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Abstract: In recent years, the involvement of synthetic strongly labeled data, weakly labeled data,
and unlabeled data has drawn much research attention in semi-supervised acoustic event detection
(SAED). The classic self-training method carries out predictions for unlabeled data and then selects
predictions with high probabilities as pseudo-labels for retraining. Such models have shown its
effectiveness in SAED. However, probabilities are poorly calibrated confidence estimates, and samples
with low probabilities are ignored. Hence, we introduce a confidence-based semi-supervised Acoustic
event detection (C-SAED) framework. The C-SAED method learns confidence deliberately and
retrains all data distinctly by applying confidence as weights. Additionally, we apply a power
pooling function whose coefficient can be trained automatically and use weakly labeled data more
efficiently. The experimental results demonstrate that the generated confidence is proportional to the
accuracy of the predictions. Our C-SAED framework achieves a relative error rate reduction of 34%
in contrast to the baseline model.

Keywords: semi-supervised learning; acoustic event detection; confidence estimates

1. Introduction

Acoustic event detection (AED) is a task for identifying the categories and timestamps
of target sound events in continuous audio recordings. As one of the core technologies
in non-verbal sound perception and understanding, AED is widely deployed in various
applications, such as noise monitoring for smart cities [1], nocturnally migrating bird
detection [2], surveillance systems [3], and multimedia indexing [4].

Traditional approaches of AED mainly draw on the ideas of speech and the music
signal process. Classic features such as Mel frequency cepstral coefficients (MFCCs) are
sent into machine learning classifiers, such as the Hidden Markov Models (HMMs) and
Gaussian Mixture Models (GMMs) [5,6]. Recently, deep neural networks (DNNs) [7,8],
especially convolutional neural networks (CNNs) [4,9] and convolutional recurrent neural
networks (CRNNs) [10], have been widely applied to AED tasks and achieve excellent
performance. However, these methods are dependent on a large amount of strongly
labeled training data with both types and timestamps. With the increase of acoustic event
categories, high-quality manual annotations become hard to afford in terms of time and
economy in practical applications. In comparison, synthetic strongly labeled data, weakly
labeled data with only clip-level categories, and unlabeled data are widely available.
Therefore, research and competitions [11,12] are turned to semi-supervised acoustic event
detection (SAED) with the above data.

SAED inherits the paradigm of semi-supervised learning to use unlabeled data. That is,
pseudo-labels are generated for unlabeled data as the training target. Therefore, the quality
of pseudo-labels plays an important role. There are at least two approaches to improve the
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pseudo-labels quality in the SAED area. One is to improve the model that generates pseudo-
labels. As high-level features with a larger compression scale are more suitable for clip-level
classification, Lin [13] and Yan [14] introduce an extra branch or model with larger sampling
sizes to produce high-level features with broader vision and better clip-level pseudo-labels
for unlabeled data. Another way is to design a better pseudo-labels generation policy.
Two effective semi-supervised learning methods are led into SAED: mean teacher and
self-training. Mean teacher [15] averages model weights over steps to form a target-
generating teacher model. A modified mean teacher model benefits SAED by employing
both frame-level and clip-level consistency loss [14,16–18]. Self-training [19], a simple but
effective bootstrapping semi-supervised method, cycles retraining the model with part of
its predictions as pseudo-labels. Self-training methods adopted in SAED [20–22] retrained
only once and employed a small part of unlabeled data with high probabilities. These
approaches filtered unlabeled data by using the posterior distribution to ensure the quality
of the pseudo-labels.

These two approaches have shown their respective strength, and their combination
may bring further improvement. Nevertheless, the effect of the combination is out of the
scope of this article. This paper focuses on introducing a better pseudo-labels generation
and usage method. We notice that mean teacher and self-training yield impressive per-
formance, but there are three problems with self-training. First, the probability is not a
calibrated indicator for evaluating the correctness of the model predictions. As modern
neural network classifiers are designed to produce output probabilities prone to extreme
values, incorrect predictions can be generated with high probabilities [23]. Second, sim-
plified self-training methods [20–22] lose a considerable amount of information. Third,
these methods ignore true negative predictions. Nevertheless, data for SAED are extremely
imbalanced. Massive correct negative predictions are beneficial to the retraining process.

To improve the training efficiency, we compress the number of iterations of the frame-
work into two stages: in the first stage, pseudo-labels and the evaluation of pseudo-label
quality are generated. In the second stage, unlabeled data are used distinguished accord-
ing to the quality of pseudo-labels. Specifically, since the posterior probability cannot
effectively measure the quality of the pseudo-label, we introduce a method of training
confidence in the first stage without additional confidence annotation. Inspired by [24],
the first-stage model is made to predict audio events and confidence value at the same
time. In the second stage, we use unlabeled data discriminately, increasing the weight of
the data with a more reliable label in the training process.

