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Abstract: Recently, deep learning has achieved breakthroughs in hyperspectral image (HSI) clas-
sification. Deep-learning-based classifiers require a large number of labeled samples for training
to provide excellent performance. However, the availability of labeled data is limited due to the
significant human resources and time costs of labeling hyperspectral data. Unsupervised learning for
hyperspectral image classification has thus received increasing attention. In this paper, we propose a
novel unsupervised framework based on a contrastive learning method and a transformer model
for hyperspectral image classification. The experimental results prove that our model can efficiently
extract hyperspectral image features in unsupervised situations.

Keywords: deep learning; transformer; unsupervised hyperspectral image classification; contrastive
learning

1. Introduction

Compared with general images, hyperspectral images can provide more abundant
pixel-level spectral information, since they contain hundreds of spectral bands. This enables
the pixel-level classification of hyperspectral images, which then led to hyperspectral image
classification becoming a hot topic in remote sensing. Nowadays, it is widely used in many
fields, such as crop estimation [1], soil salinity estimation [2], and mineral mapping [3].

Recently, deep learning has performed remarkably in computer vision tasks, such
as image classification [4,5], facial recognition [6], and objection detection [7]. Inspired
by this, many deep-learning-based methods for hyperspectral image classification have
been proposed, such as deep recurrent neural networks (RNNs) [8], three-dimensional
convolutional neural networks (3DCNNs) [9], the deep feature fusion network (DFFN) [10],
and spectral-spatial residual network (SSRN) [11]. With enough labeled training samples,
many deep-learning-based methods can provide high classification accuracy.

Similar to computer vision, most of the state-of-the-art deep-learning-based methods
are based on CNN architectures because CNN has achieved the best performance in these
two areas. However, unlike computer vision, the state-of-the-art CNN for hyperspectral
image classification is based on a 3D convolutional architecture instead of a 2D convo-
lutional architecture. The 3D CNNs require much more computational resources, and
researchers have spent much time designing efficient 3D CNN models for hyperspectral
image classification. Additionally, CNNs fail to capture the sequence attributes of spectral
signatures well, particularly middle- and long-term dependencies.

The redundant spectral information of hyperspectral images leads to high costs of
hyperspectral data acquisition. Labeling a large number of hyperspectral data is unrealistic,
requiring extensive human resources. Unsupervised learning methods can work without
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labels, so this challenge can be solved. Thus, research on unsupervised hyperspectral image
classification is urgently required.

Unsupervised learning aims to extract information from data without labels. Accord-
ing to the mainstream view, unsupervised methods can be divided into representative
learning and discriminative learning. Most of the representative learning methods are
based on two models: an autoencoder [12] and generative adversarial network (GAN) [13].
These two models both aim to map the training data to a certain distribution mode. Ac-
cording to their distribution, we may obtain fake samples that are similar to real data
or useful feature extractors. For hyperspectral image classification, the stacked sparse
autoencoder (SSAE) extracts sparse spectral features and multiscale spatial features using
the autoencoder [14]. Additionally, GAN [15] was used for hyperspectral image classi-
fication. Furthermore, the 3D convolutional autoencoder (3DCAE) [16], GAN-assisted
CapsNet (TripleGAN) [17], and many other representative-learning-based models have
been proposed for hyperspectral image classification.

Except for representative learning, discriminative learning is a method for collecting
information from unlabeled data. Contrastive learning is a popular discriminative learning
method. Unlike representative learning, contrastive learning aims to discriminate different
data instead of obtaining the data distribution feature. It requires much less computational
resources than the representative learning method. After being trained by comparing
different samples, the discriminator can be applied to downstream tasks, such as image
recognition [18] and object detection [19].

