still be executed and task 2 can be performed later, provided
that the defect is remedied. Furthermore, executing the automated tasks (drilling, milling,
measuring) requires that the work piece is in the skid of the conveyor belt, while the
manual task requires that the work piece has been taken from the skid into the knuckle
joint press.

By annotating the activities of the process with the required and returned context data,
it is possible to verify whether the process is valid. For example, if an activity requires
that the work piece be located inside the skid, a preceding activity must have returned
“location = skid”. This standard process annotated with the required and returned context
data is depicted in Figure 4.

Furthermore, these annotations can be utilized to dynamically provide resilience on
the level of process execution in case one of the modules fails to perform its designated
task. The use case that we want to examine represents a temporary defect of the milling
machine, which is supposed to be remedied by a human operator. This resilience can be
provided in the form of a modified workflow, which is generated ad hoc upon process
errors. For this matter, we propose a Process-Planning Engine (PPE), which can be accessed
by the Manufacturing Execution System (MES) and that is able to obtain information from
the process itself as well as a context model of the plant.

The information flow outlined above requires a suitable architecture, in which contex-
tual information is available in real-time to the PPE. This use case is explored in [21], where
an architecture consisting of four layers allowing for real-time communication between
the involved components is proposed. One of these layers (the so called “RESPOND
infrastructure”) is responsible for communication via an event bus. Payloads delivered
via this event bus include, e.g., sensor data, commands for actuators, or messages sent by
components upon their registration. Besides the event bus, components communicate via a
peer-to-peer connection. Within this architecture, the proposed PPE can be represented by
the “Process Healing” node.
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changes that are applied to the work piece after the execution of the activity (“returns”).

Based on this architecture, a sequence diagram displaying the information exchange
relevant for resilient process planning is shown in Figure 5. As soon as a fault in the current
process is detected, a message containing the IDs of the faulty process, the blamable activity,
and the involved agents is sent to the PPE. For this matter, the origin of this error message
is considered a black box; however, it is conceivable to provide these error messages by
means of a Complex Event Processing (CEP) engine. In the architecture proposed by [21],
the CEP engine is represented by the “Process Analysis” node.
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Figure 5. Sequence diagram showing the information flow in order to generate a so-called “healing process” after an error
has been detected.

Based on these IDs (process, activity, agents, artifacts), the PPE requests the process
repository for the process model and the context engine for context information about the
involved agents and artifacts. Assuming that the process model is amended by semantic
information about the artifact states as shown in Figure 4, the “required” and “returned”
states can be summarized as “modifications” and can be mapped to the necessary skill
profile of the involved agents. Based on these modifications and skill profiles, two general
approaches can be conducted (Figure 6):

1. Adjust the faulty process by replacing the faulty activity with another activity (or
sub-process) that yields the same outcome;

2. Transfer the faulty activity to another agent that corresponds to the required skill
profile.

As soon as the PPE finds a solution for the faulty process, the newly generated process
is pushed to the process repository and its ID is published via the event bus to be read by
the workflow management system (WfMS), which, in turn, retrieves this process from the
repository and then starts it.

In the example of the workflow depicted in Figure 4, the task that should be performed
by the milling machine would be rescheduled to the end of the workflow, and a human
operator would be instructed to repair the machine. However, the milling machine requires
the work piece to be in the skid on the conveyor belt, and at the end of the default workflow,
the work piece is unloaded from the machine and put into the tray. Therefore, it is necessary
that the rescheduled milling process is padded with further activities that guarantee the
required artifact location, i.e., putting it into the skid before the milling and taking it from
the skid to the tray afterwards. The final activity was not part of the original process model,
so in order to add this activity to the rescheduled workflow, the PPE needs to query the
process repository for suitable activities or sub-processes based on the required context
modification. This modified workflow is depicted in Figure 7.
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2.4. Rapid Response to Changing Requirements Using Skill-Based Control Systems and Virtual
Commissioning

To implement the methods of workflow management and process execution to increase
the resilience of production systems, it is necessary to increase flexibility and modularity
on the station level and below. This can be achieved by designing the control device, field
device, and product accordingly. The modular design of the control device reduces the
development time and expenses even for smaller batch sizes. In addition, this modularity
enables flexible and individual adaptation of the control device to the application. The focus
of this section lies on the control device and its interaction with a digital representation of
the production station, represented as digital twin. This combination is a key enabler in
bringing production systems towards more resilience in production and is also beneficial
in the development phase. Details will be given in two subsections for the controller and
digital twin.

