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Abstract: Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and
its use as a folk medicine for many years. Its therapeutic properties have been well correlated with
the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes.
The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical
and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among
the active constituents that have been identified in Centella asiatica, madecassoside has been the
subject of only a relatively small number of scientific reports. Therefore, this review, while including
other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and
toxicity of madecassoside.
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1. Introduction

Centella asiatica (L.) Urb., is an ethnomedical tropical plant that belongs to the Apiaceae
family. Locally known as pegaga, or more commonly known as ‘Indian pennywort’, it is a
lightly aromatic, slender and perennial creeper that blooms in shady, marshy and humid
areas in tropical and subtropical Asian countries such as Malaysia, India and China [1,2].
The plants have a creeping stem, rooting at the nodes, producing tufts of leaves and white
or pink flowers [3]. This plant is widely consumed as a health drink, while also used
as a vegetable in a variety of cuisines and traditional food recipes in Asian countries [4].
C. asiatica (CA) has been used extensively in Ayurvedic and Chinese traditional medicine
for hundreds of years to treat dermatological diseases, including bacterial infections, psori-
asis, scleroderma, ulcer, leprosy and also skin inflammation due to wounds and burns [5–9].
Moreover, C. asiatica has also been reported to have neurological actions, including neuro-
protective, memory-enhancing, antidepressant and anxiolytic effects [4–6,8,10,11]. Due to
the outcome of in vitro and in vivo studies, as well as their cost effectiveness, easy access
and low observed toxicity, C. asiatica extracts have been investigated clinically in various
fields. A study found that CA lowered stress, attenuated anxiety, negated depression
and enhanced adjustment and attention in patients with general anxiety disorder without
any adverse effects [12]. CA was also reported to exert anxiolytic activity [13], as well as
improve mood, behavior and cognitive functions [14–16]. Furthermore, CA has been used
widely in treating vascular diseases, such as venous hypertensive microangiopathy [17–20],
diabetic microangiopathy [21,22] and chronic venous insufficiency [23,24]. Clinical trials of
CA have also been undertaken in other conditions, including leprosy [25], chronic hepatic
disorder [26] and gastric ulcers [27–29].With the abundant literature available on therapeu-
tic effects of CA, it is worthwhile to explore into the compounds that is/are responsible for
the effects.
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The novelty of this review is it highlights the compound madecassoside, as it’s po-
tential have not been tapped into vastly. This review also compiles the pharmacological
activities of the main constituents, that has not been published previously.

2. Methodology

An extensive literature search was performed to identify the major constituents re-
sponsible for the reported pharmacological properties of C. asiatica. Furthermore, an
attempt to summarize the common mechanism was made. Various electronic databases,
such as Science Direct, PubMed, Taylor and Francis, Wiley, along with Google Scholar
search engine were used for the literature survey. Papers with information on phytocom-
pounds, medicinal properties, traditional practices and clinical trials were included. The
literature cited in this review paper consists of 261 references which includes research and
review papers. The search terms used in combination were Centella asiatica, madecassoside,
asiaticoside, madecassic acid, asiatic acid, pharmacokinetics, toxicity profile and pharmaco-
logical properties. Studies or trials that did not include basic details were excluded. The
results were compared, correlated and discussed to help researchers to further explore
the possibilities of using the compounds in other research areas as well as clinical trials.
The summary of the methodology adopted in the development of this review is illustrated
in Figure 1.

Figure 1. Summary of methodology.
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3. Active Constituents of C. asiatica

Inconsistent pharmacological activities of C. asiatica extracts harvested from various
origins were reported; these extracts displayed substantial variations in the quality and
quantity of their bioactive compounds [11]. Previous analytical studies showed C. asiatica
to contain triterpenoids, amino acids and essential oils. The most important bioactive
compounds are triterpene glycosides (saponins), such as asiaticoside and madecasso-
side, along with their respective aglycones (sapogenins), asiatic acid and madecassic
acid [5,8,10,30–32]. These four major compounds, also known as pentacyclic triterpenes,
are claimed to be responsible for the biological effects of C. asiatica extracts (Figure 2). Other
constituents include oxyasiaticoside, centelloside, brahmoside, brahminoside, thankuno-
side, isothankunoside, brahmic acid, isobrahmic acid, betulic acid, β-sitosterol, hexacosanol
octanoate, kaempferol, quercetin, daucosterol, vanillic acid and succinic acid [2,7,9,33,34].
Madecassoside and asiaticoside are identified as the biomarker components of this plant
extract, due to their high contents relative to other constituents, with the content of made-
cassoside (C48H78O20) being the highest [35].

Figure 2. Chemical structures of madecassoside, asiaticoside, madecassic acid and asiatic acid
(Glu: glucose, Rha: rhamnose).

Several methods have been used to quantify the triterpene content of Centella ex-
tracts. These include thin-layer chromatography and mass spectrometry (TLC-MS) [36],
TLC coupled to high-speed counter-current chromatography [37,38], ultraviolet-visible
spectroscopy (UVS) [39], high performance liquid chromatography (HPLC) [40–42],
HPTLC [37,42–45], HPLC–electrospray ionization–mass spectrometry (HPLC–ESI–MS) [6],
HPLC-ultraviolet (HPLC-UV) [5,41,46], and HPLC-paired with evaporative light scattering
detector (HPLC-ELSD) [5,42]. Among these methods, some are comprised of multiple-step
extraction and/or purification processes. These techniques have limited sensitivity and
specificity, while necessitating long analysis cycles to acquire satisfactory chromatographic
separation. High-performance anion-exchange chromatography combined with pulsed
amperometric detection (HPAEC-PAD) is often used to quantify carbohydrates in plant
extracts, allowing absolute detection of carbohydrates with great sensitivity [5]. Glycosides
have previously been analyzed using reversed phase HPLC-PAD, where the compounds
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were detected following chromatographic separation. For example, madecassoside and
asiaticoside were detected within 5 min of sample pre-treatment by combination with a
post-column sodium hydroxide solution using the reversed phase HPLC-PAD method [5].

Although the quantification of C. asiatica triterpenes have been corroborated by numer-
ous researchers using HPLC-UV and HPTLC, variations in the triterpene content of extracts
were found, depending on the location and the diverse environmental conditions for the
growth of the plant. An investigation of the chemotypic variations of active biomarkers
in relation to morphotypic changes in C. asiatica found no distinct disparity in botanical
descriptors, physicochemical parameters or in bioactive metabolites quantified through
HPTLC; this led the team to conclude that morphotypic variations do not always lead to
chemotypic variations in C. asiatica [33].

A different approach using a polyclonal antibody against madecassoside, ELISA and
Eastern blotting was used to quantitatively analyze triterpene glycosides in C. asiatica.
ELISA was used to determine total madecassoside and asiaticoside content, whereas
Eastern blotting was used to separate and quantify madecassoside and asiaticoside. These
methods are faster, more straightforward and cost effective compared to HPLC [4].

4. Pharmacokinetics of C. asiatica Constituents

Over the years, countless small molecules derived from natural products have failed to
progress to clinical studies, due to poor pharmacokinetic properties. Pharmacokinetics and
bioavailability are major barriers in drug development. Oral bioavailability is an important
factor to achieve the efficacious therapeutic concentrations of the drug, as it also denotes
the most ideal route of drug administration [47].