The contributions of this paper are as follows:

(1) C-SAED realizes the co-training of classification and confidence with only classifi-
cation labels in the first stage by designing a multi-task model. The experimental
results show that the generated confidence can effectively measure the correctness of
the label.

(2) Compared with the traditional self-training method, differentiated training rather
than screening strategies in the second stage effectively improves the utilization
efficiency of unlabeled data. Our experiments illustrate that the training effect is
significantly improved under the same number of iterations.

(3) C-SAED uses the mean teacher model as the backbone of each stage model that
effectively fuses two semi-supervised methods: the consistency principle and pseudo-
labels. The ER decreases compared to adapting mean teacher only.

2. Proposed System
2.1. Baseline: Mean Teacher

Mean teacher is a consistency regularization method that evaluates unlabeled data
with two different noises, and then apply a consistency cost between the two predictions.
In this case, the model assumes dual roles of a teacher and a student. The baseline model
performs the following optimization on the basis of mean teacher model in [17]: First,
we introduce data augmentation by shifting input features along the time axes (forward
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and backward with a Normal distribution with zero mean and a standard deviation of
16 frames). Second, we adopt a set of median filter window sizes that is proportional to
the average duration of different event categories [13]. Third, the 128-dimensional log Mel
spectrogram is extracted at each frame. The size of the window is 2048 and the hop length
is 365. Fourth, parameters of feature extractor follow the settings in [18].

2.2. C-SAED
2.2.1. Stage One: Multi-Task SAED Model (MT-SAED)

To get reliable confidence, we added a branch to train confidence in MT-SAED, as illus-
trated in Figure 1. When solving the issue of simultaneously generating AED predictions
and their corresponding confidence without the confidence label, we draw on the success-
ful experience in the field of out-of-distribution detection [24]. The motivation is equivalent
to a special test that permits giving hints. Candidates are allowed to ask for hints according
to their confidence of the questions. Furthermore, a certain penalty is carried out in order
to prevent candidates from tending to ask for hints for all questions. To obtain the highest
score, candidates must improve their ability to answer questions and self-assess at the
same time.
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Figure 1. The top of the figure shows that a sound event system with an extra confidence branch. The sound event
model receives the input spectrogram and outputs frame-level prediction probabilities and the corresponding frame-level
confidence values. The bottom of the figure illustrates the process of the generation of new probabilities with output
probabilities, targets, and confidence value.

MT-SAED is constructed based on the baseline model. There are four outputs in the
baseline model, the frame-level output y f t and clip-level output yct of the teacher model,
and the frame-level output y f s and clip-level output ycs of the student model. For each
clip, frame-level outputs y f t and y f s are T × C vectors containing probabilities for each
frame, and clip-level outputs yct and ycs are 1 × C vectors only containing probabilities
for the clip, where T,C are the number of frames and types. A power pooling [25] is
adopted between frame-level outputs and clip-level outputs. To make the model self-
assessment, we add a confidence branch in parallel with the original class prediction
branch. The confidence branch, which shares the same structure with the frame-level
classification branch, applies a fully-connected layer followed by sigmoid. The confidence
branch generates corresponding confidence values c for the classification results of each
sound event at every frame. Output c takes values between 0 and 1. If the model is
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confident about the classification, output c will be closer to 1. Conversely, if the model is
uncertain about the correctness of classification predictions, the value of c will be closer
to 0.

A crucial issue of confidence is how to achieve the training of two tasks with just
the classification labels. Following the main idea of giving hints, we construct a new
frame-level output of student model y′f s with the label t f and two outputs y f s and c:

y′f s = (1− c)× t f + c× y f s. (1)

The outputs of the student model y′f s and ycs are in comparison with strong labels t f
and tc utilizing the binary cross entropy (BCE) loss, as illustrated in Figure 2. The classifica-
tion loss can be written as

Lclass = Lclass f
+ Lclassc

= LBCE(y′f s, t f ) + LBCE(ycs, tc).
(2)

Outputs y f s and ycs are compared with the outputs y f t and yct by applying the mean
square error (MSE) loss. The consistency loss is

Lcon = LMSE(y f t, y f s) + LMSE(yct, ycs). (3)
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Figure 2. Framework C-SAED: Stage one introduces a muti-task system that can generate frame-level classification
predictions and corresponding confidence estimates. The pseudo-labels and confidence for weakly labeled data and
unlabeled data are produced and applied in stage two. The power pooling function is adopted in the first stage. n1, n2 are
noises added to the student model and the teacher model. After the weights of the student model (Θ) have been updated
with a gradient descent, the teacher model weights (Θ′) are updated as an exponential moving average (EMA) of the
student weights.