Modular and flexible production stations require new design [23] and new ideas of
power and information supply [24] as well as a new paradigm of PLC programming. Only
if the flexibility and adaptability in hardware is transferred into flexibility in the design
of automation solutions can a true and holistic flexibility in manufacturing be reached.
However, state-of-the-art programmable logic controllers (PLC), which are the common
solution, e.g., for robot cells, are a cyclic processing comprising the steps:

• Input scan (reading all inputs and memory states);
• Execution of a problem-oriented automation program (PLC-program) to generate

output and memory values;
• Output update (writing values to outputs and memory).

Up until today, the core of the PLC program has been defined by the automation task.
Until now, this has usually been developed, implemented, tested, and maintained on a
task-specific basis by an automation technician of the machine/unit manufacturer [25]. Due
to the fact that the task defines the code, necessary modification, adaptation or addition of
command sequences, and positions, process sequences are usually not easily possible, even
for minimal changes to the automation task. The effort required for programming, testing,
and commissioning control software is growing disproportionately with the increase in
the scope and complexity of control functionality [26]. In addition, monolithic, task driven
programs are mostly only changeable by specifically educated PLC programmers, which
often result in long maintenance breaks. Hence, this paradigm must be changed due to the
stated request for increased flexibility and modularity of production to realize an extended
resilience.

An alternative is the plug-and-produce concept. Although this was originally de-
veloped for hardware and connectivity in automation systems, it enables the flexible
configuration and partial self-organization of production processes at the runtime of the
system. Individual functional components can be combined and/or exchanged in a flex-
ible manner in order to adapt the production system to changing products or boundary
conditions. The basic idea of plug-and-produce is that hardware components make their
functions available based on a self-description, including all of the necessary information
for the higher-level automation system. Thanks to a uniform interface, new components
can be easily connected and used by the control device [14]. Several solutions are already
available, mainly using the OPC Unified Architecture (OPC UA) standard for data ex-
change [27]. This was developed as a platform-independent, service-oriented architecture.
However, most of the existing solutions are still manufacturer dependent or limited to
several, specified use cases [28].
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still valid.

One basis for implementing the plug-and-produce concept at the level of control
devices is to structure the functional components of an automation solution into mod-
ules. This ensures that modules can be easily exchanged and arranged according to the
automation task as well as to the hardware representation.
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This also triggers the main disruption in the programming of control devices: the
developed code is no longer task-driven, but skill-driven and modular.

The most important features of this controller programming approach are uniform
interfaces and the provision of parameterizable module functions in specific skills. After-
wards, the functions can be orchestrated freely for the automation task by a higher-level
system, whereby each module provides the necessary function descriptions, requirements,
and boundary conditions [13].

The strengths compared to the established architectures lie in the free reconfigurability,
interchangeability, and reusability of functional components at the control level. The
concept of skill-based control can be derived from a product-process-resource model (see
Figure 8).
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The benefit to the user is that the PLC programming is transformed from a program-
ming effort to a combination of predefined skills and their parametrization. Hence, the
controller is not only equipped with a specific program to solve one specific complex
automation task (Figure 9, left), but bases it on a large set of modular basic skills, cover-
ing all of the possible or senseful abilities of the manufacturing unit. Here, skills can be
parametrized and combined to jobs, leading to the complete automation task (Figure 9,
right).
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To give an example, handling, measuring, orienting, and loading/unloading are
regarded as jobs. All of the jobs consist of a sequence of skills, such as movement, open-
ing/closing a gripper, call to a camera. The skill “movement” is furthermore a combination
of basic skills such a move linear or move circular (Figure 9, right). The manufacturing cell
is equipped with all hardware modules and a complete skillset. This skillset is taught and
programmed by the automation technician but remains open for a variety of applications.
The solution is extremely flexible in further applications and in individual utilizations.
Further steps such as combining skills to jobs and programs can be conducted by skilled
workers and do not require automation technicians.
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After a basic commissioning and software test, the machine operator can combine the
skills and jobs to an automated process sequence or adapt the given sequence to a new
setting with support of a graphical user interface (GUI).