Several studies have examined the pharmacokinetics of asiatic acid in rats and
dogs [48–50]. With oral dosing, asiatic acid achieves a maximum plasma concentration
(cmax) after 30 min, indicating rapid gastrointestinal absorption. However, it is absorbed
poorly and follows passive diffusion, with a major site of absorption in the jejunum,
followed by rapid metabolism in the liver by cytochrome P450 enzymes [50]. Bioavailabil-
ity studies have shown that asiatic acid may cross the blood–brain barrier (BBB), as the
concentration of asiatic acid attained in the brain appears to be adequate to elicit neuropro-
tection [51–54]. The pharmacokinetics of asiatic acid present in a total triterpenic fraction of
C. asiatica were studied in a randomized crossover design, administrating a single oral dose
or repeated oral doses to healthy volunteers. Difference in dosage or treatment schemes
did not affect the time taken to achieve peak plasma concentration. However, a chronic
treatment protocol demonstrated increased half-life (t1/2), AUC0–24 (area under the plasma
concentration-time curve from zero to 24 h) and cmax [55]. The pharmacological effects
and therapeutic benefits of asiaticoside are mediated by its in vivo metabolic conversion to
asiatic acid [56]. Following intravenous administration of asiaticoside to rats, it is widely
distributed in several organs and metabolized extensively, then finally recovered as asiatic
acid in feces [10]. Asiatic acid is a non-toxic compound with an LD50 value of 980 mg/kg
in rats [57].

Pharmacokinetic studies of madecassoside in rats have shown a cmax of
303.75 ± 28.53 ng/mL after a single-dose oral administration of 100 mg/kg [6]; it was
hypothesized that madecassoside could be metabolized to madecassic acid by intestinal
bacteria [6,35]. Another pharmacokinetic study conducted using collagen-induced arthritic
(CIA) rats showed the cmax and AUC of madecassoside to be notably reduced, while the
Vd/f was augmented during the initial seven days of dosing. On the other hand, the
T1/2, cmax and AUC of madecassic acid were prominently elevated, with a significant
reduction of elimination rate constant (Ke) in CIA rats compared with normal rats. This
study showed that the pharmacokinetic parameters of both madecassoside and madecassic
acid in rats were substantially altered by arthritis status [58]. Another study compared
pharmacokinetic changes of madecassoside and asiaticoside following the administration
as pure compounds and ECa 233, a standardized extract of C. asiatica with madecassoside
(51%) and asiaticoside (38%) in male Wistar rats. The AUC0–∞ of madecassoside from ECa
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233 was 2-fold higher than that of pure madecassoside. Furthermore, the elimination half-
life of madecassoside and asiaticoside as pure compounds were approximately 4 h, while
the elimination half-life of madecassoside and asiaticoside as ECa 233 were prolonged. The
study suggested that the pharmacokinetic behavior of madecassoside and asiaticoside was
improved when administered as ECa 233 compared to pure compounds [10].

5. Toxicity Profile of C. asiatica Constituents

There is a scarcity of literature relating to the adverse effects and toxicity of C. asiatica.
In a recommended dosage in humans C. asiatica is not toxic and side effects are rare,
although it may cause skin allergy and burning sensations with external use, and in high
doses, headache, upset stomach, nausea, dizziness and drowsiness were observed [59].
Contact dermatitis cases were reported on a few occasions from using topical preparations
that contained C. asiatica [60–65]. The median lethal dose of dried powder of C. asiatica
given orally to mice was greater than 8 g/kg, attesting to the lack of acute toxicity of the
dried plant [66]. In a chronic toxicity study, 20, 200, 600 and 1200 mg/kg/day of C. asiatica
were given to Wistar rats for six months. At the end of the study, treated animals showed no
significant changes in body weight, blood chemistry, clinical chemistry and histopathology
when compared to the control group [67]. However, in contrast, oral administration of
dried C. asiatica at a dose of 1000 mg/kg/day for 30 days to albino rats produced hepatic
damage [68]. Furthermore, there is also a report on the risk of hepatotoxicity in humans
treated with C. asiatica for 20–60 days [69]. Although C. asiatica was rarely reported to cause
any adverse effects, it is advised not to be consumed by women during pregnancy and
lactation, as it may have emmenagogue effects [70]. Extended treatment with high doses
appears to reduce the metabolism of active constituents, which may increase the risk of
toxicity; this should be considered during pharmacotherapy [55].

There are few studies on the toxicity of individual constituents of C. asiatica. One study
reported that asiaticoside did not exhibit any signs of toxicity after oral administration of
1 mg/kg. However, intramuscular injection of asiaticoside caused toxicity in mice and
rabbits at 40–50 mg/kg [71]. Asiaticoside was also implicated as a weak carcinogen after
repeated topical application on hairless mice [72]. Drug–drug interactions are possible
with asiaticoside and/or madecassoside, as they were shown to inhibit human cytochrome
P450 enzymes that are responsible for drug metabolism [73].

6. Therapeutic Actions of Madecassoside and Other Major Compounds in C. asiatica

Despite the extensive use of Centella asiatica as a traditional remedy, there have been
few clinical studies because the drug delivery of a whole plant extract is more challenging
compared to individual compounds. Therefore, attention has been focused on the isolation,
production and medicinal efficacy of its bioactive compounds. This review focuses on
madecassoside, asiaticoside, asiatic acid and madecassic acid, which have been researched
considerably in recent years. A summary of the recent findings (from year 2015 to 2021) for
the various conditions discussed below is presented in Table 1.

6.1. Skin Related Disease or Wound

C. asiatica has been used extensively in traditional medicines for treating skin related
wounds and diseases, such as ulcerous skin abnormalities, lupus, scleroderma, leprosy [74];
a small number of studies have suggested that the beneficial effects are due to madecas-
soside, the most abundant triterpene present in extracts of C. asiatica [75]. Many studies
suggested that madecassoside is beneficial in a variety of skin disorders, in which it may
prevent skin aging and promote wound healing, as well as exerting anti-inflammatory
and anti-psoriasis effects [76]. These effects of madecassoside may be due to its ability to
protect against lipid peroxidation, and intensify collagen synthesis and expression while
stimulating angiogenesis [77].
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The most widely studied effects of C. asiatica extract and madecassoside have been
in the context of burn wound healing. Burn wounds are categorized as tissue injury
caused by external triggers, such as heat, chemicals, radiation and electricity [74]. Burn
wounds could be classified into three degrees, predominantly based on the complexity of
the wound incurred; these are superficial (first degree), partial thickness (second degree)
and full thickness (third degree). Burn wound healing is complex, comprising an array
of processes. It commences with inflammation that interrupts blood vessels and stimu-
lates blood constituents to be released to the target area to stimulate re-epithelialization;
followed by the formation of granulation tissue consisting of macrophages and fibroblasts
that are responsible for extracellular matrix recovery; neo-vascularization towards the
target area; in addition to mitogenic stimulation and migration of cells of endothelial origin.
Finally, communication between extracellular matrix cells and cytokines results in wound
contraction [74]. In rats, madecassoside and asiaticoside were reported to possess wound
healing properties [74]. Madecassoside was shown to augment inflammatory cell infil-
tration, and to nurture re-epithelialization to achieve an almost complete wound closure
with an improved healing pattern in the burned skin on mice [78]. Furthermore, in vitro
studies have demonstrated the ability of madecassoside to promote type I and III collagen
synthesis and to stimulate the proliferation of cultured human fibroblasts [78]; similar
findings were also reported for asiaticoside [79]. Madecassoside was shown to augment
endothelial cell growth in rat aortic rings in vitro, and to markedly increase angiogenesis
in mouse burn wounds; it was hypothesized that madecassoside expedites burn wound
healing through increased antioxidative activity, enriched collagen synthesis and angio-
genesis [78]. In a separate study, madecassoside was shown to protect human umbilical
vein endothelial cells (HUVECs) against hydrogen peroxide-induced lipid peroxidation
and apoptosis via protecting the mitochondrion membranes, and inhibiting the activation
of caspase-3 and p38 MAPK [80]. Similar studies have also been conducted to test the
efficacy of asiaticoside in wound healing. Asiaticoside treatment increased migration rates
and initial attachment of skin cells, while promoting normal human dermal fibroblast
proliferation [81]. Asiaticoside also exhibited significant wound healing activity in normal
as well as delayed healing models [82]. A study suggested that the enhancement of burn
wound healing by asiaticoside could be due to the promotion of angiogenesis as a result
of stimulation of the production of vascular endothelial growth factor (VEGF), caused by
an increased expression of monocyte chemoattractant protein-1 (MCP-1) in keratinocytes,
even at very low doses of asiaticoside (10 pg, 1 ng and 100 ng per mouse) [83]. Furthermore,
the augmented healing produced by asiaticoside could be due to its capacity to enhance
tissue antioxidant levels [84]; this study also suggested that asiaticoside would be helpful
in wound repair only if applied during the active/initial phase of healing [84]. Asiaticoside
has also showed potential in accelerating wound healing in a fish model via increased
cellular proliferation and suppressed apoptosis [85].