Training with Lclass and Lcon loss functions, the network will be lazy at learning
the differences between classes. Instead, the model tends to make c approach 0 and
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receives ground truth for every sample. Thus, a log penalty is added to the loss function.
The confidence loss can be interpreted as a BCE loss:

Lc = −log(c). (4)

The loss function of the multi-task system is

L = Lclass + µ× Lcon + λ× Lc, (5)

and parameter µ increases with epochs and λ is a hyperparameter. When λ is too small,
the MT-SAED model tends to ask for hints and performs poorly in classification. When λ
is too large, the confidence c→ 1 and loses the distinction. To ensure the effects of both
classification and confidence estimation, we first optimize the mean teacher model and
classification branch without Lc. Then, the trained parameters are fixed, and L is deployed
to train the confidence branch separately for five epochs.

2.2.2. Stage Two: Retraining with Pseudo-Labels and Confidence

In the second stage, the weakly labeled and unlabeled data are sent to the trained MT-
SAED model to yield frame-level predictions and confidence estimates. The frame-level
posterior probabilities are applied as soft pseudo-labels for the above data during retraining.
Confidence estimates offer an ability of self-assessment for pseudo-labels. For weakly
labeled data, we regulate the outputs. Pseudo-labels are revised to 0, and confidence
estimates are revised to 1 for negative clips. For strongly labeled data, all confidence
estimates are set to 1. In order to guarantee the contribution of each sample under the
premise of discrimination, we interpolate the confidence values with a hyperparameter α
to produce a new confidence:

c′ = α× c + (1− α)× 1. (6)

The frame-level classification loss Lclass f
is weighted by c′ as follows:

Lclass f
=

∑i,k c′(i, k)× LBCE(y f s(i, k), t f (i, k)))

∑i,k c′(i, k)
, (7)

where i, k represents the index of frames and classes. For those samples with high confi-
dence, the accuracy of their pseudo-labels is higher. We make them more important during
retraining. Conversely, the proportion of classification loss function value is relatively
small for other samples. As a result, all strongly labeled, weakly labeled, and unlabeled
data information are learned distinctly. Lclassc and Lc are omitted. The max pooling is
adopted to produce clip-level predictions.

2.3. Pooling Functions

In C-SAED, we use different pooling functions between two-level predictions in two
stages, as weak labels are only used in the first stage. To simplify, we briefly introduce two
pooling functions for single event detection. Polyphonic SED can be considered as multiple
binary classification problems.

In the first-stage training, the pooling function needs to complete two tasks simul-
taneously: one is to generate weights for frame-level predictions to form the clip-level
prediction. The other is to generate frame-level gradients from clip-level gradients.

Because of the gradient backpropagation and the adaptability for sound events with
various time scale, power pooling function [25] is the state-of-the-art method. Its formula
and gradient formula are

yc =
∑i y f (i)× yn

f (i)

∑i yn
f (i)

, (8)
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∂yc

∂y f (i)
=

(n + 1)× yn
f (i)− n× yn−1

f (i)× yc

∑j yn
f (j)

, (9)

y f is frame-level output probability, yc is clip-level output, and parameter n represents
the exponent which should be non-negative. Here, n is a free parameter to be learned
alongside the model parameters, which allows Equation (8) to automatically adapt to and
interpolate between separate pooling functions for different sound events. For instance,
when n = 0, Equation (8) reduces to mean pooling. When n = 1, Equation (8) simplifies to
linear pooling. When n→ ∞, Equation (8) approaches the max aggregation.

The gradient backpropagation of power pooling is quite suitable for SED. For positive
clips, larger y f is driven to 1 and smaller y f is driven to 0, benefiting the timestamps
detection. For negative clips, y f is pushed towards yc × n/(n + 1). Considering that yc is
trained towards 0, all the y f will converge to 0 as desired after enough iterations.

As for the second-stage training, only strong labels are applied. Then, max pooling is
the default choice. After frame-level predictions are smoothed by the median filter, if at
least one frame is positive, we regard that the clip is positive.

3. Experiments and Discussion
Dataset and Metrics

We carried out experiments on the DCASE 2019 Task4 dataset [12], DCASE 2018
Task4 dataset [11]. Since these two datasets contain the same ten sound events, we take
the training set of DCASE 2019 as our training set, including synthetic strongly labeled
(2045 clips), weakly labeled (1578 clips), and unlabeled (14,412 clips). The validation set
(1168 clips) of DCASE 2019 and the evaluation set of DCASE 2018 (800 clips) are used
for tests.