The fast commissioning as well as the software tests for the skill-based functions can
be realized by virtual commissioning using a digital twin of the production system. Digital
twins are already widely used by machine and plant manufacturers to virtually plan and
optimize the most complex production machines and plants during their development [30].
Along the development process, the digital twin can be used for the design of the different
domain-specific subsystems and to evaluate the dependencies between them. As such,
at the end of the construction phase, there is a nearly exact digital twin of the machine
that can be used for the development of the control functions while the hardware is in
realization [31]. The virtual commissioning of control systems allows for a reduction of
the commissioning time of the whole machine and results in a faster production start as
well as reduced costs for the engineering process [32]. Figure 10 shows the timeline for the
conventional procedure for the development of a system and in comparison, the timeline
for the same procedures with virtual commissioning.
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For virtual commissioning, machine and plant models are developed that correspond
to their real counterparts in terms of their interfaces, parameters, and operating modes.
With the help of these virtual systems, realistic test and commissioning situations can be
simulated, including all control functions, whereby the control system can be operated
and examined on the digital twin in the same way as on the real machine. Although
domain-specific behavioral models are occasionally used today in the production phase
for control and regulation functions, the comprehensive system simulation models from
engineering are usually not adopted in the real operating phase. In the context of the
resilience of production systems, these models in combination with the possibilities of the
virtual commissioning contributes to various aspects of resilience enhancement.

Increasing the resilience of production systems not only requires the early recognition
of the internal and external events that lead to disruptions in production processes, but also
strategies to respond to them flexibly. For example, it is necessary to evaluate a suitable
alternative in the event of a production equipment failure. In addition to manufacturing
products of the same quality, the objective may also involve meeting deadlines or changing
input materials, which can lead to necessary changes in the production processes. The
adaptation of the production system must be planned and examined for its feasibility. If the
machinery of a component manufacturer, for example, is virtualized, a virtual commission-
ing system can be used to assemble machines and systems from a library [33]. With this
modular system, it is possible to quickly assemble new configurations for manufacturing
systems, plants, or even entire factory halls in the event of changing boundary conditions
and to examine them regarding defined optimization criteria. In terms of anticipation, such
a configurator can be used to simulate events such as the failure of production equipment
and to plan the corresponding reactions and validate them on the virtual representation.
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This way, it is possible to react much more quickly in the event of an occurrence and thus
shorten the downtimes of production systems.

Today, up to two thirds of the control software for manufacturing systems is used
for error detection and handling [34]. The testing of the methods used for this can only
take place after the hardware has been realized. Only then can the corresponding errors
be provoked, and the reaction of the control system can be validated. In addition, errors
that lead to the destruction of the system, impairment of the machine environment, or
even injury to the machine operator cannot be checked on the real system. With the digital
twin, on the other hand, it is possible to examine these error patterns in an early phase
of the system development, even before its realization, and to incorporate the gained
knowledge into the development of the system components and control system. In this
way, the robustness of systems in the face of faults can already be increased during their
development.

3. Results
3.1. Increased Business Resilience by Means of Concurrent Supply Chain and Production
Plannning

The planning strategies, which were already indicated in Section 2.3, provide exem-
plary levers for increased predictability among connected supply chain partners and on
the business level that are specifically implemented and investigated with discrete event
simulation tools. Therefore, a scenario-based analysis of production order fulfilment is
possible in a quantitative manner. The exemplary production plan comprises the following
orders:

• 10 orders on day 1;
• 7 orders on day 2;
• 8 orders on day 3;
• 9 orders on day 4;
• 5 orders on day 5.

