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Featured Application: The presented implementation is aimed to deliver high performance logic
controllers with very short and predictable response time. The controller is automatically synthe-
sized from the delivered program given according to IEC61131-3 requirements. The user can con-
centrate on developing control algorithm while synthesis process to FPGA device is fully automatic.

Abstract: Programmable logic controllers are commonly used in automation systems. Continuously
growing demands result in the growth of control program complexity. The classic approach, based
on programmatic serial-cyclic execution, results in an unacceptable extension of response time. To
overcome long response time massive parallel program execution is proposed. It utilize direct
in hardware program implementation in field programmable devices. The paper brings a formal
method of representing control programs using flow graphs and enabling single cycle computations.
The developed method accepts ladder diagrams (LD) and sequential function charts (SFC), according
to IEC61131-3 standard requirements. It is capable of handling logic and arithmetic computations,
enabling its hardware mapping. The intermediate form is optimized using flow graph representa-
tion and BDDs for analyzing logic dependencies. The BDD representation of logic dependencies
enables direct mapping to lookup tables of a selected FPGA family. All the above steps deliver
high-performance and direct hardware implementation of the control program given by standard
languages. The controller response time is short, predictable, and independent from logic conditions
during program execution.

Keywords: FPGA; programmable logic controller; BDD; ladder diagram; SFC; high level synthesis;
logic synthesis

1. Introduction

Programmable logic controllers (PLCs) have been commonly used in automation
systems for almost five decades [1]. Central processing units of PLCs are implemented
using microprocessor systems. A control program in such a unit is executed in a serial-
cyclic fashion. This results in a relatively long response time to signal changes [2,3]. The
operation block diagram and respective time analysis are shown in Figure 1. The response
time of a controller, in the worst case (tRmax), can be almost twice the scan time. The
time necessary by a controller to process the user program and to perform additional
maintenance functions in some applications is not acceptable [4,5].

There are known implementations of processing units utilizing multiprocessor sys-
tems [6,7]. Such a central processing unit consists of a bit unit dedicated to two-state
variables processing and managing program execution. The general-purpose word proces-
sor is used for handling arithmetic operations commissioned by the bit processor in form
of subprograms. The dominant function of the bit processor as the processing unit and
instruction dispatcher is a result of a dominant number of bit instructions in the program.
This dual processing architecture improves the performance of the central processing unit
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while the control program is dominated by bit operations. Efficient programming requires
careful distribution of instructions with a uniform distribution of bit and word computa-
tion, enabling parallel operation of processing units [3]. This implementation suffers from
a lack of a respective compiler that enables automatic program translation and utilization
of unique features of the dual-core architecture.

Figure 1. The PLC operation diagram (A) and response time analysis (B).

The technology development of programmable logic devices (and especially the
tremendous growth of its logic capacity) enables direct hardware implementation of con-
trol programs. The essence of this idea is based on configuring a programmable logic device
in such a way that its internal structure implements a user program directly. To make it
possible, the sequentially evaluated statements of a control program must be translated into
respective hardware structures. In many implementations, the circuit directly corresponds
to sequential processing given in the program [8–10]. Those implementations utilize ladder
diagrams as a program entry that is constrained to switches and coils. Such a limitation
allows for the representation of each rung, in the form of connected gates. The sequential
evaluation, rung by rung, assures equivalent behavior to input program evaluation, ac-
cording to IEC61131-3 standard requirements [11]. Those implementations limit the set of
language constructs and do not benefit from the massively parallel operations that can be
implemented in hardware. To increase the performance of computations, the compilation
and synthesis methods, respective to the hardware implementation, are continuously de-
veloped. The hardware-implemented control program abandons the sequential processing
concept, typical for PLCs based on microprocessors, for maximal parallel computations.
This approach makes the computation time independent from the executed program size
(number of instructions or graphic components) and/or logic conditions during its execu-
tion. The direct hardware-implemented control programs are time predictable systems [5].
They offer a significant reduction of response time, in comparison to sequential implemen-
tations. Those features are essential in systems where time dependencies are strong and
instant response is required [4]. Hardware resource requirements for the parallel executed
program implementations are the same as for sequential implementations, while the com-
putation performances is significantly higher and independent from program complexity.
The hardware resource requirements are strongly dependent on program synthesis and the
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translation techniques used. To make the hardware-implemented controller competitive to
standard implementations of PLCs, it is obligatory to deliver methods of implementing
standard languages, defined by the IEC 61131-3 standard. The most frequently used lan-
guage for hardware-implemented logic controllers is ladder diagram (LD). The subset of
LD, consisting of switches and coils, allows for direct conversion of the program to the logic
structure of logic equations [9]. Early specifications require complex logic optimization
techniques. The importance is in assuring the functional equivalence between the program
and synthesized logic structure. There are several implementations of LD presented in the
literature [9,12–15]. Presented methods lack the advanced logic synthesis procedures for
the efficient utilization of logic resources of FPGA devices. A lack of complex approaches
to technology mapping in different languages can be observed (e.g., LD, IL, SFC, and
STL). The initial hardware implementation, shown in papers [8–10], can be optimized, in
terms of cycles count necessary to complete the computations. Papers [12,13] propose a
synthesis method, based on variables dependency graphs that have been inspired by earlier
works [16]. The developed graphs do not address the aspects of the logic synthesis process.
It should be noted that the proposed method is sensitive to component ordering. It results
in the different number of computation cycles for equivalent programs with a different
ordering of components. The method presented in [14,15] results in obtaining the hardware
structure but no optimization of the structure is introduced. The optimization is left for
proprietary synthesis and implementation tools delivered by FPGA manufacturers. The
hardware structure of the controller passed to the implementation process is impossible
to optimize, due to specific computation cycle implementation hiding logic dependencies.
There were proposed methods of translating the PLC language to a high-level language
that is later passed to high-level synthesis tools [17–21]. In such an approach, the obtained
results of the implementation are far from optimal.