Contrastive learning has achieved great success in the computer vision field. How-
ever, some challenges remain when applying contrastive learning to hyperspectral image
classification. Firstly, the data augmentation methods commonly used in the computer
vision field are not applicable to the hyperspectral image classification field. For example,
color distortion is a typical data augmentation method used for general images. However,
when used for hyperspectral image classification, color distortion disrupts the spectral
information in hyperspectral images. Therefore, this method is unsuitable for hyperspectral
image augmentation. Secondly, the models used in contrastive learning, mostly 2D CNNs,
for computer vision tasks are not applicable in hyperspectral image processing. CNNs are
not able to mine the sequence attributes of spectral signatures well.

To introduce contrastive learning to hyperspectral image classification, we handled
these two problems in this study. Firstly, we devised a useful data augmentation method
for hyperspectral image classification. Secondly, since 3D CNNs require much more com-
putational resources than 2D CNNs, we used a transformer model instead of convolutional
neural networks as the feature extractor. The transformer architecture is well-designed
for effectively processing and analyzing sequential data. We only adjusted the model
parameters, which had little impact on the model computation.

In this article, we introduce bootstrap your own latent (BYOL), a state-of-the-art
contrastive learning framework, to hyperspectral image classification using a transformer
architecture. After training under the unsupervised condition, the transformer model
can extract features from the input hyperspectral image. We use a SVM model to obtain
excellent classification performance with a small percentage of features and corresponding
labels for training. The contributions of our work are as follows:

1. We introduce contrastive learning to extract hyperspectral image features in the
unsupervised situation, which removes the manual labeling costs. As many con-
trastive methods rely on large amounts of negative samples to work well, which
greatly reduces the training efficiency, we use BYOL as the contrastive learning frame-
work. BYOL avoids the need for negative examples. Moreover, we adjust the data
augmentation methods to make it suitable for hyperspectral image classification.

2. We introduce a vision transformer into unsupervised hyperspectral image classifi-
cation. The transformer model does not have any convolution or recurrent units.
The 3D CNNs for hyperspectral image classification need much more computational
resources than 2D CNNs for computer vision, and fail to process sequential data well.
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We adjust the transformer model parameters to ensure the transformer models are
suitable for hyperspectral image processing. Additionally, the transformer used for
common computer vision contains at least 12 layers. We apply a two-layer trans-
former model in this paper, which can reduce the model size for better computational
efficiency. The 12-layer transformer for computer vision has 86 million parameters,
while our model has much fewer parameters.

3. We combine a contrastive learning method and a transformer model as the framework
of our unsupervised model. Our proposed model performs better than traditional
representative methods in hyperspectral image classification.

We organize the remainder of the paper as follows: A brief overview of the contrastive
learning and transformer model is presented in Section 2. Our proposed model is intro-
duced in Section 3. In Section 4, we provide experimental descriptions and result analysis.
Finally, the conclusions are described in Section 5.

2. Related Work
2.1. Contrastive Learning

Contrastive learning has achieved unprecedented performance in computer vision
tasks. This type of unsupervised approach differs from that of representative learning,
which executes based on the augmented views of the sample, thus avoiding the compu-
tational cost of generating fake samples. Several contrastive learning methods have been
proposed, such as similar contrastive learning (SimCLR) [20], momentum contrast for
unsupervised visual representation learning (MoCo) [21], and bootstrap your own latent
(BYOL) [22].

Among these three methods, both SimCLR and MoCo not only depend on positive
pairs but also negative pairs, while obtaining the negative pairs is often a time-consuming
process. BYOL, on the contrary, does not need negative pairs; thus, to date, it has achieved
the best training efficiency.

The BYOL architecture is shown in Figure 1. BYOL aims to minimize the similarity
loss between q(z) and sg(z′). It uses two neural networks: the online and target networks.
These two networks have the same architecture: an encoder, a projector, and a predictor,
but different weights. After training, only f remains and it can be used for downstream
tasks. A detailed introduction of BYOL is presented in Section 3.

Figure 1. The architecture of the BYOL method.