Skin aging is a multifaceted biological process molded by a combination of endoge-
nous or intrinsic (genetics, cellular metabolism, hormone and metabolic processes) and
exogenous or extrinsic (chronic light exposure, pollution, ionizing radiation, chemicals,
toxins) factors. It is characterized by features, such as wrinkling, loss of elasticity, laxity and
a rough textured appearance. Madecassoside showed protective effects against oxidative
stress and UVB radiation. It significantly inhibited UV-induced melanin synthesis and
melanosome transfer in a co-culture system of keratinocytes and melanocytes, by suppress-
ing PAR-2 expression and its signaling pathway involving COX-2, PGE2 and PGF2α in
keratinocytes [86]. Several traditional Chinese medicine practitioners have shown a thera-
peutic effect of madecassoside in the re-pigmentation of vitiligo and post-inflammatory
hyperpigmentation. For example, madecassoside showed an anti-oxidative effect in human
melanocytes exposed to hydrogen peroxide; here, it attenuated mitochondrial damage and
promoted autophagy [87]. Madecassoside was also reported to impede the proliferation
of SVK-14 keratinocytes, a cell line useful for investigating psoriasis [88]. In an in vivo
mouse model of psoriasis-like inflammation induced by the immune response modifier
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imiquimod (IMQ), topically applied madecassoside decreased dermal inflammation and
reduced keratinocyte proliferation. These effects were associated with a reduction in the
elevated expression of IL-22, IL-17 and IL-23, and a reduction in the number of Th17 cells
in the spleen and cervical lymph nodes [89]. Such observations suggest that madecassoside
could be a novel treatment for psoriasis. Skin aging is primarily associated with reduction
in type I collagen levels. As mentioned above, asiaticoside was reported to induce type
I collagen; thus, it was hypothesized that asiaticoside induces an anti-wrinkle effect by
elevating type I collagen levels through TβRI kinase-independent Smad signaling path-
way [90]. Micropthalmia-associated transcription factor (MITF) regulates key enzymes in
melanocytes, which is important for hyper- or hypopigmentation diseases. Asiaticoside
was shown to be a novel candidate for melanogenesis inhibition through repression of
DNA binding to MITF [91]. Advanced glycation end-products (AGEs) accumulate in
skin and cause overproduction of free radicals and inflammatory cytokines that enhance
skin aging. Pre-treatment with asiatic acid protected HaCaT cells against AGE-induced
injury. Asiatic acid exhibited antioxidative, anti-inflammatory and antiapoptotic effects by
reducing ROS production and decreasing caspase activity [92]. Moreover, asiatic acid also
prevented UVA irradiation-induced ROS production, lipid peroxidation and induction of
MMP-2, as well as preventing UVA-enhanced expression of p53 in HaCaT cells [93].

Keloids result from an anomalous wound healing process: they are regarded as benign
dermal tumors, as they proliferate beyond the boundaries of the original wound without
regressing spontaneously [94]. Keloids cause substantial cosmetic defects and deformities,
and can sometimes limit joint mobility. Although there are no reports of keloids transform-
ing into malignant tumors, the invasion activity of keloid fibroblasts (KF) is comparable
to some extent to that of malignant cells [94]. Treatment of human keloid-derived fibrob-
lasts with madecassoside (10, 30 and 100 µM) for 48 h inhibited their proliferation and
migration in a time- and concentration-dependent manner, while inducing KF to undergo
apoptosis [94]. Additionally, madecassoside depolarized the mitochondrial membrane,
activated caspase-9 and caspase-3 and regulated the expression of Bcl-2 family members
in KFs, implying that madecassoside induced KF apoptosis through a mitochondrial-
dependent pathway. These effects were associated with a marked attenuation of phospho-
rylation of cofilin, and p38 MAPK of phosphatidylinositol-3-kinase (PI3K)/AKT signaling.
This study provided an explanation for the mechanism whereby madecassoside attenu-
ates the formation of keloid scars and suggests that madecassoside could be of immense
benefit for treating and/or preventing hypertrophic scars or keloids [94]. While made-
cassoside was proposed to exert its effects through a mitochondrial-dependent pathway,
asiaticoside was suggested to hinder the invasive growth of KFs by inhibiting the growth
differentiation factor-9 (GDF-9)/MAPK/Smad pathway [95]. Another study suggested
that asiaticoside inhibited keloid-derived fibroblast proliferation and collagen synthesis.
This study demonstrated that asiaticoside could negatively regulate the expression of both
TGF-βRI and TGF-βRII while increasing inhibition of Smad7 expression, thereby altering
fibroblast proliferation and collagen production [96]. Similar findings were also reported
in separate studies [97–99]. Likewise, asiatic acid also inhibited TGF-βI-induced collagen
type I and plasminogen activator inhibitor-1 (PAI-1) expression, while increasing Smad7
protein level in KFs via activation of PPAR-γ [100].

6.2. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic disease distinguished by chronic inflam-
mation, synovial hyperplasia with concomitant joint destruction, deformity and loss of
function [101]. Collagen II (CII) is the core constituent protein of the cartilage in the
diarthrodial joint, which is the principal site affected in RA [102]. The presence of heterolo-
gous CII species in the articular cartilage of joints initiates an immune response and Type
II collagen-induced arthritis (CIA) is a well-established in vivo model for assessing the
effects of anti-inflammatory or anti-rheumatic drugs, as it expresses similar immunologi-
cal and pathological traits to human RA [103]. Oral administration of madecassoside to
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mice with CIA produced a dose-dependent reduction in paw inflammatory swelling and
erythema, but did not modify the disease-associated body weight loss. Moreover, it also
radically ameliorated the pathological indicators, including infiltration of inflammatory
cells into the joint cavity, synovial hyperplasia, pannus formation and erosion of bone
and cartilage [104]. It was hypothesized that madecassoside downregulated the abnormal
humoral and cellular immunity, such as the overproduction of auto-antibodies and the
excessive activation of T lymphocytes as well as joint destruction [104]. Another study
suggested that the anti-inflammatory effect of madecassoside in mice with CIA may be
associated with the inhibition of the production of TNF-α, IL-6, PGE2 and the expression
of COX-2, as well as the upregulation of the expression of the anti-inflammatory cytokine
IL-10 [105]. Systemic levels of IL-10 were shown to be increased in rats with CIA receiving
madecassoside, although the secretion of IL-10 from peripheral mononuclear cells was
not enhanced [106]. Furthermore, madecassoside treatment led to a prominent increase
in Foxp3+ lymphocytes in the intestinal lamina propria, one of the major sources of IL-10.
This study suggested that the anti-arthritic effects of madecassoside in rats were mediated
primarily through intensifying the secretion of IL-10 from Foxp3+ lymphocytes in the
intestinal lamina propria and the mobilization of IL-10 to the circulation, rather than by a
systemic anti-inflammatory action [106].

Cytokines are acknowledged to stimulate fibroblast-like synoviocytes (FLS) to produce
MMPs, which damage the collagen component of cartilage and bone, contributing to the
joint deformity and pain in RA patients [107]. MMP-13 is one of the most important colla-
genases responsible for damaging the articular cartilage and is often found in higher levels
in the synovial fluids of RA patients [108]. The chief inducer of MMP-13 is IL-1β, mainly
through pathways involving NF-κB [109]. Madecassoside reversed the histological lesions
in adjuvant-induced arthritis rats and suppressed IL-1β-induced invasion and migration
of FLS, as well as inhibited the expression of MMP-13 in FLS but with little effect on the
expression of other MMPs. Additionally, madecassoside attenuated IL-1β-stimulated p65
phosphorylation and translocation. These data suggested that madecassoside inhibited
MMP-13 by preventing NF-κB translocation and phosphorylation [110].