An increase of control program complexity, implemented in programmable logic
controllers, extends the computation time beyond the acceptable (available) time. In such a
case, the direct hardware implementation of the control program is the best choice. This
requires developing the methods enabling the synthesis of control programs expressed
in commonly used programming languages. The developed method must enable opti-
mization of hardware structure and should be oriented for efficient resource utilization in
FPGA devices.

In this paper, the complex synthesis method of the control program is given. It starts
from the theorem of a single-cycle equivalent representation of a program given using
ladder diagram (LD) that preserves the sequential processing dependencies. Next, the
intermediate representation method, using data flow graphs with custom extensions, is
shown. The input program, given in LD and SFC, is translated to a common data flow
graph representation. The representation enables the revealing of the dependencies of
computations, covering logic and arithmetic computations, as well. The logic operations
are subject to the mapping procedure, using binary decision diagrams (BDD). This enables
for further optimization and obtaining technology mapping for LUT-based FPGA devices.
Finally, the design is passed to place and route processes, allows preparing configuration
bitstream for selected FPGA device. The paper is summarized with benchmarks showing
the performance of obtained controllers and FPGA mapping methods performance.

2. Method of Sequential Control Program Conversion to Single-Cycle
Computation Scheme

One of the most popular programming languages for programmable logic controllers
is ladder diagram (LD). The LD language has been inspired by schematic diagrams of
relay control systems. It describes the energy flow from the left power rail to the right,
utilizing switches and coils network. A diagram is analyzed sequentially, component by
component, going from left to right, which accommodates it to sequential evaluation, via a
PLC. In opposite to physical circuits, the analysis method constrains the signal flow that
is unidirectional (left to right). Efficient hardware implementation requires transforming
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the given LD program to parallel operations, retaining the dependencies implied by the
analysis process.

The Single Cycle Ladder Diagram Implementation Method—FAST_LD

The ladder diagram is built from an ordered sequence of rungs. There are two
distinguished sets of variables: XI and XQ. The set XI consists of variables associated with
inputs of the controlled system. The XQ set consists of qi variables associated with outputs
and internal signals. The rungs are evaluated in the order of definition, and i-th rung works
out the value of the qi variable:

qi = fi
(
XI , XQ

)
: i = 1 . . . n, qi ∈ XQ (1)

Theorem 1. Any ladder diagram network described with the use of switches and coils can be
mapped to a digital circuit capable of completing the computation, described by a network in a single
clock cycle, retaining properties of sequential analysis.

Proof of Theorem 1. The ladder diagram model, described by (1), for the k-th scan (the
loop run) can be put down as follows:

q1(k) = f1(XI , q1(k− 1) . . . qn(k− 1))
qj(k) = f j

(
XI , q1(k) . . . qj−1(k), qj(k− 1) . . . qn(k− 1)

)
: j = 2 . . . n (2)

For computing, the qi variable value corresponds to the i-th rung (2); all preceding
variables q1 . . . qi-1 should be already computed (propagated through). Let there be defined
set XD = {d1 . . . dn} of variables associated with flip-flop inputs, representing respective
coils. When the active edge of the clock signal is applied, all variables are updated at once:

qi = di : i = 1 . . . n (3)

The Equation (2) before updating the flip-flops can be put down, as follows:

d1(k) = f1(XI , q1(k− 1) . . . qn(k− 1))
dj(k) = f j

(
XI , d1(k) . . . dj−1(k), qj(k− 1) . . . qn(k− 1)

)
: j = 2 . . . n (4)

Replacing variable qj(k) by dj(k) in all functions corresponding to the computations,
described by respective rungs of the ladder diagram, enables the simultaneous update of
all variables associated with the coils to become possible. �

The illustration of Theorem 1 is shown in Figure 2. Case A depicts an exemplary
ladder diagram. Dashed line arrows show q1 and q2 variable references. The q1 variable
is referred to by rungs 1 and 3. The switch, referring q1 variable in the rung 1, uses the
value coming from the previous cycle or in the first cycle as an initial value. The new value
will be assigned after completing the analysis of all switches in the rung. In rung 3, when
referring to the q1 variable, its value is already processed, and the new value is assigned.
Using a single cycle update, the q1 variable still holds the value from the previous cycle,
and the d1 variable is used instead. It holds the value of a new q1 value. It is used in place
of the q1 variable, referenced by switches. The q2 variable is referred to by the preceding
rung, so that the previous value stored in the q2 variable is used. The essential issue in
building a single cycle computation model via the ladder diagram is the variable reference,
depending on the value assignment. The single-cycle approach of processing enables the
transformation of the computations into multiple parallel tasks, by analyzing the variable
value assignment.
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Figure 2. The fast LD translation method illustration: input ladder diagram (A) and the equivalent
logic circuit implementation (B).

3. Control Program Representation Accommodated for Direct Hardware Synthesis

The sequential method of the control program evaluation requires analyzing the
complete program before the hardware implementation is created. In the first step, the
language sentences are analyzed (according to the grammar) and systematically translated
into an intermediate form that represents its meaning. For this purpose, directed graphs are
used [22]. The intermediate form traces the data flow sequences and reveals computation
dependencies. It enables building a structure that performs computations in parallel
with required dependencies. An intermediate representation of processing enables the
translation of a control program, created with the use of multiple languages. Next, the
methods of representing the ladder diagram and sequential function chart, with use of
data flow graphs, are shown.

3.1. The Control and Data Flow Graph

A user control program is executed as one of the items in the closed loop. The system
assures the repeated execution of the user program in the loop and is responsible for signal
exchanges. The control program computes the current value of process variables to work
out the new controlled variables state. This limits the control program to statements and
conditional choices of the execution path. Waiting for the input change using the loop
statement is prohibited. The following limitation allows for representing the processing,
using a data flow graph that does not contain cycles.