2.2. Transformer

The transformer model was originally proposed for natural language processing (NLP)
tasks in 2017 [23], and has recently been used for image classification , named “vision
transformer” [24]. The transformer model we used in the experiments is shown in Figure 2.
We did not make any changes to the transformer model. The transformer model consists of
several identical layers. Each layer is composed of two sub-layers, namely, a multi-headed
self-attentive mechanism and a fully connected feed-forward network. Each sub-layer has
a residual connection followed by layer normalization. Thus, the final output of each sub-
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layer can be formulated as LayerNorm(x + SubLayer(x)), where SubLayer(x) is the function of
the sub-layer. The multi-head self-attention is defined as:

MultiHead (Q, K, V) = concat( head 1, · · · , head h)WO, (1)

where head i = Attention
(

QWQ
i , KWK

i , VWV
i

)
, WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk , WV

i ∈
Rdmodel×dv , and WO ∈ Rh×dv×dmodel are parameter matrices. The attention here is formulated as:

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V, (2)

where Q and K of dimension dk and V of dimension dv are three learnable weight matrices.

Figure 2. The structure of the transformer model used in the experiments. We used a two-layer transformer. The input
was 27 × 27× band. Then, the input image was split into 3 × 3× band patches and reshaped into 1D sequences. Next, we
obtained the embedding of each sequence via a fully connected layer. Finally, we fed the embeddings to the transformer
model after adding the position embeddings to the patch embeddings and an extra learnable embedding.

3. Proposed Method

Our proposed framework, as shown in Figure 3, consists of two important parts: a
contrastive learning method and a transformer model. These two parts have recently
achieved satisfactory results in general image classification. However, these methods
cannot be used directly to process hyperspectral images because the spectral information in
hyperspectral images cannot be disrupted. Based on the characteristics of the hyperspectral
image, we modified the augmentation methods in contrastive learning to make it applicable
to hyperspectral images.

Here, we chose BYOL as the contrastive learning method. BYOL uses two neural
networks, online and target networks, which learn by interacting with each other. Both
neural networks consist of three parts: an encoder f, a projector g, and a predictor q. The
online and target networks have the same structure but use different weights. sg is the
stop-gradient. First, the online network outputs a representation y, a projection z, and
a prediction q(z) from the weakly augmented view of the hyperspectral image, and the
target network outputs y′ and the target projection z′ from the strongly augmented view of
the hyperspectral image. Second, the loss between the L2-normalized predictions q(z) and
target projections z′ is calculated:

Lθ,ξ , ||q(z)− z′||22 = 2− 2 · 〈q(z), z′〉
||q(z)||2 · ||z′||2

, (3)

where 〈·, ·〉 is the inner product. To symmetrize the loss Lθ,ξ , L′θ,ξ is computed by feeding
the strongly augmented view of the hyperspectral image into the online network and the
weakly augmented view of the hyperspectral image into the target network. The final loss
is formulated as LBYOL

θ,ξ = Lθ,ξ + L′θ,ξ . At each training step, BYOL minimizes the loss with
respect to θ only, but ξ is a slowly moving exponential average of θ: ξ ← τξ + (1− τ)θ,
where τ is a target decay rate.
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Figure 3. The overall architecture of our proposed framework.

It was empirically shown that the combination of adding the predictor to the online
network and using the moving average of the online network parameters as the target
network encourages encoding more and more information within the online projection
and avoids collapsed solutions, such as constant representations. In this study, we re-
duced the model size for computational efficiency. Additionally, we applied a new image
augmentation method for hyperspectral images.

The two views of the hyperspectral image used in BYOL are differently augmented
images. In our model, we take the horizontal flip or vertical flip as the preliminary aug-
mentation method, and different random erasures after that as the different augmentation
method. Random erasure can be divided into two types: random rectangular area erasure
and random point erasure; neither of them erase the center point, as shown in Figure 4. The
procedure of selecting the rectangle area and erasing this area is presented in Algorithm 1,
and the procedure of selecting the points and erasing these points is shown in Algorithm 2.

Figure 4. The image augmentation methods of our proposed framework.

