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Abstract: While the robotics techniques have not developed to full automation, robot following is
common and crucial in robotic applications to reduce the need for dedicated teleoperation. To achieve
this task, the target must first be robustly and consistently perceived. In this paper, a robust visual
tracking approach is proposed. The approach adopts a scene analysis module (SAM) to identify the
real target and similar distractors, leveraging statistical characteristics of cross-correlation responses.
Positive templates are collected based on the tracking confidence constructed by the SAM, and
negative templates are gathered by the recognized distractors. Based on the collected templates,
response fusion is performed. As a result, the responses of the target are enhanced and the false
responses are suppressed, leading to robust tracking results. The proposed approach is validated on
an outdoor robot-person following dataset and a collection of public person tracking datasets. The
results show that our approach achieved state-of-the-art tracking performance in terms of both the
robustness and AUC score.

Keywords: person following; robust visual tracking; tracking reliability; response fusion; unmanned
ground vehicle

1. Introduction

While the robotics techniques have not led to full automation, human–robot collab-
oration scenarios have arisen in diverse domains, such as manufacturing, health care,
and entertainment. The major advantage of adopting person-following robots is that it
reduces the demand for dedicated teleoperation. In all person-following applications,
the robustness of recognizing the target to follow is the most important aspect of the
following system. The perception sensors of the person-following system include a camera,
laser range-finder, LiDAR, infrared and thermal sensors, and sonar. The RGB camera is
widely used for its rich information, compactness, and cost-effectiveness.

To perform the following tasks, the following robot must perceive the relative position
of the target in its operating environment. This can be considered as a tracking task. There
are many situations in which the robot may lose track in a dynamic environment, e.g., occlu-
sion, illumination variation, scale variation, deformation, etc. Therefore, the target must be
tracked in real time without critical failures. The attempts to use visual tracking techniques
have flourished over the past decade. In previous approaches, tracking algorithms detected
specific features in the input feature space [1]. Schlegel et al. [2] and Hu et al. [3] developed
tracking methods in the RGB image space. Shin et al. [4] presented a free tracking algo-
rithm model using optical flow. Koide et al. [5] tracked people using color, height, and gait
features. Satake et al. [6] established the distance dependence appearance model using the
SIFT feature. Kwolek [7] tracked targets using a color histogram. Satake [8] adopted depth
histogram features to fit with support vector machines for robust tracking. Chen et al. [9]
deployed the Ada-boosting algorithm to person tracking. Wang et al. [10] adopted the
kernelized correlation filter (KCF) as the tracking module in a following mission. Using
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traditional features can achieve person tracking under certain circumstances but cannot
work well under long-term and complex environments.

Recently, Siamese-based approaches that adopt discriminative correlation of deep
features have been proposed to address these issues. In Siamese-based trackers, it is
common (some stated in the papers but not implemented in the released code) to only
use the first frame as the template to grant template reliability, which achieved good
performance in short-term datasets such as OTB [11] and VOT [12].

However, in experiments, using a fixed template can perform well for a certain
duration, but over time, the variations in appearance, illumination, scale, deformation,
etc., reduce the intensity of the responses to the tracked target, and eventually, tracking
is lost. The intuitive solution to this issue is to continue incorporating the latest target
information, but Zhang et al. [13] proved that the tracking performance only worsens if a
non-discriminative template update strategy is applied throughout the tracking process.
We think the reason for that is the introduction of false-positive templates. Therefore,
a tracking reliability criterion is needed to safely incorporate new templates.

Providing new target information only enhances the responses of target tracking,
but false responses are still caused by similar objects. As illustrated in the ground truth
score map row of Figure 1, even though the people have different appearances, they receive
high responses in the score map. When the real tracking target crosses or is occluded by
these objects, the tracking is easily lost with these interferences. It is also important to
eliminate false responses.

Fused 

Score Map

Ground Truth 

Score Map

Negative 

Score Map 1

Negative 

Score Map 2

Figure 1. Illustration of our score fusion procedure. The ground truth score map not only responds to the real target but also
raises the responses in many other areas where the tracker is easily misled. After implementing fusion, the unrelated
responses are sufficiently suppressed.

Motivated by the aforementioned analysis, we propose a robust tracking approach
to enable robot person-following tasks. A scene analysis module (SAM) is proposed that
leverages the statistical characteristics of the cross-correlation responses. The density
distribution of the responses is estimated using a Gaussian mixture model. Based on the
mutual information of the mixture components, the responses are segmented into instance-
aware clusters. As a result, a tracking reliability criterion is proposed based on the size of
the center cluster, and distractors that produce false responses are extracted as negative
templates. By collecting the positive and negative templates, a score fusion strategy is
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applied to enhance the responses of target-tracking and to eliminate false responses, leading
to the robust person tracking.

Our main contributions can be summarized as follows: (1) We proposed a tracking
reliability criterion based on the variance of center responses. With the criterion, the most
recent reliable results can be safely extracted as positive templates, avoiding template pollu-
tion. (2) We perform a score fusion strategy that generates the final score map by combining
the responses of ground truth template, positive templates, and negative templates. As a
result, the target responses are enhanced and distractors are suppressed and eliminated,
reducing the chance of incorrect positioning. (3) The proposed method was incorporated
in two state-of-the-art approaches, SiamRPN [14] and SiamRPN++ [15], and validated
on person-following-based datasets as well as public datasets. The results show that our
approaches outperform their base approaches and rank high when competing with other
state-of-the-art approaches.

2. Related Work

The tracking performance using traditional features is severely restricted when track-
ing scenarios are complex. Distinct from handcrafted features, the emergence of deep-
learning-based approaches has provided a significant increase in performance. Tracking
algorithms based on deep feature representations have achieved state-of-the-art accuracy.