For program representation, the directed data flow graph is used. It must be able
to represent logic, arithmetic operations, and conditional processing flow. To improve
analysis and optimizations, the edges with attributes have been proposed. The enhanced
flow graph (EFG) is defined as follows:

EFG = 〈V, E, X, O, A〉
v = 〈o, XV〉 : v ∈ V, o ∈ O, XV ⊂ X

e = 〈vS, vD, AE〉 : vS, vD ∈ V, AE ⊆ A
(5)

where: V is the set of vertices, E is the set of directed edges, X is the set of variables, O
is the set of operations (that can be implemented by the graph vertices), and A is the set
of attributes.

The EFG application for representing processing is shown in Figure 3. Cases A and B
show the EFG for y = abc + de. The graph initially obtained from the statement analysis
is shown in Case A. Next, it is a subject of De Morgan’s law application that enables the
merging of nodes (Case B). The pointing end of the edge depicts the attribute, assigned
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like a logic inversion or a sign change. Attributed edges simplify the implementation of
logic function manipulation, e.g., the application of De Morgan laws or checking argument
in simple and inverted form. Similarly, Case C depicts EFG constructed for the arithmetic
formula: y = (a− b)·(c− d− e), obtained directly from the statement analysis. The
subtraction is represented by the attributed edge of the sign change. This allows for the
merging of addition and subtraction in a single node. The merged graph is depicted in
Case D. Finally, the conditional processing flow is illustrated in Case E. The node, shown
as a multiplexer, enables a choice between inputs of processed data. The conditional choice
node requires an ordered connection of edges. The proposed implementation of a data flow
graph minimizes the number of different operations and is able to represent operations
and specific results (e.g., adder carry line) using edge attributes.

Figure 3. EFG representation of: logic expression (A,B), arithmetic expression (C,D), and conditional flow of processing (E).

3.2. Constructing the Data Flow Graph from Ladder Diagram Components

The ladder diagram language requires a systematic method of building the EFG
during the analysis process of the language statements (rungs). The fast LD method
requires tracing a variable value assignment, that assures returning appropriate graph
node for requestors. The other aspect that requires addressing is merging multiple logic
signals by the node of a diagram. The above issues are illustrated in Figure 4.

The variable value access procedure returns the EFG arc, according to the recent value
assignment. Case A shows the situation when the requested variable has not been assigned
until the access. This requires creating the variable value read node (if does not exist) and
returning an arc coming from it. When a variable is associated with an output or internal
marker, the previous value is accessed. A variable associated with an input holds the
current input value and is read-only. Value assignment to such variables is prohibited.
Case B depicts the situation when the requested variable has been already assigned.

The write variable value node exists and enables tracing back to the node that is a
source of the value. The read variable value procedure returns the arc, with respective
attributes sourcing to the value source node.

Passing the logic result back to a ladder network node requires implementing a node
assignment procedure. This procedure creates the logical OR of all signals, driving a ladder
diagram node. Initial value assignment is depicted in Case C of Figure 4. An implied node
variable n is created and a logical OR node is connected to it. The next component node,
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sourcing a value to the network node n, is connected to the logic OR node. Connecting
additional driving components to the node is depicted in Case D. The implied name is used
to look up the variable associated with node n during EFG construction. Next, the driving
source (d2) is connected to the existing logical OR node. This operation can be repeated
iteratively until all components, driving the same ladder diagram node, are connected.

Figure 4. General EFG construction rules for LD mapping of variable access, according to fast LD
(A,B) and multiple logic outputs driving a common node (C,D).

The LD network is composed of connected switches and coils. Those components,
independent from the placement, are translated to a data flow diagram, using the patterns
shown in Figure 5. Cases A and B depict the switches NO (normally open) and NC
(normally closed) that enable building logic functions. The energy flow through the switch
depends on the associated variable, resulting from the logical AND driving signal (ni)
and the switch controlling signal (a). The only difference between NO and NC switches
mapping is an inversion attribute, placed on the edge, that links the driving variable for
the NC switch, shown in Case B.

Figure 5. The EFG construction rules for: NO and NC switches (A,B), simple coils (C,D), and set–reset
coils (E,F).

The energy flow in the diagram node can be assigned to a variable using a coil. A
simple coil and an inverting coil EFG mapping are shown in Cases C and D, respectively. It
should be noted the signal flow is retained by implementing a node signal assignment. The
IEC61131-3 standard also defines complex switches [1,11]. To show the flexibility of the data
flow representation for other components a set coil and a reset coil mapping are depicted
in Cases E and F. The standard allows for those components to be used multiple times,
assigning the highest priority to the last coil type. To meet the standard requirements, the
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set coil is a logical OR of the driving node state and driven variable. This suggests the order
of variable access and assignment during an EFG construction. First, the q variable value
is accessed, which enables the creation of the variable read node for the first declaration.
Next, the variable value can be assigned. All following declarations of a set and reset coil,
for the given variable, reassign its value by adding respective logical operations. Finally, a
chain of logic nodes is created that records all transformations of a variable.

3.3. Constructing the Data Flow Graph from Complex Function Blocks

The ladder diagram defines the blocks enabling the implementation of time depen-
dencies, counting dependencies, and arithmetic computations. It is essential to show the
ability to represent the complex functionality, using EFG, that creates an appropriate data
flow scheme and does not imply constraint for later implementation.

Two representative blocks of a TON timer and an arithmetic computation block have
been chosen; their implementation, using EFG components, is illustrated in Figure 6. The
TON timer is shown in Case A. It declares implied variables: ET (elapsed time) and Q
for holding the activity. The increment of the ET variable is, additionally, controlled by
the t signal. It is asserted in the scans when the reference time elapses. This allows for
flexible implementation, independent of the ratio between the processing cycle and a time
interval. The counting process is also affected by the EN input signal and the timer state Q.
The PT (preset time) input is not constrained and can be a variable or a constant. Case B
shows the graph structure of arithmetic blocks. There is a feature implemented, regarding
conditional computations via EN input. To retain this functionality, each block defines an
implied variable for holding output value when EN input is not active. The ENO output
inherits the state after EN input. The EN signal is passed to ENO and drives the connected
network node.