Algorithm 1 Random rectangular area erasure procedure
Input: Input image I;
Output: Erased image I∗.
1 Generate a matrix the same size as the input image I using 1.
2 Select a random sub-matrix in this matrix and change the elements inside to 0.
3 If the center point of the matrix is in the sub-matrix, change the element of that point to 1.
4 Multiply the image by this matrix to obtain the erased image I∗.
5 Return the erased image I∗.
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Algorithm 2 Random point erasure procedure
Input: Input image I;
Output: Erased image I∗.
1 Generate a random matrix the same size as the image I using 0 and 1 with the same
probability.
2 If the center point of the matrix is 0, change the element of that point to 1.
3 Multiply the image by this matrix to obtain the erased image I∗.
4 Return the erased image I∗.

Furthermore, we employed the transformer model as the encoder instead of a CNN.
In a transformer model, the input image is split into fixed-size patches and then reshaped
into 1D sequences. Next, a fully connected layer is used to obtain the embedding of each
sequence. After adding the position embedding to these sequences and an extra learnable
sequence, the sequences are fed to a two-layer transformer encoder. After getting the
output sequences, the first one is used for further process. Unlike the vision transformer,
we remove the MLP head and apply a small patch size. Additionally, our proposed model
consists many fewer layers than the vision transformer, which consists of at least 12 layers.
As shown in Figure 2, to reduce the computational resource consumption, we only use a
two-layer model. The 12-layer transformer for computer vision has 86 million parameters,
whereas our model has many fewer parameters, as shown in Table 1.

After training, we can use the two-layer transformer model to obtain the features of
an HSI image under the unsupervised condition. Then, based on the features, with a small
proportion of the label information, a simple SVM can achieve high accuracy.

Table 1. The parameters of our transformer.

Layers Dim Heads MLP Dim Head Dim Parameters

2 256 16 512 32 1,612,288 (SV&UP)
1,646,848 (IP)

4. Experimental Descriptions and Result Analysis

In this section, the experimental descriptions and result analysis are presented.

4.1. Datasets’ Description

The experiments were conducted on three publicly available datasets, Indian Pines
(IP), University of Pavia (UP), and Salinas Scene (SV), as indicated in Figure 5.

The IP dataset was collected by the AVIRIS sensor in Northwestern Indiana. The
scene size is 145× 145. After removing the bands absorbed by water, the number of bands
reduces to 200. The 10,249 labeled pixels are designed into 16 classes.

The UP scene was gathered by the ROSIS sensor over Pavia, Northern Italy. UP has
610× 610 pixels. Each pixel consists of 103 spectral bands. The 42,776 labeled pixels are
divided into nine categories.

The SV image was acquired by the AVIRIS sensor over Salinas Valley, California. The
image size is 512× 217 with 204 available spectral bands. The 54,129 labeled pixels are
partitioned into 16 categories.
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(a)

(b)

(c)

Figure 5. (a–c) The false-color image and ground-truth map of the IP, UP, and SV datasets.

4.2. Experimental Parameters

The parameters of our model are shown in Tables 1 and 2.
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Table 2. The structures of our projector and predictor.

Projector Predictor

Layer (Type) Output
Shape Parameters Layer (Type) Output

Shape Parameters

Linear [−1, 1024] 263,168 Linear [−1, 1024] 66,560
BatchNorm1d [−1, 1024] 2048 BatchNorm1d [−1, 1024] 2048

ReLU [−1, 1024] 0 ReLU [−1, 1024] 0
Linear [−1, 64] 65,600 Linear [−1, 64] 65,600

All experiments were performed on a Titan-RTX GPU. The model was implemented
in Python using the Pytorch framework. We adopted a traditional principal component
analysis (PCA) to remove the spectral redundancy. The input size is 27× 27× 30 for IP
and 27× 27× 15 for UP and SV. We set the patch size to 3 and the batch size to 256. The
target decay rate was 0.99. The learning rate was set to 0.003. We trained the transformer
model for 20 epochs, and chose the model with the least loss for the test.