These two datasets consist of 10 classes of sound events in a domestic environment:
Speech, Dog, Cat, Alarm/bell/ringing, Dishes, Frying, blender, Running water, Vacuum
cleaner, and Electric shaver/toothbrush. The sampling rate is 44,100 Hz. The duration of
each audio clip is around 10 s, and multiple audio events may occur at the same time.

In addition, we select clips with multiple events from the validation set of DCASE
2019 and name the set polyset. This set is used to evaluate the performance for the case
with two or more acoustics events in a clip. The polyset contains 331 clips.

Experiments were evaluated with event-based macro-average error rate (ER) with
a 200 ms collar on onsets and a 200 ms/20% of the events length collar on offsets. The
formula is

ER =
∑c

i=1
I(i)+D(i)

N(i)

c
, (10)

where c is the number of sound event types, I(i), the insertion error, represents the number
of sound events i generated by model outputs that do not appear in the clips actually. D(i),
deletion error, is the number of sound events i in the clips that were not identified by the
model. N(i) is the number of active sound events i in the reference. A low ER indicates a
more accurate SED system. The specific evaluation details can be found in [26].

4. Results and Analysis

In this section, we first compare the evaluation ability of posterior probability with
confidence. Then, our methods are compared with other methods on the test sets. Finally,
we analyze the effectiveness of the hyperparameter λ and specify a prior joint distribution
for α and λ.

4.1. Comparison of Posterior Probability and Confidence as Evaluation Criteria

Figure 3 focuses on positive predictions, as classic self-training methods choose sam-
ples with high probabilities. Figure 3 demonstrates that accuracy increases with confidence
estimates. For posterior probabilities, accuracy first decreases rapidly and then flattens.
The reason is that the classification outputs are trained towards 0 or 1. The number of
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samples with probabilities in [0.5, 0.6] is relatively small, which might result in a high
accuracy. Most posterior probabilities are concentrated in [0.9, 1], but they contain many
false positive frames. Figure 3 confirms that the posterior probabilities cannot evaluate the
correctness of predictions. In contrast, we notice that the confidence of positive predictions
is concentrated in [0, 0.1]. This behavior coincides with massive false positives produced by
MT-SAED. Figure 3 indicates that the confidence can measure the accuracy of predictions.
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Figure 3. Accuracy of frame-level predictions changes with confidence estimates and probabilities.
The accuracy of positive predictions (prob ≥ 0.5) changed with learned confidence estimations and
probabilities. Their polynomial fitting curves are displayed.

4.2. Comparison with Other Methods

We compared the proposed model with the following approaches:

MT18: the official baseline for DCASE2019 task4, with the mean teacher structure [17].
Baseline: modified MT18 method with attention pooling.
MT-SAED: the stage one model of C-SAED with power pooling.
Prob0.9: only predictions with prob ≥ 0.9 added to pseudo-labels, samples retrained with
equal weight [20].
Prob: all samples retrained with probabilities as weights.
Prob0.5: only predictions with prob ≥ 0.5 added to pseudo-labels, samples retrained
with confidence.

Table 1 lists the performance of different models on the three test sets. The results
illustrate that C-SAED models are significantly improved in contrast to the other models.
The ER improvement is mainly due to the significant reduction of INS error. That is,
the improvement comes from correcting false positives. When the model retrained with
parameter α = 0, ER also decreased. Although the mean teacher method already makes
use of weakly labeled and unlabeled data, applying an appropriate self-training structure
can effectively reduce false alarms. However, Prob0.9 introduced massive false positive
predictions as pseudo-labels and applied them equally, resulting in many insertion errors.
Prob caused performance degradation due to the fact that the majority of true negatives
owned small weights approximately 0.7 after applying parameter α = 0.3. Meanwhile,
many false positives (Figure 3) were introduced with high weights. In contrast, C-SAED
with confidence further improved ER by successfully strengthening the attention to true
negatives and true positives. The poor results of Prob0.5 reveal the importance of true
negatives. In addition, for most models, the error rate on polyset is 0.13 to 0.2 higher
than results on validation 2019. This phenomenon confirms that polyphonic audio event
detection is more challenging than monophonic audio event detection.
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Table 1. Comparison of models in terms of ER (%). Retraining with α = 0 is equal to retrain without
confidence. We bold the reduced ER value after retraining.