Figure 6. The complex functions components DFG mappings of TON timer (A) and arithmetic functions (B).

3.4. Constructing the Data Flow Graph from Sequential Function Chart

The proposed intermediate representation is used not only for the ladder diagram but
is also suitable for other languages. The sequential function chart (SFC) language enables
describing parallel control processes, using a common chart [1,11,23]. Opposite to the
LD program, where control flow is hidden behind the mutual connection of switches and
coils, the SFC graphically depicts the control flow between particular operations, using
steps and transitions. The description and operation principles are inherited from Petri
nets [3]. Opposite to finite state machines, where only a single state is active at a time,
the SFC allows for multiple steps to be active. The output activity is described by actions.
Each action can be associated with one or more steps that control its activity. A complex
control activity, executed conditionally, can be described using other languages, e.g., LD. It
is executed conditionally, depending on the activity of selected steps. The activity of the
step is denoted by a token (network marking). The control flow is based on a token passing
between steps. The general properties of the SFC permit creating an invalid description,
resulting in the infinite multiplication of tokens or placing multiple tokens in a step. The
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implementation of SFC assumes a Boolean variable is used for step activity. The correct
behavior is assured only if a step can get no more than one token at a time. The SFC that
meets this requirement is called a safe network [24,25].

Taking the above into consideration, the step (s) activity is stored in the implied
Boolean variable s.x. There, it can be distinguished whether the token acceptance functions
(ai) and token passing functions (pj) were specified for each transition. The general step
activity function can be put down as follows:

s.x = ∨m
i=0ai ∨

(
s.x ∧

(
∧n

j=0 pj

))
(6)

The general idea of mapping steps to EFG is shown in Figure 7. Case A depicts the
sequence of steps used to show a token-passing concept, using accept and pass conditions.
Step s2 receives the token, provided step s1 is active and condition c1 is true. Step s2 passes
the token to step s3, provided the condition c2 is true and s2 is active. The general token,
passing between steps, is shown in Case B. The transition condition requires the activity of
all preceding steps (sp1 . . . spm) and fulfilling of condition c. The condition (c) can be given,
using an LD network. The transition firing condition graph is connected by a simple edge
to nodes accepting a token (steps ss1 . . . ssn) and via inverting an edge to a token passing
node of the transition’s preceding steps (sp1 . . . spm). The building procedure assumes
creating basic step structures for all declared steps.

Figure 7. Steps of SFC general mapping concepts to EFG: step activity control (A) and general token passing concept
between multiple steps (B).

Actions enable passing control from steps and is associated with variables or enabling
a conditional execution of the control program fragment [1,11]. An action is executed,
provided at least one of the steps it is associated with is active. The action mapping
methods are outlined in Figure 8. The simplest action (default action or N-type action) lists
the variables that are set when it is activated. Its EFG mapping, using a conditional choice
node, is shown in Case A. An action holding a fragment of the control program is executed
conditionally. A variable assignment node is preceded with a conditional selection of a
value, based on action activity. The action implemented in EFG is shown in Case B. The
SFC standard defines action attributes to be used. There have been selected N, S, R, and
P attributes of an action to illustrate the method of implementing an action control block.
It is required that the R action is dominant, which requires appropriate implementation.
There are marked blocks responsible for implementing actions activity. The P action is
executed only once, at the activation of the associated step. The S and R actions create the
sr flip-flop that holds the action activation and retains it until deactivation. Finally, the
complete action activity state is passed to conditional choice of computation result.
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Figure 8. Actions mapping scheme for: default action (A), conditional execution and variable assignment (B), and general
mapping scheme for actions with the N, P, S, and R attributes (C).

3.5. Optimization of Intermediate Representation

The initially created EFG is a subject to optimization. The optimizations are applied
iteratively, as long as their application is possible. They start from constant propagation
for the arithmetic and logic nodes. Each node representing arithmetic operations can
have no more than one constant argument, while nodes representing logic operations
propagate constant values. Next, there are eliminated nodes, representing operations with
a single argument, as a result of applying a general generation pattern or due to constant
propagation. The arithmetic or logic operation nodes of the same type, linked by a single
directed edge, are merged.

Control programs, in large part, consist of logic operations [3,26]. It is important
to investigate the ability to optimize logic expressions using EFG. Figure 9 depicts logic
optimizations for exemplary LD program fragments. A limitation of logic optimization
using data flow graphs can be observed in the proposed form. Case A depicts the situation
where De Morgan law is applied to merge AND and OR operation nodes, connected with
an inverting edge (nodes surrounded by a dashed line rectangle). Analyzing the set of the
node’s arguments evaluates to a constant 1 (true). The constant is propagated, resulting in
optimized expression of y = d. Case B depicts an almost similar situation, where surrounded
nodes also evaluate to constant 1. In this case, the optimization procedures that analyze
node arguments are not able to introduce any optimization. To correctly minimize the
logic function, Quine-McCluskey’s exact method should be used or a heuristic derivative,
called Espresso [27]. In both cases, the multiple layer logic function, that is a subject to
minimization, is translated to the sum of products form or the product of sums form.

When implementing the logic optimization method, the final target of the implemen-
tation should be taken into consideration, which is an FPGA device. In such a case, all
logic functions are implemented using look-up tables (LUTs) [28]. The essential problem
of logic functions mapping to LUTs is the limited number of inputs. It is required to
decompose a function to fit into available blocks. The sum of the product’s representation
is not the best choice for decomposition algorithms. Looking for satisfactory partitioning
is computation-intensive and is limited to several variables (<20) [27]. To overcome this
limitation, a binary decision diagram (BDD) has been used [27,29]. It offers the efficient
handling of logic functions end enables their mapping.
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Figure 9. The logic optimization of EFG—possibilities (A) and limitations (B).