For IP and UP, the proportion of samples for training was set to 10%. For SV, we
selected 5% of the samples for training.

4.3. Result Analysis

In this study, we used the overall accuracy (OA) and average accuracy (AA) as
performance evaluation metrics. OA is the proportion of correctly classified samples to
all samples; AA represents the average of classification accuracy for each category. We
adopted six other methods as baselines. These models contain three supervised methods:
linear discriminant analysis (LDA) [25], deep convolutional neural network (1D-CNN) [26],
and supervised deep feature extraction (S-CNN) [27]; and three unsupervised methods:
3D convolutional autoencoder(3DCAE) [16], adversarial autoencoder [28], and variational
autoencoder [28].

The classification results with IP are shown in Table 3 and Figure 6. These results
show that our model achieves the best performance with IP. As IP is more difficult to be
classified among these three public datasets, we conclude that our model is superior to the
others. The classification results with SV are presented in Table 4 and Figure 7. Similar
to IP, our proposed method performed the best in 10 classes and approached the best
performance in the other six classes. However, according to the results in UP demonstrated
in Table 5 and Figure 8, the AA of our model is second only to the AA of AAE among all
seven models. We presume this is due to the small number of training samples in the last
category. Considering the overall performance, our findings demonstrate the feasibility of
deep-learning-based hyperspectral image classification without convolution. Based on the
above experimental results, the transformer is a promising model for hyperspectral image
classification that warrants further investigation.

(a) (b) (c)

Figure 6. The classification maps of IP. (a–c) Classification results of AAE, VAE, and our proposed
model, respectively.
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Table 3. Classification results of different models in IP. Some of the data in the table were obtained
from [16]. The best values in each row are bolded.

Class Supervised Feature Extraction Unsupervised Feature Extraction

LDA 1D-CNN S-CNN 3DCAE AAE VAE Proposed

1 58.54 43.33 83.33 90.48 100.00 100.00 97.05
2 69.88 73.13 81.41 92.49 81.63 78.78 96.73
3 65.86 65.52 74.02 90.37 95.27 92.37 95.34
4 73.71 51.31 71.49 86.90 99.22 97.34 98.97
5 90.32 87.70 90.11 94.25 95.17 93.87 94.82
6 92.09 95.10 94.06 97.07 98.73 98.27 93.85
7 96.00 56.92 84.61 91.26 96.00 98.67 95.00
8 98.14 96.64 98.37 97.79 99.84 99.77 98.85
9 11.11 28.89 33.33 75.91 96.30 98.15 88.88
10 73.80 75.12 86.05 87.34 87.01 78.86 95.65
11 55.41 83.49 82.98 90.24 89.08 81.75 98.56
12 76.92 67.55 73.40 95.76 93.51 90.64 94.31
13 91.30 96.86 87.02 97.49 98.56 98.56 89.37
14 93.32 96.51 94.38 96.03 95.73 93.24 98.44
15 67.72 39.08 75.57 90.48 97.31 97.02 99.70
16 90.36 89.40 79.76 98.82 98.02 98.81 94.73

AA(%) 76.89 71.66 84.44 92.04 95.09 93.51 95.64
OA(%) 76.88 79.66 80.72 92.35 91.80 88.03 96.78

Table 4. Classification results of different models in SV. Some of the data in the table were obtained
from [16]. The best values in each row are bolded.

Class Supervised Feature Extraction Unsupervised Feature Extraction

LDA 1D-CNN S-CNN 3DCAE AAE VAE Proposed

1 99.16 97.98 99.55 100.00 99.98 99.74 100.00
2 99.94 99.25 99.43 99.29 100.00 99.79 100.00
3 99.79 94.43 98.81 97.13 100.00 100.00 100.00
4 99.77 99.42 97.45 97.91 99.09 99.57 98.17
5 98.98 96.60 97.96 98.26 99.42 99.71 98.55
6 99.89 99.51 99.83 99.98 99.97 99.86 99.49
7 99.97 99.27 99.59 99.64 99.93 99.96 100.00
8 81.84 86.79 94.40 91.58 91.21 86.91 100.00
9 99.90 99.08 98.85 99.28 99.69 99.99 99.83