Filling additional outgoing stock is not taken into account in the scenario. The differ-
ences between the deterministic and stochastic forecast of the production process can be
determined, as depicted in Figure 11.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 23 
 

reactions and validate them on the virtual representation. This way, it is possible to react 
much more quickly in the event of an occurrence and thus shorten the downtimes of 
production systems. 

Today, up to two thirds of the control software for manufacturing systems is used 
for error detection and handling [34]. The testing of the methods used for this can only 
take place after the hardware has been realized. Only then can the corresponding errors 
be provoked, and the reaction of the control system can be validated. In addition, errors 
that lead to the destruction of the system, impairment of the machine environment, or 
even injury to the machine operator cannot be checked on the real system. With the digital 
twin, on the other hand, it is possible to examine these error patterns in an early phase of 
the system development, even before its realization, and to incorporate the gained 
knowledge into the development of the system components and control system. In this 
way, the robustness of systems in the face of faults can already be increased during their 
development. 

3. Results 
3.1. Increased Business Resilience by Means of Concurrent Supply Chain and Production 
Plannning 

The planning strategies, which were already indicated in Section 2.3, provide 
exemplary levers for increased predictability among connected supply chain partners and 
on the business level that are specifically implemented and investigated with discrete 
event simulation tools. Therefore, a scenario-based analysis of production order fulfilment 
is possible in a quantitative manner. The exemplary production plan comprises the 
following orders: 
• 10 orders on day 1; 
• 7 orders on day 2; 
• 8 orders on day 3; 
• 9 orders on day 4; 
• 5 orders on day 5. 

Filling additional outgoing stock is not taken into account in the scenario. The 
differences between the deterministic and stochastic forecast of the production process 
can be determined, as depicted in Figure 11. 

 
Figure 11. Comparison of influence stochasticity on order fulfilment. 

In this case, the stochasticity refers to an additional consideration of MTTR, i.e., down 
times can occur unexpectedly, based on a predefined probability distribution. It becomes 
clearly visible that a reduction in processing performance at a distinct point in time can 

Figure 11. Comparison of influence stochasticity on order fulfilment.

In this case, the stochasticity refers to an additional consideration of MTTR, i.e., down
times can occur unexpectedly, based on a predefined probability distribution. It becomes
clearly visible that a reduction in processing performance at a distinct point in time can
only be mitigated by increasing the production rate on a following day; otherwise, order
delays are dragged along succeeding days. With the aim of synchronizing supply chain
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control and internal production management, further scenarios (based on the stochastic
start solution) are investigated. Hence, Figure 12 shows comparative results if production
speed is increased or an additional shift is started.
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It becomes visible that the increased production speed on the left-hand side helps to
reduce delays during the planning cycle. However, order delays may still occur between
single working days but can be recovered shortly afterwards. A further shift leads to
an enormous increase of production capacity, and therefore, delays do not occur in the
described scenario. The additional times on the right-hand side indicate how long it takes
to fulfill the order during the third shift. It should be highlighted that the outcome in
this case may not be universally transferred to every use case since the profitability and
efficiency of each scenario heavily depends on the underlying parameters (e.g., production
rate increase, personnel costs during night shifts).

However, the applied discrete-event simulation provides the base for improved syn-
chronization between supply chain demand and internal operations. With reference to this,
the corresponding implications on information architecture and manufacturing cell design
are subsequently presented.

3.2. Architectural Implications Due to Process Resilience

With the declarative approach explained in Section 2.3, we examined how resilience
can be provided on the level of process modelling as well as execution and explained how
this approach fits into the architecture provided in [21]. However, adapting and generating
processes at run-time does not only require the WfMS to be capable of reacting to these
dynamic changes (i.e., terminating the current process and launching the “healing process”),
but also includes assigning activities to specific agents in a flexible way. Therefore, these
premises impose requirements on both the station level and the system architecture, i.e.,
the PLCs used to control machines, robot cells, etc., need to be addressable in a flexible
way without causing an overhead in reconfiguration. A possible solution to this problem
is explained in Section 2.4, with the approach of PLCs organized by skill profiles. On
the one hand, this allows for a H data source that can be utilized during the process
generation in order to find possible solutions to erroneous workflows, and on the other
hand, once a possible solution is found, modular PLCs allow for a rapid reconfiguration on
the station level.