4. LUT-Oriented Technology Mapping

The BDD representation of logic operations in the controller enables not only its
optimization but also enables the technology mapping procedure for selected FPGA archi-
tecture. This allows for building a tool capable of delivering the synthesizable description
with partially-mapped structures. The proposed implementation optimizes the logic part
of the controller and enables the implementation of arithmetic operations that do not limit
the implemented functionality range. In many cases, the proposed implementation is
limited to logic operations only [9,12,13,21].

The basis of efficient technology mapping is the division of the logic structure between
configurable logic blocks (CLBs), contained within the FPGA device. These blocks perform
any logic function with a limited number of k inputs. A characteristic feature of the blocks
(CLB) is their configurability, thanks to which a slight modification of the k value is achieved.
The core of these blocks are the LUT (look-up table) blocks, which, in the simplest case,
may be directly CLB (which is especially visible, in the case of combinational circuits).
The mathematical model of the division of the logic structure between logic blocks is the
decomposition of a function.

In the classical approach, the simplest decomposition model (simple serial decomposi-
tion) is based on the division of the decomposed function into a free function and a bound
function [30,31]. This divides the arguments of the decomposed function into free set (Xf )
and bound (Xb). These functions are implemented in the free block and in the bound
block, respectively. The key to the efficiency of the obtained division of the logic structure
is to limit the number of wires between these blocks. It turns out, the number of these
connections (p) corresponds to the number of bound functions (numb_of_g) performed in
the bound block. One should, therefore, strive to minimize the number of bound functions.
Thus, the methodology of determining the necessary number of bound functions becomes
extremely important. Depending on the method of function description, there are various
methods that allow for determining this parameter.

Consider a logic function described in the form of BDD (reduced ordered form-
ROBDD), as shown in Figure 10A. The decomposition corresponds to the horizontal cut of
the BDD diagram. Its top (above the cut line) is associated with the bound set Xb = {c, d, e}.
On the other hand, the lower part has the free set Xf = {a, b}. As a result, the division can
be distinguished by the so-called cut nodes [32,33], i.e., the nodes below the cutting line, to
which the edges from the top of the diagram are connected. In the case at hand, two such
nodes, associated with the variable b, can be distinguished. To distinguish them, a single
bound function (g) is required. This means that the top part of the diagram can be replaced
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by a single node, associated with the bound function (g), as shown in Figure 10B. The logic
structure associated with the considered decomposition is shown in Figure 10C. The key
problem is to choose the level at which the cut has been made, and therefore, to determine
the cardinality of the bound set (card(Xb)). It turns out that, from the perspective of the
effective mapping of the function, the cardinality of the bound set should be equal to the
number of inputs of a single logical block (card(Xb) = k). They assume a mapping in blocks
with 3 inputs, as in Figure 10, the cut level was selected below the variable e in Figure 10A.

Figure 10. The decomposition of BDD, using horizontal cut line (A), free function BDD (B), and
respective mapping (C).

An alternative method of performing decomposition, in the case of BDD description,
is the method that uses multiple cutting BDD [34,35]. The essence of this method is to
introduce more than one horizontal cut line, which leads to the division of the BDD into
slices, contained between the cut lines.

Consider the function described by BDD, as shown in Case A of Figure 11. The
introduced cutting lines divide the BDD into 3 sections. The slice containing the variables
x5 and x6 is associated with the free set. A slice containing the variables x2, x3, and x4 is
associated with the bound set. On the other hand, the slice associated with the variables x0
and x1 can be associated with either the bound set or free set (in the present case, it was
associated with the free set). When considering the slice between the cut lines (shown in
Figure 11B), it is crucial to determine the number of bound functions necessary to perform
such decomposition. As can be seen in Case B of Figure 11, this section is an SMTBDD
diagram [36,37]. This slice has two roots (labeled c and d) and leaves symbolically labeled
t and u. To determine the number of necessary bound functions, it is necessary to create a
root table [36,38].

The root table, for the case in question, is presented in Figure 11C. The lines of this table
correspond to the individual root (c and d). On the other hand, the columns correspond
to the possible combination of variables in the considered SMTBDD). The cells contain
symbolic marks of leaves that are reached from the root (associated with the row), along
the path determined by the combination of variables in a given column for the analyzed
SMTBDD. Thus, patterns of the columns can be distinguished in the root table. Thus, the
number of bound functions is the number of bits necessary to distinguish between different
column patterns in the root table. For Case C, of Figure 11, there are three column patterns,
which leads to the need to use two bound functions. The obtained division is shown in
Case D, of Figure 11.

Simple serial decomposition is the basis for more complex decomposition models,
such as multiple or iterative decomposition [39]. Additionally, it should be remembered
that the quality of the obtained solutions depends on the order of variables in the BDD [40].
The key methods are to quickly estimate the effectiveness of mapping in blocks with specific
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configuration capabilities [35,39], as well as optimization methods, such as non-disjoint
decomposition [35].

Figure 11. Multiple cut line decomposition method (A), SMTBDD (B), root table (C), and respective
mapping (D).

In practice, the implementation of a single function is very rare. As a rule, multi-
output functions are implemented in FPGAs. In this situation, a very effective approach
is to share logic resources between structures associated with single functions. It turns
out that this approach does not always lead to good results, and resource sharing should
only be partial [39]. Thus, a question arises on how to find the bound function common to
several single functions, so that the obtained solutions are efficient, in terms of the use of
logical resources [39].