As described earlier, the pharmacokinetics of madecassoside may be influenced by
the presence of arthritis. Thus, the metabolism of madecassoside and the absorption of its
metabolite madecassic acid were amplified in rats with CIA. This may be related to arthritis-
induced changes in the levels of inflammatory cytokines, the activity of intestinal bacteria
and the expression of hepatic drug metabolizing enzymes [58]. No studies appear to have
been reported on the anti-arthritic effects of asiaticoside, asiatic acid and madecassic acid.

6.3. Neurodegenerative Diseases

Neurodegeneration entails numerous cellular processes whereby neuronal cells grad-
ually deteriorate, lose functionality and eventually die [111]. Neurons are susceptible to
ROS-induced oxidative damage resulting from ROS-induced oxidation of various biologi-
cal macromolecules, causing homeostatic disturbances within neurons leading to cell death.
Neuroinflammation is one of the key risk factors of progressive neurodegeneration [112].
The accumulation of ROS and protein misfolding associated with neuroinflammation
could be one of several triggers of neurodegeneration [111]. Some studies have impli-
cated neuroinflammation in aggravating Alzheimer’s disease (AD) and Parkinson disease
(PD), by stimulating excessive production of amyloid β plaques and the destruction of
dopaminergic neurons [111]. Several studies have suggested the potential of C. asiatica
extract to mitigate symptoms of various neurodegenerative diseases, such as memory
impairment, anxiety and locomotive dysfunction [113]. It has been used extensively as a
memory-enhancing drug in Asian countries, such as India, China and Malaysia, and has
been shown to have some pharmacological activities in the central nervous system [114].
Additionally, C. asiatica extracts were also reported to possess anticonvulsant and central
nervous system depressant actions [59].
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Purified madecassoside was shown to inhibit in vitro Aβ1–42 fibril formation and to
markedly inhibit Aβ1–42 induced apoptosis in SHSY5Y cells [115]. Long-term oral adminis-
tration of madecassoside protected against spatial memory impairment in Aβ1–42-infused
rats, a model of AD, as well as inhibiting the formation of Aβ1–42 fibrils [116]. Madecas-
soside also diminished the brain Aβ1–42 burden, oxidative stress, TNFα and cathepsin D
levels, along with a parallel increase in BDNF and postsynaptic density protein (PSD-95)
levels in the hippocampus. The interaction of madecassoside with Aβ1–42 by molecular
docking was examined to further assess the anti-Aβ1–42 fibrillation effect of madecassoside.
Computational modeling studies showed effective molecular docking of madecassoside
onto Aβ1–42, consistent with the inhibitory effects of madecassoside on in vitro fibril forma-
tion and memory impairment in a rat model of AD [116]. In agreement with these findings,
madecassoside was found to markedly improve D-galactose-induced cognitive impairment
in mice; this may be mediated by reducing oxidative damage via the inhibition of the NF-κB
and ERK/p38 MAPK pathways, and diminishing the deposition of Aβ, thus ameliorating
the synaptic plasticity dysfunction with amplified BDNF and PSD-95 expressions in the
hippocampus. Furthermore, madecassoside notably enhanced acetylcholine levels while
diminishing cholinesterase activity [112]. In another study, madecassoside significantly re-
duced Aβ25–35-induced autophagosomes in neural cells and increased neural cell viability,
as well as reducing the production of inflammatory cytokines such as TNF-α, IL-10, IL-6
and COX-2, blocking the conversion of light chain 3-I (LC3-I) to light chain 3-II (LC3-II) and
decreasing the level of Beclin-I level. All of the above findings suggest that madecassoside
could be a potential agent for treating AD [112]. Asiaticoside also has been researched
considerably as a therapeutic agent for AD. In an AD rat model induced by intracere-
broventricular injection of Aβ1–42 oligomers, asiaticoside diminished learning and memory
function impairment, reduced Aβ build-up in the hippocampus and reinstated subcellular
structure damages. Asiaticoside also decreased levels of IL-6 and TNF-α as well as caspase-
3 expression, while amplifying Bcl-2 expression [117]. Moreover, asiaticoside attenuated
Aβ1–42-induced cytotoxicity and apoptosis, restored declined mitochondrial membrane
potential and significantly downregulated TNF-α, IL-6, TLR4, MyD88 and TRAF6 expres-
sions in human brain microvascular endothelial cells (hBMECs) [118]. Administration of
asiaticoside to senescence-accelerated mice (SAMP) averted spatial learning and decline
by scavenging free radicals, increasing antioxidant enzymes activities, reducing Aβ load,
ameliorating synaptic plasticity dysfunction and keeping ACh levels and AChE activity in
check [119]. Furthermore, asiaticoside effectively protected HUVECs against impairment
elicited by aggregated Aβ1–42, by promoting cell proliferation, apoptosis inhibition and
the elevation of the Bcl-2/Bax ratio [120]. An in silico study deduced that asiaticoside
hinders early phases of fibrillogenesis via interactions with nucleating amyloid species and
slowing the growth phase [121]. Unlike madecassoside and asiaticoside, asiatic acid can
cross the BBB to exert rapid neuroprotective actions. Administration of asiatic acid reduced
aluminum-stimulated cell death by diminishing mitochondrial dysfunction, oxidative
stress and signaling pathways [122] in in vitro and in vivo AD models, moderating the
aluminum load, AChE activity, behavioral performance, Aβ levels and neuroinflamma-
tion [123]. Furthermore, asiatic acid exerted a neuroprotective effect against AlCl3-induced
cognitive impairments, oxidative stress, cholinergic deficits, tau pathology, Aβ burden,
neuroinflammation and apoptosis [124]. Asiatic acid also demonstrated protective effects
against Aβ25–35-induced tau protein hyperphosphorylation [125], C2-ceramide-induced
neuronal cell injury [126], cholesterol-induced cytotoxicity [127], in addition to positively
moderating various targets related to Aβ pathways, thus, mitigating Aβ levels in AD
brain by diminishing Aβ production and escalating Aβ degradation [128]. Asiatic acid
treatment also showed protection against apoptosis, oxidative and glycative stress by re-
ducing ROS and AGE, and downregulating the expression of Bax, NADPH oxidase, RAGE
and MAPK [53]. Furthermore, asiatic acid intake was shown to be effective in enhancing
memory and learning, as measured by the passive avoidance test [129]; it increased cell pro-
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liferation in the hippocampus and stimulated spatial working memory [130,131], as well as
prevented impairment of neurogenesis and spatial memory caused by valproic acid [132].

The neuroprotective effects of madecassoside have also been investigated in a rat
model of early-phase Parkinsonism, comprising the administration of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a potent neurotoxin that is known to cause dopaminer-
gic neurodegeneration by producing free radicals, leading to oxidative stress. In this model,
madecassoside reduced locomotor dysfunction and preserved dopaminergic neurons. Fur-
thermore, madecassoside markedly attenuated the MPTP-induced reduction of striatal
dopamine. The MDA content was significantly reduced, while GSH levels, Bcl-2/Bax ratio
and expression of BDNF protein were substantially increased in madecassoside-treated
groups. These results implied that madecassoside is effective in reducing the early signs of
MPTP-induced Parkinsonism [133]. Similar findings were observed in the neuroprotective
effect of asiatic acid and asiaticoside against MPTP-induced neurotoxicity [54,134–136].
In a rotenone-induced Parkinson model, asiatic acid protected against mitochondrial in-
jury [137,138] and exerted antiapoptotic effects through a reduction in oxidative stress,
maintenance of mitochondrial membrane potential and regulation of expressions of Bcl-2,
Bax and caspases [139]. Additionally, the anti-Parkinson effect of asiaticoside was accompa-
nied by an increased expression of proteins involved in phosphoinotiside signaling [140].