Model
Evaluation 2018 Validation 2019 Polyset

ER DEL INS ER DEL INS ER DEL INS

MT18 1.65 0.78 0.87 1.56 0.76 0.80 - - -
Baseline 1.34 0.72 0.62 1.26 0.70 0.56 1.45 0.81 0.64

MT-SAED 1.13 0.69 0.44 1.07 0.67 0.40 1.26 0.75 0.51

Retrain α

0 1.10 0.68 0.42 1.04 0.67 0.37 1.18 0.75 0.43

Prob0.9 1 3.72 0.70 3.02 3.41 0.69 2.72 3.91 0.80 3.11
Prob 0.3 1.15 0.68 0.47 1.09 0.66 0.43 1.28 0.76 0.52

Prob0.5 0 1.19 0.68 0.51 1.14 0.68 0.46 1.32 0.77 0.55

C-SAED 0.3 1.09 0.70 0.39 1.03 0.68 0.35 1.23 0.78 0.45
(λ = 0.1) 0.7 1.13 0.69 0.44 1.05 0.67 0.38 1.17 0.75 0.43

1 1.06 0.68 0.38 1.02 0.67 0.35 1.19 0.74 0.45

C-SAED 0.3 1.08 0.69 0.39 1.01 0.67 0.34 1.16 0.75 0.41
(λ = 0.01) 0.7 1.06 0.70 0.36 1.01 0.69 0.32 1.14 0.76 0.38

1 1.00 0.86 0.14 0.98 0.85 0.13 1.02 0.89 0.13

Figure 4 shows the class-wise error rates. We omit “Prob0.9” which yielded high
ERs, and “MT18” whose original paper does not report its detailed error rates. Some
conclusions can be drawn. First, the parameter λ and α effect on the INS and the DEL
errors—for example, when λ = 0.01, large α (α = 1.0) gives lower INS but higher DEL
compared with small α (α = 0.3). The reason may be that large α gives low weights on the
samples with low confidences, which makes the predicted events accurate but may fail
with difficult samples. Second, the proposed 2-stage scheme outperforms the baseline, MT-
SAED, and self-training on most events. Third, different events have different difficulties
in classification. For example, event alarm/bell/ringing, electric shaver/toothbrush, and
vacuum cleaner have relatively lower ERs, while event frying gives the highest ER.
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Figure 4. Results of different models for each event on the DCASE2019 dataset.
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4.3. The Effect of Hyperparameter λ

As mentioned in [24], parameter λ greatly influences the threshold and distinctive-
ness of confidence. We adjusted λ in a small range to explore the effect of λ. Figure 5
illustrates that all MT-AED models trained with λ ∈ [0.01, 0.1] could generate confidence
that is positively related to the accuracy of predictions. However, if λ is relatively large,
the confidence values are aggregated. If λ is relatively small, a majority of confidence
estimates possess the similar accuracy. Polyline y = x represents the ideal discrimination
of prediction quality measurement. Therefore, the smaller the area between the curve and
the Polyline y = x, the better the discrimination of confidence. In our experiment, curve
λ = 0.03 brought out the best distinction.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

=0.01
=0.03
=0.05
=0.07
=0.1

y=x

Figure 5. The accuracy of frame-level predictions changes with confidence estimates and probabilities.
The values of parameter λ influence confidence-accuracy curves.

Table 1 and Figure 5 demonstrate that a suitable combination of parameters λ and α
can produce more balanced detection results. INS errors were reduced under the premise
of small fluctuations in DEL errors. As an example, when λ = 0.1, α = 1, or λ = 0.01,
α = 0.7, the total number of events correctly predicted did not reduce while ER decreased
significantly. These combinations increase the lower bound of confidence values, ensure
the information contribution of samples with low confidence, and preserve the distinction
of confidence.

In practice, the joint usage of λ and α is recommended to obey the following rules.
First, λ is expected from 0.01 to 0.1; α can be set from 0.3 to 1.0. Second, a small λ
usually corresponds to a relative small α. The reason might be that a small λ leads to a
broader distribution of confidence and a small α forces the model to pay attention to more
samples. The averaging of different models with different combinations can bring further
improvement. Third, under the condition of fixed λ, a larger α is a better choice when the
task is simple or the model has demonstrated relatively high performance.

5. Conclusions

In this paper, we propose a C-SAED framework with a confidence learning scheme.
Our experiments verified that the proper combination of self-training and mean teacher
method is better than employing mean teacher alone. Furthermore, the multi-task structure
with a joint learning strategy can generate more reliable confidence values for classification
probabilities. The confidence estimates are used as weights to optimize the self-training
retraining process, which creates a further improvement. The C-SAED framework can also
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be extended to other semi-supervised tasks. In addition, this paper introduces a confidence
training method to SAED, but confidence can also be applied in other scenes, such as
optimizing focal loss.
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