Consider the two logic functions, described by BDD (shown in Cases A and B, of
Figure 12). The decomposition was performed with the use of multiple cuts, which led to
the formation of the root tables shown in Case C, of Figure 12. There are four root patterns
(A, B, C, and D) in the root table for the function f 0, which leads to the need to use two
bound functions. However, in the root table for the f 1 function, there are also four column
patterns (E, F, G, and H), which also leads to the need to use two bound functions. Thus,
in an implementation without resource sharing, the total number of bound functions is
four. Questions arise as to whether it is possible to find a bound function common to f 0
and f 1. To analyze this problem, a graph was created, in which the nodes correspond to the
combination of variables from the columns of the root tables. Each node can be assigned a
symbolic column pattern designation for both f 0 and f 1. By combining the nodes with the
same symbols of the columns, we obtain the graph shown in Case D, of Figure 12. It turns
out that the graph has been divided into three parts. Thus, it is possible to distinguish
individual parts by the value that the newly introduced function g0

′ will take, which will
be shared for both f 0 and f 1. If the function g0

′ takes the value 0, nodes connected with
red edges are indicated. Otherwise, the group containing the remaining nodes is indicated.
Of course, it is necessary to introduce the two additional bound functions g10 and g11
separately for both functions f 0 and f 1. This approach has reduced the total number of
bound functions from four to three.

The logic structure created after mapping the multi-output function f 0f 1 in LUT_X
blocks (where X is the number of block inputs) is shown in Figure 13.
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Figure 12. The idea of searching for shared bound functions: input functions f 0 (A) and f 1 (B), root tables of functions (C),
identical symbols graph (D).

Figure 13. Technology mapping for functions f 0 and f 1.

5. Hardware Mapping Method of a Partially-Mapped Flow Graph

Developed logic optimization of data flow graphs results in the mapping of a sub-
graph, representing the logic operations in look-up tables. This enables using a developed,
BDD-based decomposition strategy to improve implementation. Before the hardware
mapping is performed, the input data flow graph is subject to the accommodation of
the nodes to available components. Nodes representing arithmetic operations must meet
the mapping requirements implied of available arithmetic blocks in the library. Multiple
argument nodes are expanded into two arguments nodes. To balance computation time,
the expansion procedure calculates the computation time completion, using an as soon
as possible approach for each argument node. The computation time-driven expansion
method selects arguments with the earliest computation completion time to be expanded
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to the two-argument node. This approach enables the expanding a node in a processing
time balanced manner that differs from typical balanced tree expansion (balancing number
of nodes for left and right branches). The arithmetic complement edge attribute is trans-
lated into an equivalent structure in 2′s complement system, using logic inversion and the
addition of 1. After completing all mentioned operations, the data flow graph is ready for
hardware mapping.

An exemplary LD program is shown in Figure 14 (Case A). To illustrate the extended
ability of the proposed mapping strategy, the program utilizes the TON timer, which
uses arithmetic and logic operations. Next, the program is translated into a data flow
graph. Case B shows a data flow graph after the initial optimizations and scheduling of
operations. Arithmetic operations, due to different complexities and numbers of cycles
for completing the computations, require the use of a scheduling process. Additionally, it
should be noted that multiplication and division can be implemented using combinational
or sequential approaches. To reduce resource requirements, the sequential approach is
used in the direct implementation. The direct implementation utilizes an as soon as
possible (ASAP) scheduling approach [22,41]. This method enables obtaining the resource
allocation, with the smallest number of clock cycles to complete computations. In the
block diagram, there are marked nodes selected for the LUT mapping procedure. At the
bottom of the data flow graph, a timeline is shown, scaled in clock cycles. The hatched
rectangles denote registers placed across the structure. The controller is equipped with a
set of input registers (updated in the first calculation cycle) and a set of output registers
(updated in the last calculation cycle). All inputs are sampled simultaneously at the
beginning of the calculations and all outputs are updated in the last computation cycle. The
arithmetic components are passed to the implementation tools as library components. The
conditional choice nodes (multiplexers) are a subject of expansion to logic implementations,
when nodes connected to selection inputs represent constants or logic operations. In the
considered data flow graph nodes, n07 and n09 are translated into the logic structure, while
meeting the given requirements.

Figure 14. An exemplary LD program (A) and its respective data flow graph scheduled and prepared for LUT mapping (B).

The data flow graph is used for preparing the synthesizable description for the FPGA
implementation tools. In the experiments, Xilinx FPGAs families are used [42]. In Figure 15,
the register transfer level block diagram is shown, obtained after mapping the data flow
graph to the respective hardware components. The subgraphs defining logic operations
have been substituted, with direct mapping to LUT components.
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Figure 15. The register transfer level block diagram of the hardware mapping of the exemplary LD program.

The multiplexer selecting among constants 0 and 1 is substituted by a logic circuit. It
should be noted that multiplexers selecting among constant values are always expandable
to logic operations. Each bit of the results belongs to the set:

{
0, 1, f , f

}
, where f is a

selection function of the multiplexer. The other optimization, after translating a multiplexer,
is connected with adder optimization. FPGA devices implement additional circuitry,
enabling the simplified implementation of ripple carry adders using carry chain [28]. In
LUT6 based architectures (since Virtex 5), the carry chain links four LUTs, located in a
slice, together. To improve the performance of the adder, the 4-bit carry chain utilizes
look-ahead adder optimization and dedicated connection resources with low delay and
direct connection to vertically adjacent slices (creating vertical carry lines, implemented
using metal segments). Finally, the hardware structure is supplemented with the cycle
controller that manages the data flow among registers, according to the given schedule.
The controller is implemented using a shift register that simplifies the implementation of
rotating one pattern dependent on the RUN signal, as shown in the waveform in Figure 15.

6. Experiments

To illustrate the performance of the direct implemented controllers and support of
hardware mapping strategy for logic operations, a set of control circuits was implemented.
The resulting comparison was partitioned into the comparison of the logic block utilization
for the part of the controller responsible for logic operations, complete implementation,
and final controller performance. The Artix 7 FPGAs from Xilinx [28,42] were selected for
experiments.. The comparison was made between the dekBDD, the academic ABC system,
and commercial tools. In the case of the ABC system, they used the following synthesis
script: “strash; dch; resyn2; if -K 5 –p”. This complex command line assures mapping
in LUT blocks with 5 inputs, using resynthesis. The experimental results, accomplished
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by the authors, have proved that the obtained results are very efficient, in terms of used
resources and power consumption.