Neurite formation is considered to be one of the essential steps in neuro-regeneration,
particularly for memory enhancement [113]. The pentacyclic triterpenoids madecasso-
side, asiaticoside, madecassic acid and asiatic acid are among various natural products
that exhibited positive neuroactivity. Immunofluorescent staining studies using the cell
line neuro2α showed madecassoside and asiaticoside to produce a significant elevation
in the percentage of neurite-bearing cells and in neurite length; madecassoside and asi-
aticoside were more potent than madecassic acid and asiatic acid. The activity of the
glycosides in promoting neurite outgrowth required sustained activation of ERK1/2 lead-
ing to CREB phosphorylation, while neurite lengthening required activation of protein
kinase B (Akt) [113].

Neuroinflammation is not only involved in neurodegenerative diseases, but also im-
plicated as a key player in the pathology of cerebral ischemia-reperfusion (I/R) injury [141].
Madecassoside significantly reduced the brain infarct area, resolved the neurological deficit
and ameliorated neuronal apoptosis in rats subjected to cerebral I/R. Furthermore, it
substantially diminished the MDA and NO levels and heightened antioxidant activity
in these animals, as well as decreased the levels of pro-inflammatory cytokines and of
NF-κB p65 [141]. In an in vitro ischemic model of oxygen-glucose deprivation followed
by reperfusion (OGD/R) in BV2 microglia, madecassoside not only significantly rescued
OGD/R-induced cytotoxicity, but also suppressed the secretion of pro-inflammatory cy-
tokines, such as TNF-α, IL-1β and IL6. This study concluded that the significant neuropro-
tective effect of madecassoside against I/R injury both in vivo and in vitro was produced
by the attenuation of microglia-mediated neuroinflammation through inhibition of the
TLR4/MyD88/NF-κB signaling pathway [142]. In an in vitro ischemia-hypoxia model
asiaticoside increased the neuronal survival rate in a concentration-dependent manner,
modulating the expression of apoptotic factors such as Bcl-2, Bax and caspase-3 [143].
Asiaticoside also had a neuroprotective effect against transient cerebral ischemia and reper-
fusion in a mouse model, by reducing microglial activation, iNOS activity and the level of
NO. It also reduced the gene expression of inflammatory cytokines, such as TNF-α, IL-1β
and IL6 by inhibiting the p38 MAPK signaling pathway [144]. Asiatic acid attenuated
cerebral infarction, mitochondrial dysfunction and the induction and activation of matrix
metalloproteinase-9 produced by middle cerebral artery occlusion in the rat [51]; similarly,
it reduced infarct size, and improved neurological outcome in a mouse model of focal cere-
bral ischemia, these effects being accompanied by a reduction in BBB permeability [145].
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As neuroinflammation is a major factor underlying neurodegenerative diseases, at-
tenuating neuroinflammation is an important target of any therapy [111]. In a model of
neuroinflammation induced by lipopolysaccharide (LPS), which triggers toll-like receptor
4 activation on the microglia surface, madecassoside markedly reduced the production
of ROS, while also concentration-dependently downregulating the gene and protein ex-
pression of pro-inflammatory components such as iNOS, COX-2, STAT1 and NF-κB, and
increasing the anti-neuroinflammatory heme oxygenase 1 [111]. Likewise, asiatic acid
protected against methamphetamine-stimulated neuroinflammation and neurotoxicity via
inhibition of NF-κB/STAT3/ERK and mitochondria-mediated apoptosis pathway [146].
Mass accumulation of the endogenous neurotoxin quinolinic acid (QA) causes excessive
oxidative stress that leads to neuroinflammation. Treatment with asiatic acid prevented
quinolinic acid-induced spatial memory loss and alleviated oxidative stress; these effects
were accompanied by improved antioxidant status and a reduction in the dysfunction in
mitochondrial oxidative phosphorylation [147].

Beneficial effects have also been reported in other experimental neurological con-
ditions. Asiaticoside and asiatic acid were reported to exhibit antidepressant-like ac-
tion [148–151], anxiolytic activity [151–153] and antinociceptive effects [154], as well as
protection against glutamate-induced excitotoxicity [155,156], kainite-induced seizure [157]
and diabetes-induced cognition deficits [158].

6.4. Cardiovascular Diseases

Acute myocardial infarction (MI) produces irreversible myocardial injury, resulting
in necrosis of a significant portion of the myocardium. Acute MI may be either the non-
perfusion type, where the obstruction to blood flow is permanent, or the reperfusion type,
in which the obstruction or lack of blood flow is long enough in duration but can be re-
versed or restored after myocardial cell death occurs. There is a direct correlation between
infarct size and prognosis [159]. Since reperfusion is the keystone of treatment for acute
MI, there is a need for the advancement of adjunct therapies, which may possibly diminish
reperfusion injury and thereby intensify the benefits of reperfusion [160]. Madecassoside
showed anti-ischemic effects in vitro and protected rabbit isolated hearts and cardiomy-
ocytes against reperfusion injury [161]. It also protected against vascular endothelial cell
injury and increased the coronary flow in the rat isolated heart. The protective effect of
madecassoside against myocardial ischemia-reperfusion injury was investigated further
in vivo in rats. Madecassoside significantly reduced infarct size in rats subjected to coro-
nary artery ligation followed by reperfusion. The serum levels of CK and LDH, indicators
of myocardial injury, were significantly reduced in madecassoside-treated rats, suggesting
a protective effect of madecassoside on myocardial cells. There was also improved post-
ischemic ventricular function in rats receiving a high dose of madecassoside. Moreover,
madecassoside-treated animals exhibited significantly lower MDA levels, increased SOD
activity and lower serum CRP levels compared to the control group [162]. These find-
ings are exactly in accordance with those in a rabbit model of ischemia-reperfusion [161].
Myocardial TNF-α is an autocrine contributor to myocardial contractile dysfunction and
cardiomyocyte death in sepsis [163]. Pre-treatment of neonatal rat cardiomyocytes with
madecassoside inhibited LPS-induced TNF-α production in a concentration-dependent
manner, and, in vivo, significantly reduced the elevation of plasma TNF-α induced by LPS
in rats. Investigation of the underlying mechanism showed that madecassoside prevented
LPS-induced NF-κB translocation from cytoplasm into nucleus, and inhibited LPS-induced
phosphorylation of ERK1/2 and p38. In vivo studies showed that madecassoside pre-
treatment delayed the reduction in mean arterial blood pressure, and attenuated the tachy-
cardia induced by LPS [163]. Asiatic acid was also reported to protect against myocardial
ischemia/reperfusion injury in an H9c2 cell model, partly via the Akt/GSK-3β/HIF-1α
pathway [164]. Asiatic acid, among two other triterpenes, protected H9c2 cardiomyocytes
against high glucose-induced injury by obliterating oxidative stress and apoptosis [165].
Other studies also reported that the antioxidant and anti-inflammatory properties of asi-
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atic acid were responsible for attenuation of isoproterenol-induced cardiotoxicity [166]
and lactate-induced cardiomyocyte apoptosis [167]. Furthermore, asiatic acid augmented
survival of AC16 cardiomyocytes against hypoxia-induced apoptosis by regulation of
miR-1290/HIF3A/HIF-1α axis [168]. In a model of heart failure, treatment with asiatic acid
preserved cardiac function and inhibited left ventricular remodeling, alleviated cardiomy-
ocyte apoptosis, and reduced interstitial fibrosis and inflammatory responses by inhibiting
the mitochondria-dependent apoptotic pathway [169]; it also inhibited phosphorylation of
p38 MAPK and ERK 1/2 [170] and reduced NF-κB binding activity [171]. A role for AMPK
in asiatic acid-mediated protection against cardiac hypertrophy and fibrosis was suggested
by the loss of this protective effect following the depletion of AMPKα [172]. A study
also highlighted the efficacy of asiatic acid in blocking IL-1β activated NF-κB signaling in
in vitro and in vivo models [173]. Asiatic acid was also shown to reduce blood pressure
and improve vascular function in L-NAME-induced hypertensive rats by enhancing NO
bioavailability [174], possibly via upregulation of eNOS protein expression and suppression
of inflammation and oxidative stress [175]. In a rat model of the metabolic syndrome (MS)
induced by a high-carbohydrate-high-fat (HCHF) diet, asiatic acid supplementation im-
proved the metabolic and cardiovascular complications [176], as well as improved vascular
function and reduced activation of the renin-angiotensin system [177]. Asiatic acid could
also protect the heart in experimental diabetes in the mouse by attenuating glycative injury
and coagulatory disorders [178]. Atherosclerosis, chiefly in coronary artery disease (CAD)
or carotid stenosis, is the leading cause of myocardial infarction and stroke, which together
are responsible for more than 50% deaths worldwide [179]. Asiaticoside was shown to
impede endothelial hyperpermeability [180], thus possibly disrupting development of
early atherosclerotic events [181]. Similar observations were found in studies testing the
efficacy of asiatic acid in protecting human aortic endothelial cells [182,183].