Furthermore, some risk mitigation strategies involve human intervention: a defective
machine or module might need to be repaired by a technician, a work piece needs to be
loaded manually into the machine, or an error report needs to be acknowledged. Conse-
quently, the system’s architecture must support integrating humans into these processes
as well, e.g., in terms of a role-based user management. When a human agent is notified
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about a possible task ad hoc, further consideration is required regarding the presentation of
this information. Besides the technical details of the implementation of such notifications,
the necessary information to be presented to the human that is required to execute the
assigned task needs to be determined. Furthermore, resilient processes that are (partially)
executed by humans also raise issues in terms of cognitive ergonomics and human factors,
especially if the skill-based approach used to manage production machines, robots, etc.,
will be extended to human operators.

To sum up, we highlight the following implications to be considered when integrating
resilient production processes:

1. Modular management of workflow agents;
2. Adaptive and flexible workflow management;
3. Human-centric presentation of information.

3.3. Modular Manufacturing Cells for Problem-Independent Production

Figure 13 shows a GUI for a robot cell to manipulate, measure, and stack up automo-
tive parts. The cell consists of a KUKA robot and four stations, each realizing different
process steps. The left part shows the parametrized job list followed by a specification
for each job. A visualization in the right part provides an interaction with the operator
and visualizes the abstract robot actions associated with the manufacturing layout and
task. Here, the programming paradigm interacts with factory facility planning when the
state-actual model is incorporated in the GUI. In the middle part, control buttons allow for
the PLC to be connected to, the download of the program to the PLC, and the running of
specific jobs.
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The new parametrization paradigm uses flexible robot jobs, parametrized by a GUI
and subsequently downloaded into the PLC. The program, job/skill parameters, and the
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chronology of skills can be controlled, adapted, and reorganized through a GUI. After basic
commissioning of the complete skillset, no automation specialist is needed anymore. Job
and process flow adaption and testing can be realized within a few minutes. Users without
PLC or robot programming knowledge can implement changes, and the risk of errors in
programming is reduced.

Besides the aforementioned robot cell for manipulating automotive parts, another
robot cell for the highly flexible loading and unloading of machine tools was automated
based on the new parametrization paradigm.

For the test of control functions and the evaluation of methods to increase the resilience
of production systems, a model, shown in Figure 14, of a small production cell for additive
manufacturing with machining finishing was created. The material flow within the cell
is realized by different handling robots and a conveyor belt that transports the produced
semi-finished products between the processing stations. For the finishing of the products,
two machines for milling are modeled. One is a conventional cutting machine tool, and
the other one is a robot with a milling spindle as tool. The coordinate transformation of
the robot enables cartesian machining in three axes. Both machines are controlled by a NC
controller so that the same NC code can be executed.
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While the machines perform the same machining task, they have different charac-
teristics, e.g., movement accuracy, stiffness, damping or inertia, which lead to different
machining results, as shown in Figure 15. The conventional milling machine has a higher
stiffness so that the milling results on the part surface are of higher quality than the results
reached with the robot. In the example shown, only the pure vibration behavior of the
machines is depicted on the surface of the components. So far, no interactions between
the material and the machining tool have been implemented in the model. Thus, the
differences could only be evaluated qualitatively until now. Modelling the interactions
between process and machine will be part of future work to increase the mapping accuracy
in virtual commissioning.
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The virtual commissioning in combination with physically based models of machines
and components allows for the virtual evaluation of reconfiguration strategies before
the real production system is redesigned. The individual components of the production
system are stored in a library so that a completely free composition of production cells
is possible. An example for a matrix production cell is shown in Figure 16. For this
model, components from the model depicted in Figure 14 are reused, and a new cell
structure is built. In combination with the capability-based system control methods, a fast
restructuring of a production system is possible, including its evaluation by use of the
digital twin. Depending on the aim of reconfiguration, a variant analysis can be done to
evaluate the reachable accuracy of machining or to analyze the system with regard to the
production time, the energy consumption or other thinkable optimization criteria. Finally,
given the appropriate methods, it can be used to assess the resilience of a production
system in the event of unexpected disruptions.
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4. Discussion
4.1. Applying Resilient Processes to Production Systems