The results are gathered in Table 1. To perform the benchmark, a two-state processing
part, that is extracted for implementation using the dekBDD toolset, has been redirected
to other tools, too. Benchmark programs AGV, GRAVEL, and MIX_BRIX are examples
of the IEC61131-3 standard [11]. Those benchmarks illustrate the ability to create an im-
plementation from a description using SFC and LD languages. There are also defined
mathematical dependencies that compare the weight of the delivered materials or count
the number of items delivered to the controlled process (MIX_BRIX, GRAVEL). The AGV
controller is the simplest one, utilizing only logic dependencies. The SFC hardware imple-
mentation consists of multiple two-state finite state machines. Each machine is associated
with the respective step. This implementation perfectly fits the FPGA device architecture,
which offers a large number of flip-flops. Its number is twice the LUT6 number, in the
case of the Artix family. It should be noted that LUT6 can operate as two independent
LUT5 blocks, fed with the same set of signals offering the architecture 2 × LUT5. The
method of implementing SFC resembles the method of one-hot encoding. This results
in simplified implementation, while immediate decoding of the condition is possible by
analyzing the active steps. This also proves the feasibility of the mapping model of SFC for
the FPGA architecture. Summarizing benchmarks AGV, GRAVEL, and MIX_BRIX proved
the efficiency of SFC mapping. The excitation functions of the steps do not require specific
decomposition and are implemented successfully with the same number of resources by
all evaluated tools.

Table 1. LUT blocks utilization for the logic part of the controller and respective mapping tool.

Program Inputs Outputs dekBDD ABC Synplify Vivado

AGV 15 11 11 11 11 11
GRAVEL 26 18 18 18 18 18

MIX_BRIX 22 13 13 13 13 13
LIFT_4 37 18 23 23 24 23
LIFT_8 69 30 50 59 49 50
LIFT_12 101 42 82 98 84 80

The LIFT_n is a scalable implementation of a lift controller in an n-storied building
using LD-only implementations. The controller brings the complex logic dependencies of
controlling lift cabin movement (up or down) and processing the requests. The number of
handled floors increases the logic condition complexity. There are gathered numbers of
inputs and outputs of logic structure for respective implementation. This set of benchmarks
shows the efficiency of decomposition models. It could be observed that the dekBDD offers
results comparable to Synplify and Vivado (LIFT_12 slightly outperforms Synplify, by
about 4%). To summarize, the proposed decomposition offers a better result, in comparison
to the ABC system.

In Table 2, complete hardware requirements for the entire controller, including arith-
metic computations, are gathered (timers, counters, comparators, etc.). The number of
flip-flops is shown (FF column). The number of clock cycles, required for completing the
calculations, is shown in the TCK column. Next, the computation performance is shown.
The fMAX column gathers the maximal clock frequency. Using the maximal frequency
and required number of clock cycles, the computation time is calculated (column tCALC).
The time given in this column covers complete computation time. Finally, a performance
comparison is made to logic controllers, based on instruction execution. The ICNT column
gathers the number of instructions a particular program consists of. For the simplicity of
the calculations, it is assumed that each instruction can be executed in a single cycle (this
assumption gives the handicap to PLC CPU). The THP column contains the throughput
of the controller structure, expressing performance in billions of instructions executed
per second.
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Table 2. Implementation results comparison for the test programs in the Artix-7 FPGA family.

Program LUT FF TCK fMAX [MHz] tCALC [ns] ICNT THP [GIPS]

AGV 14 22 2 656.3 3.05 86 28.2
GRAVEL 534 523 7 313.6 22.32 162 7.3
MIX_BRIX 116 165 5 362.1 13.81 141 10.2

LIFT_4 120 135 4 307.0 13.03 151 11.6
LIFT_8 150 167 4 251.4 15.91 396 24.9
LIFT_12 200 199 4 242.8 16.47 716 43.5

The proposed direct hardware implementation of the controllers offers extraordinary
computation performance. It should be noted that, opposite to programmatic implemen-
tation, there is a constant computation time, independent from the logic conditions of
program execution. The number of clock cycles is relatively low. The GRAVEL program
requires seven clock cycles to complete computation, due to mutually dependent arithmetic
operations. It should be noted that the mapping strategy that allocates arithmetic blocks in
separate cycles, as required for computation completion, allows for achieving the maximal
clock frequency (above 300 MHz).

An interesting observation can be made, in the case of the LIFT_n controller implemen-
tation. The controller requires four clock cycles to complete the computation. The growing
complexity of the controller (4, 8, and 12) increases the propagation delay, reducing the
maximal clock frequency (from 307.0 MHz to 242.8 MHz). It should be noted that the
increase in complexity results in increased throughput. This shows a unique property
of direct hardware implementation that offers extraordinary computation performance,
using massively parallel computations. It should be noted that, in all cases, the maxi-
mal clock frequency that can be applied to the FPGA device is significantly greater than
200 MHz. In practical applications, assuming a constant clock frequency of 200 MHz for
the controller, the response time is between 10 ns for AGV to 35 ns for GRAVEL (for the
considered benchmarks).