6.5. Lung Diseases

Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and fatal lung dis-
ease [184]. As described above, madecassoside exhibits significant antioxidant and anti-
inflammatory activities, which are also implicated in PF. An analogue of madecassoside,
asiaticoside, was shown to suppress septic lung injury induced by cecal ligation and punc-
ture in mice [185], as well as to inhibit collagen expression and TGF-β/Smad signaling
pathway activation in keloid fibroblasts [96]. These findings led to an investigation of
the effect of madecassoside on bleomycin (BLM)-induced PF in a mouse model. In this
study, madecassoside improved pathological changes in the lung and decreased colla-
gen deposition. Expression of α-smooth muscle actin and TGF-β1 were reduced while
phosphorylation of Smad2 and Smad3 (major factors in TGF-β1 signaling [96]) in the lung
tissues were inhibited. Furthermore, madecassoside attenuated the oxidative damage and
inflammation present at the early stage of PF; this was evidenced by a reduction in total
leukocytes in the bronchoalveolar lavage fluid, the reduced myeloperoxidase activity and
MDA levels, as well as the increased SOD activity and GSH level in the lung tissues [186].
The anti-PF of madecassoside in a bleomycin mouse model was suggested to be mediated
by activation of PPARγ, leading to subsequent generation of hepatocyte growth factor
(HGF) in the colon, from where the upregulated HGF perhaps enters the circulation to
reach the lung and impede PF; antagonism of PPARγ almost completely prevented the
madecassoside-induced HGF production and its ability to reduce PF [187]. Other studies
have shown the effectiveness of HGF in attenuating the fibrotic remodeling in both a rat
and mouse PF model [188,189]. On the other hand, asiatic acid was reported to ameliorate
lung fibrosis and inflammation in BLM-induced PF in mice via TGF-β1-induced Smad2/3
and ERK 1/2 signaling pathway inhibition and NLRP3 inflammasome inactivation [190].
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Acute lung injury (ALI) is an acute inflammatory disorder that causes disruption
of the lung endothelial and epithelial barriers [191]. Asiaticoside exhibited protective
effects against LPS-induced ALI by lowering the load of IL-6 and TNF-α while elevating
IL-10 secretion [192]; this protective effect was mediated by inhibiting inflammatory cell
infiltration and downregulating the NF-κB signaling pathway [193]. Similar findings were
obtained in a study investigating the effect of asiatic acid on LPS-induced ALI, where
the anti-inflammatory mechanism of asiatic acid was associated with the inhibition of the
LPS-induced TLR4 signaling pathway [194]. In a model of ALI produced by spinal cord
injury, asiatic acid was reported to activate Nrf2 and inhibit the NLRP3 inflammasome
pathway [195]. Asiatic acid was also suggested to have the potential to treat chronic obstruc-
tive pulmonary disease (COPD), due to its ability to hinder the pulmonary inflammatory
response via suppression of inflammatory mediators and induction of HO-1 [196].

6.6. Kidney Diseases

Doxorubicin (DOX) is a chemotherapeutic agent used to treat malignant neoplasms; its
use is limited by serious adverse effects, such as nephrotoxicity [197], cardiotoxicity [198]
and hepatotoxicity [199], which are in part mediated through free radical formation, ox-
idative damage and membrane lipid peroxidation [200]. In view of the demonstrated
ability of madecassoside to reduce oxidative damage while improving the anti-oxidative
enzymes status in various disease models, the effect of madecassoside on DOX-induced re-
nal toxicity was examined in vitro and in vivo. Treatment with madecassoside significantly
and concentration-dependently attenuated DOX-induced apoptosis in human proximal
tubule cells (HK-2 cells). This effect was associated with the inhibition of DOX-induced
ERK phosphorylation, reductions in apoptotic factors (cleaved caspases, apoptotic pro-
tease activating factor1, BAX) and an inhibition of iNOS [201]. Moreover, concomitant
treatment with madecassoside markedly reduced DOX-induced renal injury in mice, as
evidenced by the reduction in serum creatinine and BUN and the preserved structural
integrity of the kidneys. These observations suggest that madecassoside could be valuable
in preventing/ameliorating DOX-induced toxicity in chemotherapy patients [201].

In a mouse model of obstructive nephropathy, asiatic acid intake significantly ame-
liorated tubulointerstitial fibrosis by suppressing tubular injury, fibroblast activation and
ECM accumulation mediated via Smad7-dependent TGF-β1 signaling [202]. Asiatic acid
was identified to function as a Smad7 agonist that inhibits Smad3 signaling [203]. Moreover,
pre-treatment with asiatic acid inhibited NF-κB activation and inflammatory responses,
possibly from Smad7 upregulation, in cisplatin-induced acute kidney injury [204].

6.7. Liver Diseases

Acute liver failure (ALF) is a life-threatening condition with a high mortality rate
worldwide. It is manifested by hepatic dysfunction, abnormal liver biochemical parameters
and coagulopathy [205]. The onset of ALF is an inflammation mediated by hepatocellular
injury process that closely resembles the innate immune response induced by exposure
to LPS (endotoxin). LPS combined with D-GaIN acts as a hepatotoxic or liver damaging
agent that is typically used to induce ALF in experimental models [206]. Pre-treatment of
mice with madecassoside markedly suppressed the LPS/DGalN-induced increases in the
serum concentrations of ALT and AST, and preserved hepatic integrity, protecting against
hemorrhage and cellular necrosis. Madecassoside pre-treatment significantly reduced the
LPS/DGalN-mediated increase in the hepatic levels of the inflammatory cytokines IL-1β,
IL-6 and TNF-α, while increasing levels of the antioxidant enzymes SOD, catalase and
glutathione peroxidase. These effects were associated with inhibition by madecassoside
of the phosphorylation of p38 MAPK and NF-κB [207]. The effects of asiaticoside on ALF
were also tested in a similar model. Treatment with asiaticoside improved liver function,
alleviated liver injury and attenuated apoptosis induced by LPS/DGalN, possibly via the
inhibition of the expression of TNF-α and MAPKs [208]. The protective effects of asiatic
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acid against LPS/DGalN-induced injury was associated with the inhibition of the cellular
redox-regulated LTC4S expression pathway [209].

Liver fibrosis occurs when excessive collagen and extracellular matrix deposit in the
liver. Liver fibrosis can advance to liver cirrhosis, eventually causing liver failure and
ultimately death [210]. Asiatic acid was discovered to protect against carbon tetrachlo-
ride (CCl4)-induced liver fibrosis via multiple mechanisms; these include the inhibition
of TGF-β/Smad signaling pathways in in vivo and in vitro models [211], regulation of
the PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways [212] and suppression of NF-
κB/IκBα and JAK1/STAT3 signaling [213].