By amending business process models with contextual information about the involved
artifacts, we proposed a solution that allows to the generation and validation of production
processes by analyzing the constraints that are imposed by this contextual information.
Integrated in an architecture that aims for real-time communication between modular
services—including process analysis and process healing—the proposed Process-Planning
Engine can be utilized to mitigate risks and to provide resilience to erroneous processes
during the execution of the process, which means that error handling strategies do not
need to be modelled explicitly beforehand. Instead, “required” and “returned” artifact
states can be used to find alternative solutions in case an activity within a process cannot
be performed. However, this approach has yet to be verified as part of a real production
process since, e.g., the performance of the proposed algorithm or its reliability in generating
a suitable “healing process” are crucial factors for the application in a CPPS. Furthermore,
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only linear processes are considered at this moment, but production processes often involve
parallel processes.

The constraints between the process activities are currently provided by text annota-
tions in a proprietary format, so it is desirable to use an ontology that defines the structure
of these annotations, the artifact conditions, and the required agent and builds upon exist-
ing ontologies such as the Common Core Ontologies [35] in order to ease the integration of
our approach into other systems. Further aspects that need consideration are production
equipment and consumables that are required within a production process and therefore
may impose further constraints on resilient process planning. Another important aspect is
the integration of human agents into these processes. This requires not only addressing
how to present information in a user-friendly way, but also how to extend the skill-based
approach used to manage non-human agents to “human skills”.

4.2. Matrix Production as Alternative Manufacturing Concept of the Future

The growing diversity of product variants and the resulting decrease in batch sizes
require the flexibility of production. Both internal and external events can lead to changed
requirements or to disruptions in the production process that require an adjustment of
production sequences and process chains.

Modular production cells combine technologies with the necessary automation for
their implementation to realize a defined process step. The matrix production concept
allows for the free interlinking of such production cells and thus dissolves the limitations
of today’s established line production. A wide variety of product variants can be manufac-
tured on one production structure. The sequence of the process steps to be performed is
not predetermined by the structure of the manufacturing system. Each product follows
its own path through the needed production cells and defines its own production struc-
ture. The duration of a single process step no longer determines the cycle of the entire
production. Rather, the process steps are conducted independently of each other so that
an infrastructure can be created that is oriented to processes and capacity requirements.
However, the implementation of manufacturing cells requires control methods that enable
a capability-based description of the machining processes. This is the basis for the rapid
reconfiguration of the cell and the efficient adaptation to a new manufacturing task.

The matrix production concept enables production to be quickly adjusted to changing
requirements. Flexible reactions to customer demands, prioritization of rush orders, or
parallel processing of different orders are possible with the same production technology.
The robustness of the system increases when central process steps are available in multiple
units. This makes production less susceptible to disruptions, as it is possible to switch
to another cell if one fails. For this purpose, it is necessary to develop planning methods
which, on the one hand, allow a statement about the most efficient processing of the current
task, but also allow an evaluation of the planned process sequences with regard to other
criteria such as the achievable accuracy during production or also the energy requirement
of the production equipment. The methods of virtual commissioning provide the basic
functions for the virtual analysis of the production process, considering the real control
technology. In the future, it will be necessary to make the required extensions in order to
be able to include the dynamic and energetic properties of the manufacturing systems as
well as the interactions of machines and processes.

With the methods presented, it is possible to achieve the necessary mutability of
production systems, provide the corresponding planning methods, and thus increase the
resilience of these systems.
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