The comparison with other implementation methods is gathered in Table 3, including
program execution times for Simatic S7-319 [43] and LD direct hardware implementation
methods. The LD direct implementation methods were divided into the rung-based method
(RG column) [8,10] and the rung-based method with optimization [9,12,13,21] (RGO col-
umn). The last column (DFG column) holds the results for the developed method. The test
programs AGV, GRAVEL, and MIX_BRIX are described using SFC. To be able to synthesize
those programs, they were translated to the equivalent LD. The Simatic S7-319 execution
time is calculated for the shortest instruction execution time. For all direct hardware-
implemented controllers, the clock signal frequency is assumed to 200 MHz (1 TCK = 5 ns).
The LD implementation, presented in [9,12,13,21], does not enable the implementation of
timers, counters, and functional blocks. Results presented here are based on the experience
and estimation of implementing the timer and arithmetic modules (performed by the
authors). To summarize, the presented DFG assures an extended synthesis of the control
program that offers the best performance. The rung-based method (RG column) offers a
performance improvement, in comparison to PLC implementation. Further performance
improvement is observed in the rung-based optimized method (column RGO). For the
RG and RGO methods, performance is dependent on the program representation using a
ladder diagram. Two functionally equivalent programs can be drawn using the different
number of rungs that directly affect the RG method. Switches and coils order the results
with the different numbers of cycles required to complete computations. This is a result
of examining variable dependencies only. The proposed DFG method offers the shortest
execution time and is capable of the direct implementation of programs using both LD and
SFC languages. The statement analysis and translation to intermediate form makes the
implementation process independent from the LD program drawing.
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Table 3. Performance comparison with other methods and Simatic S7 PLC CPU [43].

Program Rungs ICNT
S7-319

[ns]
RG

[ns]/[TCK]
RGO **

[ns]/[TCK]
DFG

[ns]/[TCK]

AGV 23 * 86 344 120/24 25/5 10/2
GRAVEL 33 * 162 696 165/33 55/11 35/7

MIX_BRIX 35 * 141 852 180/36 35/7 25/5
LIFT_4 28 151 620 145/29 35/7 20/4
LIFT_8 40 396 1584 205/41 35/7 20/4

LIFT_12 62 716 2912 315/63 35/7 20/4
* Equivalent rungs count translating SFC program to LD. ** Estimated execution time, due to lack of timers,
counter, and arithmetic block handling by the method.

7. Conclusions

The proposed solution of direct hardware control program implementation allows
for obtaining high-performance control systems, directly from the control programs given,
according to the IEC61131-3 requirements [1,11]. A complete methodology is shown,
covering the initial program translation to an intermediate graph form, which is target
independent. The fast LD theorem and utilization of data flow graph in the hardware
structure synthesis process is essential for obtaining an efficient program implementation.
The intermediate data flow graph form enables abstract processing representation and
the extended optimization of an input program. The optimization process allows for the
detection of unused variables and operations. Enhancing the data flow graph with the
synthesis process using BDD further extends the optimization process by optimizing logic
expression. Finally, using BDD representation for logic operations enables performing
technology to map the logic operations to modern LUT-based FPGA devices. It should
be noted that, at the same time, intermediate representation enables managing arithmetic
computations that are optimized and implemented, using the respective components
available inside FPGA devices. Finally, the program is translated into a partially-mapped
structure, ready for implementation, using FPGA vendor tools [42]. The obtained hardware
structure of the dedicated controller offers very high performance and a short response time.
The response time of the controller is constant and does not depend on logic conditions or
the internal program state during execution. This allows using the controller structure in
time-critical applications, when a response must be delivered in a given time. As it was
shown, the total processing time requires several clock cycles (the benchmarks in Table 2
required two to seven clock cycles). This allows for obtaining the response time, in the
range from 10 ns to 35 ns. The performance comparison, to the number of IL instructions
executed, reaches up to 43.4 GIPS (billion instructions per second). This significantly
outperforms the programmatic execution of control algorithms and shows the power of a
dedicated hardware implementation methodology (Table 3). It is essential to point out that
the user implementation process of a control program is fully automatic.

Author Contributions: PLC program compilation, intermediate representation, hardware schedul-
ing, mapping, and main author, A.M.; BDD decomposition and decomposition section author, M.K.;
algorithms verification, result discussion, text review, D.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by funding from the Ministry of Science and Higher Education
for Statutory Activities of Digital Systems Division of the Silesian University of Technology of Gliwice
(BK226/RAu-12/2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 8515 20 of 21

References
1. John, K.H.; Tiegelkamp, M. IEC 61131-3: Programming Industrial Automation Systems: Concepts and Programming Languages,

Requirements for Programming Systems, Decision-Making Aids; Springer: Berlin/Heidelberg, Germany, 2010.
2. Chmiel, M. On Reducing PLC Response Time. Bull. Pol. Acad. Sci. Tech. Sci. 2008, 56, 229–238.
3. Chmiel, M.; Hrynkiewicz, E. Concurrent operation of processors in the bit-byte CPU of a PLC. Control Cybern. 2010, 39, 559–579.

[CrossRef]
4. Rudnicki, T. Measurement of the PMSM Current with a Current Transducer with DSP and FPGA. Energies 2020, 13, 209. [CrossRef]
5. Edwards, S.A.; Sungjun, K.; Lee, E.A.; Liu, I.; Patel, H.D.; Schoeberl, M. A disruptive computer design idea: Architectures with

repeatable timing. In Proceedings of the IEEE International Conference on Computer Design (ICCD), Lake Tahoe, CA, USA, 4–7
October 2009; pp. 54–59.

6. Becker, M.; Sandström, K.; Behnam, M.; Nolte, T. A many-core based execution framework for IEC 61131-3 Industrial Electronics
Society. In Proceedings of the IECON 2015 41st Annual Conference of the IEEE, Yokohama, Japan, 9–12 November 2015;
pp. 4525–4530. [CrossRef]

7. Chmiel, M.; Mocha, J.; Lech, A. Implementation of a Two-Processor CPU for a Programmable Logic Controller Designed on
FPGA Chip. In Proceedings of the 2018 International Conference on Signals and Electronic Systems (ICSES), Kraków, Poland,
10–12 September 2018; pp. 13–18. [CrossRef]

8. Bergmann, N.W.; Waldeck, P.; Shukla, S.K. FPGA Implementations of Ladder Diagrams. Mod. Appl. Sci. 2013, 7, 64–73. [CrossRef]
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