Intragastric administration of asiatic acid was shown to protect the liver against
ethanol-induced hepatotoxicity by ameliorating oxidative stress and inhibiting Kupffer
cell activation, via diminishing the expression of TLR4, CD14 and MyD88 [214]. In ad-
dition, supplementation with asiatic acid improved insulin resistance and attenuated
hepatic oxidative and inflammatory injury in mice fed a high-fat diet [215]. Pre-treatment
with asiatic acid reportedly can protect against I/R-induced liver injury in rats and
anoxia/reoxygenation (A/R)-induced injury in isolated rat liver mitochondria [216]. This
is in agreement with a previous study demonstrating that treatment with asiatic acid in-
duced partial uncoupling of mitochondria and thus protected mitochondrial function [217].
Moreover, asiatic acid may alleviate hepatic I/R injury through mitigation of Kupffer cells
activation via the PPARγ/NLRP3 inflammasome signaling pathway [218]. On the other
hand, asiatic acid demonstrated a protective effect against DOX-induced liver toxicity in
a rat model in a dose-dependent manner through the modulation of Nrf2 translocation,
suggesting its use as an organ-protective adjuvant in DOX treatment [219].

6.8. Anticancer Actions

Cancer chemoprevention is presently the favored area in current research trends [220].
Dysregulation of growth factor pathways is a known contributor to the development of
hepatocellular carcinoma (HCC) [221]. Binding of HGF to its receptor promotes prolifera-
tion, survival and migration in a variety of cancer cells, including HCC [222]. Treatment of
HGF-induced hepatocellular carcinoma (HCC) cell lines (HepG2 and SMMC-77 cells) with
madecassoside significantly reduced HGF-induced proliferative and invasive responses.
These effects of madecassoside were associated with the downregulation of the expression
of COX-2 and PGE2, and inhibition of p-cMET, p-ERK1/2 and PKC activity. This suggested
that madecassoside could be an effective therapeutic drug to reduce HGF-induced tumor
growth and metastasis in HCC [223]. Meanwhile, madecassic acid has been showed to
exert antitumor activity by inducing cancer cell apoptosis and improving immunomodu-
lation in a mouse colon cancer model [224]. Asiaticoside has demonstrated effectiveness
in both in vitro and in vivo breast cancer models, significantly reducing TNF-α and IL-1β
expressions, inducing apoptosis and enhancing antitumor activity [220,225]. In addition,
asiaticoside counteracted proliferation, migration and invasion of drug-resistant multi-
ple myeloma cells by triggering autophagy via STAT-3 pathway inhibition [226]. Unlike
madecassoside, madecassic acid and asiaticoside, asiatic acid has been researched exten-
sively for its antitumor effect. For instance, asiatic acid has been successively reported to
possess strong cell growth inhibition in hepatoma [227–229], melanoma [230,231], glioblas-
toma [232–234], multiple myeloma [235], colon [236–240], in ovarian [241], breast [242],
lung [243,244], and prostate cancer [245], as well as in leukemia [246].

6.9. Diabetes

Diabetes mellitus (DM) is a widespread disease worldwide, especially in
Asia [247]. Centella asiatica has been used as a remedy for DM in Ayurvedic traditional
medicine [248,249]. A study reported that asiaticoside exhibited significant antidiabetic
activity in alloxan-induced diabetic mice, most likely by stimulating pancreatic β cells to
secrete insulin [247]. In streptozotocin (STZ)-induced diabetic rats, asiatic acid exhibited an-
tihyperlipidemic and antidiabetic effects; here, it decreased blood glucose, increased plasma
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insulin concentrations and reversed changes in key carbohydrate-metabolizing enzyme lev-
els [250], as well as prevented lipid peroxidation and increased antioxidant status [251,252].
Asiatic acid was postulated to exert its antihyperglycemic activity by enhancing glucose
uptake into skeletal muscle in insulin-deficient STZ diabetic rats via the PI3K-Akt signal-
ing pathway [253]. Asiatic acid also demonstrated lipid and glucose lowering effects in
db/db mice via PI3K/Akt/GSK-3β to accelerate glycogen synthesis [254]. Asiatic acid
was also proposed to mitigate hyperglycemia by preserving and restoring beta cell mass
and function [255], reducing islet fibrosis formation and reversing the over-expression of
fibronectin [256]. Madecassic acid was shown to improve glycemic control, lower plasma
lipids and attenuate oxidative and inflammatory stress in streptozotocin-induced diabetes
in mice [257]. Madecassic acid also reduced insulin resistance and endothelial dysfunction
in mice made obese using a high-fat diet [258]. A study conducted recently in our labora-
tory has demonstrated the efficacy of madecassoside in protecting β cells both in vivo in
STZ-diabetic rats and in vitro [259].

Asiatic acid and asiaticoside may also be effective in ameliorating the complication
of diabetes. Asiatic acid could protect against diabetic nephropathy in rats with STZ-
induced diabetes [260]. In vitro, asiaticoside was shown to protect cochlear hair cells
from high glucose-induced injury by increasing antioxidative activity and suppressing the
AGEs/RAGE/NF-κB pathway [261].

Table 1. A summary of pharmacological activities of all compounds published from year 2015 to 2021.

Condition Compound Outcome Reference

Skin related conditions
Asiaticoside

Promote cell proliferation and collagen synthesis [79]
Accelerate wound healing, suppress apoptosis [85]

Hinder keloid fibroblast’s invasive growth [95]

Madecassoside
Anti-oxidative, attenuate mitochondrial damage, promote autophagy [87]

Decrease dermal inflammation, reduced keratinocyte proliferation [89]

Rheumatoid arthritis Madecassoside
Increase systemic levels of IL-10 [106]

Prevent NF-κB translocation and phosphorylation [110]

Neurodegenarative diseases

Asiaticoside

Reduce learning and memory function impairment, Aβ build-up, IL-6 and
TNF-α levels [117]

Attenuate Aβ1-42-induced cytotoxicity and apoptosis [118]
Promote cell proliferation, inhibit apoptosis [120]

Hinder early phase of fibrillogenesis [121]
Modulate expression of apoptotic factors [143]

Antidepressant-like action [149,150]
Antinociceptive effects [154]

Attenuate diabetes induced cognitive deficits [158]

Asiatic acid

Diminish mitochondrial dysfunction, oxidative stress [122]
Regulate aluminium load, AChE activity, behavioural performance, Aβ

levels and neuroinflammation [123]

Protect against oxidative stress, cholinergic deficits, tau pathology, apoptosis [124]
Protect against Aβ25-35 induced tau protein hyperphosphorylation [125]

Protect against cholesterol-induced cytotoxicity [127]
Increase hippocampal cell proliferation, stimulate spatial working memory [130,131]

Prevent neurogenesis and spatial memory impairment [132]
Reduce MDA, increase GSH content [136]
Protect against mitochondrial injury [138]

Reduce oxidative stress, maintain mitochondrial membrane potential [139]
Increased proteins expression involved in phosphoinotiside signalling [140]

Protect against neuroinflammation and neurotoxicity [146]
Prevent spatial memory loss and alleviate oxidative stress [147]

Antidepressant-like action, anxiolytic activity [151]
Decrease hippocampal inflammatory and oxidative stress [157]

Madecassoside
Reduce ROS production, downregulate pro-inflammatory components gene

and protein expression [111]

Attenuate microglia-mediated neuroinflammation [142]
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Table 1. Cont.