10 96.31 93.71 97.35 96.65 98.46 96.54 100.00
11 99.61 94.55 97.71 97.74 99.57 100.00 98.92
12 99.67 99.59 98.73 98.84 100.00 99.44 100.00
13 99.20 97.50 96.72 99.26 99.89 97.24 98.97
14 96.56 94.08 95.22 97.49 99.08 96.49 100.00
15 73.60 66.52 95.61 87.85 93.69 87.90 99.43
16 98.48 97.48 99.44 98.34 99.73 99.61 100.00

AA(%) 96.42 94.73 97.39 97.45 98.73 97.67 99.58
OA(%) 92.18 91.30 97.92 95.81 97.10 95.23 99.71
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Table 5. Classification results of different models in UP. Some of the data in the table were obtained
from [16]. The best values in each row are bolded.

Class Supervised Feature Extraction Unsupervised Feature Extraction

LDA 1D-CNN S-CNN 3DCAE AAE VAE Proposed

1 78.41 90.93 95.40 95.21 95.39 81.31 98.19
2 83.69 96.94 97.31 96.06 98.96 97.65 99.86
3 73.02 69.43 81.21 91.32 97.49 91.00 98.87
4 93.68 90.32 95.83 98.28 96.94 94.79 96.99
5 100.00 99.44 99.91 95.55 99.94 99.94 96.75
6 88.51 73.69 95.29 95.30 99.29 99.91 100
7 85.75 83.42 87.05 95.14 100.00 99.42 96.32
8 74.49 83.65 87.35 91.38 97.90 94.77 98.32
9 99.11 98.23 95.66 99.96 96.32 88.62 84.04

AA(%) 86.29 87.34 94.75 95.36 98.03 94.16 96.59
OA(%) 83.75 89.99 92.78 95.39 98.14 94.53 98.67

(a) (b) (c)

Figure 7. The classification maps of SV. (a–c) Classification results of AAE, VAE, and our proposed
model, respectively.

Even though our model works without label information, it still outperformed the
supervised methods. Additionally, compared to the LDA results, we conclude that the
deep-learning-based model is superior to the machine-learning-based method.

According to the above experimental results and analysis, we conclude that our
model can effectively extract the features under unsupervised conditions. It is suitable
for addressing the challenge posed by the lack of labeling. The model does not contain
convolutional operations. Our findings prove that convolutional operations are not neces-
sary for hyperspectral image classification. Additionally, 2D convolutional networks for
traditional computer vision are not applicable to hyperspectral image classification. A 3D
convolutional network can provide a better hyperspectral image classification result than a
2D convolutional network. The transformer model we used in the experiments is the same
as the transformer model used for traditional computer vision tasks in terms of model
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structure. We only changed the model size, which demonstrates that computer vision
models have huge potential for hyperspectral image classification. The other important
part of our method, contrastive learning, relies on data augmentation for the input image.
Because some data argumentation methods in traditional computer vision are unsuitable
for hyperspectral images, we used image flip, and deleting spectral information of some
points to augment the data. With a small number of data augmentation methods, the
contrastive learning method can perform much better than the representative learning
method. With more data augmentation methods, the contrastive learning method may be
more accurate for hyperspectral image classification.

(a) (b) (c)

Figure 8. The classification maps of UP. (a–c) Classification results of AAE, VAE, and our proposed
model, respectively.

5. Conclusions

In this paper, we proposed an unsupervised framework based on a transformer
and contrastive learning. Both methods can be used to reduce computational resource
consumption. The experiments with three publicly available data sets demonstrated the
more accurate performance of the proposed method compared to other methods. As
the transformer for the visual tasks and contrastive learning method are widely used in
computer vision, we think our proposed method has great potential for hyperspectral
image processing.
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