Condition Compound Outcome Reference

Cardiovascular diseases

Asiatic acid

Attenuate isoproterenol-induced cardiotoxicity [166]
Attenuate lactate-induced cardiomyocyte apoptosis [167]

Protect against hypoxia-induced apoptosis [168]
Preserve cardiac function, inhibit left ventricular remodelling, alleviate

cardiomyocyte apoptosis [169]

Inhibit p38 MAPK and ERK 1/2 phosphorylation [170]
Protect against cardiac hypertrophy and fibrosis [172]

Block IL-1β activated NF-κB signaling [173]
Suppress inflammation and oxidative stress [175]

Improve vascular function [177]
Attenuate glycative injury and coagulatory disorders [178]

Protect human aortic endothelial cells [182,183]

Asiaticoside
Impede endothelial hyperpermeability [183]

Disrupt development of early atherosclerotic events [181]

Lung diseases

Madecassoside Activate PPARγ, generate HGF, impede pulmonary fibrosis [187]

Asiatic acid

Ameliorate lung fibrosis and inflammation [190]
Inhibit TLR4 signaling pathway [194]

Activate Nrf2 and inhibit NLRP3 inflammasome pathway [195]
Suppress inflammatory mediators and induction of HO-1 [196]

Asiaticoside Inhibiting inflammatory cell infiltration and downregulate the NF-κB
signaling pathway [193]

Kidney diseases
Madecassoside Inhibit ERK phosphorylation, reduce apoptotic factors, inhibit iNOS [201]

Asiatic acid
Inhibits Smad3 signaling [203]

Inhibit NF-κB activation and inflammatory responses [204]

Liver diseases

Madecassoside Reduce inflammatory cytokines, increase antioxidant enzymes [207]

Asiatic acid

Regulate PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways [212]
Suppress NF-κB/IκBα and JAK1/STAT3 signaling [213]

Protect mitochondrial function [216–218]
Organ protective adjuvant [219]

Cancer

Madecassoside Downregulate expression of COX-2 and PGE2 [223]

Asiaticoside Autophagy induction, inhibit cell migration and invasion [226]

Asiatic acid

Inhibit cancerous cell growth in glioblastoma [232,234]
Reduce inflammation, cell proliferation and induce apoptosis in

colon cancer [236,237,239]

Suppress PI3K/AKT/mTOR signaling [241]
Inhibits lung cancer cell growth [243]

Apoptosis of human leukemia cells [246]

Diabetes

Asiatic acid

Enhance glucose uptake into skeletal muscle [253]
Lower lipid and glucose levels [254]
Reduce islet fibrosis formation [256]

Protect against diabetic nephropathy [260]

Madecassic acid
Improve glycemic control, lower plasma lipids, attenuate oxidative and

inflammatory stress [257]

Reduce insulin resistance and endothelial dysfunction [258]

Asiaticoside Protect cochlear hair cells [261]

7. Conclusions

The use of natural compounds extracted from plants has attracted the interest of
scientific and medical communities, due to their accessibility as well as their lower cost
in comparison with synthetic drugs. Centella asiatica has been widely used in Ayurvedic
and Chinese traditional medicines for a century as a therapy in many cases, such as skin
diseases, neurological disease, cardiac disease, diabetes, cancer and many more. The
bioactive pentacyclic triterpenoid compounds of C. asiatica have been widely studied and
reported to possess various biological properties. Among them, madecassoside, the main
bioactive saponin of C. asiatica has been shown experimentally to have wound healing,
scar healing, cell growth-promoting, neuroprotective, cardioprotective, anti-oxidative and
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anti-inflammatory properties. There are many more niche areas that can be investigated for
its therapeutic effect, given its consistent anti-oxidative and anti-inflammatory properties.
Madecassoside exerts its therapeutic effect through various mechanisms and cell signaling
pathways. Recognition and understanding of the pathways and mediators involved are
fundamental in illuminating the therapeutic potential, along with determination of the
drug’s toxicity. In summary, this review demonstrates that madecassoside could be a
significant complementary medicine for the prevention and treatment of various disorders,
owing to its natural origin and affordable cost compared to synthetically produced drugs.
Further studies of this triterpenoid are warranted.
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Abbreviations

CA Centella asiatica
TLC Thin layer chromatography
TLC-MS Thin layer chromatography-mass spectrometry
UVS Ultraviolet-visible spectroscopy
HPLC High performance liquid chromatography
HPTLC High performance thin layer chromatography
HPLC-ESI-MS HPLC-electrospray ionisation–mass spectrometry
HPLC-UV HPLC-ultraviolet
HPLC-ELSD HPLC-paired with evaporative light scattering detector
HPAEC-PAD High-performance anion-exchange chromatography combined with

pulsed amperometric detection
HPLC-PAD HPLC- pulsed amperometric detection
ELISA Enzyme-linked immunosorbent assay
cmax Maximum plasma concentration
BBB Blood brain barrier
t1/2 Half-life
AUC0–24 Area under plasma concentration-time curve from 0–24 h
LD50 Median lethal dose
Vd/f Apparent volume of distribution
Ke Elimination rate constant
CIA Collagen-induced arthritis
HUVEC Human umbilical vein endothelial cell
MAPK Mitogen activated protein kinases
VEGF Vascular endothelial growth factor
MCP-1 Monocyte chemoattractant protein-1
UV Ultraviolet
UVA Ultraviolet A
UVB Ultraviolet B
PAR-2 Protease activator receptor 2
COX-2 Cyclooxygenase 2
PGE2 Prostaglandin E2
PGF2α Prostaglandin F2 alpha
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IMQ Imiquimod
IL Interleukin
TGFβ Tranforming growth factor beta
TβRI TGF β receptor type I
TβRII TGF β receptor type II
MITF Micropthalmia-associated transcription factor
DNA Deoxyribonucleic acid
AGE Advanced glycation end-products
ROS Reactive oxygen species
MMP-2 Matrix metalloproteinase-2
KF Keloid fibroblasts
Bcl-2 B-cell lymphoma 2
PI3K Phosphatidylinositol-3-kinase
AKT Protein kinase B
GDF-9 Growth differentiation factor-9
PAI-1 Plasminogen activator inhibitor-1
PPAR-γ Peroxisome proliferator-activated receptor gamma
RA Rheumatoid arthritis
CII Collagen II
TNF-α Tumor necrosis factor alpha
FLS Fibroblast-like synoviocytes
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
AD Alzheimer’s disease
PD Parkinson disease
Aβ Amyloid β

BDNF Brain-derived neurotrophic factor
PSD Postsynaptic density protein
ERK Extracellular signal-regulated kinases
LC 3-I Light chain 3-I
LC 3-II Light chain 3-II
TLR4 Toll-like receptor 4
MyD88 Myeloid differentiation primary response 88
TRAF6 TNF receptor associated factor 6
hBMEC Human brain microvascular endothelial cells
SAMP8 Senescence accelerated Mouse-Prone 8
ACh Acetylcholine
AChE Acetylcholine esterase
AlCl3 Aluminium chloride
NADPH Nicotinamide adenine dinucleotide phosphate
RAGE Receptor for advanced glycation end products
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MDA Malondialdehyde
GSH Glutathione
CREB cAMP response element-binding protein
I/R Ischemia-reperfusion
NO Nitrogen oxide
OGD/R Oxygen-glucose deprivation/reperfusion
iNOS Inducible nitric oxide synthase
LPS Lipopolysaccharide
STAT Signal transducer and activator of transcription
QA Quinolinic acid
MI Myocardial infarction
CK Creatine kinase
LDH Lactate dehydrogenase
SOD Superoxide dismutase
CRP C-reactive protein
GSK-3β Glycogen synthase kinase 3 beta
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HIF-1α Hypoxia-inducible Factor 1-alpha
HIF3A Hypoxia-inducible Factor 3-alpha
AMPK 5’ adenosine monophosphate-activated protein kinase
L-NAME N(gamma)-nitro-L-arginine methyl ester
eNOS Endothelial nitric oxide synthase
MS Metabolic syndrome
HCHF High carbohydrate high fat
CAD Coronary artery disease
PF Pulmonary fibrosis
BLM Bleomycin
HGF Hepatocyte growth factor
ALI Acute lung injury
COPD Chronic obstructive pulmonary disease
HO-1 Heme oxygenase-1
DOX Doxorubicin
HK-2 Human proximal tubule cells
BUN Blood urea nitrogen
ECM Extracellular matrix
ALF Acute liver failure
D-GaIN D-galactosamine
ALT Alanine aminotransferase
AST Aspartate aminotransferase
LTC4S Leukotriene C4 synthase
CCl4 Carbon tetrachloride
mTOR Mammalian target of rapamycin
IκBα Inhibitor of nuclear factor kappa B
CD14 Cluster of differentiation 14
A/R Anoxia/reoxygenation
Nrf2 Nuclear transcription factor
HCC Hepatocellular carcinoma
PKC Protein kinase C
DM Diabetes mellitus
STZ Streptozotocin
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