Although these techniques perform well on benchmarks, they often suffer from
tracking drift caused by the accumulation of errors. Recently, derived from the idea of
tracking by detection, trackers based on the Siamese network have received wide attention.
Siamese-based trackers formulate the tracking problem as a similarity learning function
and predict the object location by comparing the similarity between the template image
and the search image. The Siamese networks are trained offline on large-scale image pairs.

The pioneering method SiamFC [16] uses the Siamese network as a feature extractor
and introduces a cross-correlation layer to generate a single channel response map. The cor-
relation can be seen as a similarity calculation, and the response map reflects the similarity
between the template and the search region. Following this similarity-learning work,
Li et al. propose SiamRPN [14], which enhances the tracking performance by integrating a
region proposal network (RPN) into SiamFC. The RPN has two branches: one classification
branch in charge of scoring the probability, and the other, a regression branch, is responsible
for estimating the coordinates of bounding boxes. Based on SiamRPN, Da-SiamRPN [17]
addresses the problem of the imbalance between non-semantic negative examples and
semantic distractors of training data through data augmentation. UpdateNet [13] further
improves upon DaSiamRPN by incorporating a small network that learns the appearance
change of tracked targets. SiamDW [18] takes advantage of deeper neural networks by
eliminating the negative impact of padding. SiamRPN++ [15] further improves upon
the object-tracking performance using deeper networks and multi-layer fusion, achiev-
ing better accuracy while maintaining fair speed. To eliminate the negative effects of
anchors, SiamCAR [19] adopts two subnetworks for feature extraction and regression re-
spectively and proposes an anchor-free framework; SiamBAN [20] directly classifies objects
and regresses bounding boxes taking advantage of a unified fully convolutional network.
The avoidance of setting pre-defined anchors can avoid the tricky hyper-parameter tuning,
easing the effect of human intervention. To solve the problem that the size of the object
feature region needs to be determined in advance, and the cross-correlation method either
retains a lot of unfavorable background information or loses a lot of foreground infor-
mation, SiamGAT [21] proposes a Graph Attention Module (GAM) to establish a partial
correspondence between an object and a search region as a complete bipartite graph.

In long-term tracking, robustness is a common weak point. Siam R-CNN [22] has a
two-stage Siamese re-detection architecture and re-detects images by comparing region
proposals with the template region. LTMU [23] proposed a meta-updater that guides
the tracker update, forming a long-term tracking framework along with an online local
tracker, an online verifier, and a SiamRPN-based re-detector. These methods significantly
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improved tracking precision but have a low tracking frame rate even in high-end desktops.
Wang et al. [24] presented a long-term target tracking method by combining adaptive
discriminative correlation filters with a support vector machine-based component. Siam-
RM [25] has an object-tracking framework that uses the Siamese network and adopts the
Siamese instance search tracker as the re-detection network. Zhang et al. [26] deployed
local–global multiple correlation filters for tracking and a Kalman filter re-detection model
for re-detection when the correlation filters are unreliable. Methods such as online updater,
re-detection module, hierarchical search, and multi-stage framework are commonly used to
handle tracking robustness issues in long-term tracking. However, the introduced modules
inevitably deteriorate the real-time performance of the approaches.

In this paper, we use SiamsesRPN-based trackers as the front end of the following
system. For the reason that using the first frame as the template may be easily impacted
and lose the target, we adopt a Scene Analysis Module that can safely produce positive
and negative targets in the tracking scenes. By fusing the scores of the templates, the target
responses are enhanced and noises are suppressed, leading to robust tracking.

3. Method
3.1. Framework

Figure 2 presents the flow chart of our approach. The base tracker part is the com-
mon steps of Siamese-based trackers where for each frame; the features of the template
image and search image are extracted using a shared-weight deep convolutional backbone.
The two extracted features then cross-correlate and produce a score map that consists of
the probabilities of similarity between the template and the search image. Usually, Siamese-
based trackers employ non-maximum suppression to the scores and choose the correspond-
ing regressed bounding box with the highest value as the tracking result, but these methods
do not work well in some situations such as occlusion and appearance change.

Ground Truth 
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Image Sequence
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Scores
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e
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Templates

Reliability

Estimation

Negative

Templates

fgt

fi

Scene

Analysis

Module

Fusion

True

Negative

Scores

Positive

Scores

Final

Scores

Base Tracker Proposed

Figure 2. The framework of our approach. The base tracker part is the common framework of Siamese-based trackers.
For each frame, the features of the template image and the search image are extracted using a shared-weight network. Then,
a score map is generated by the cross-correlation of the two features. To further exploit the information from the score
map, we take the scores as a whole and process them using our scene analysis module. The objects with highly similar
responses are collected as negative templates. Next, we estimate the tracking reliability leveraging the outcomes of the SAM
and collect confident tracking results as positive templates. Finally, the scores of the ground truth, negative, and positive are
fused and the tracking box is regressed from the fused score map.
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To improve tracking robustness, we take the scores as a whole and further exploit the
information provided by the score map using our scene analysis module (SAM). The SAM
analyzes the score map by estimating the score densities and segmenting the scores into
instance-aware clusters. The SAM provides two contributions: first, a tracking reliability
criterion is proposed using the statistical characteristics of the score distribution. If the
tracking is determined to be reliable, the tracking target is extracted and collected as
positive templates. Second, because of the limitation of the backbone networks, objects
that are similar to the tracking target also respond with high values in the score map,
which strongly interferes with tracking accuracy. Since the SAM segments scores into
instance-aware clusters and each cluster represents a potential tracking target, the targets
except for those being tracked are determined as false positive targets and collected as
negative templates.

Finally, the score maps of the ground truth and negative and positive templates are
fused together and the tracking box is regressed from the fused score map. The positive
templates provide more recent information, enhancing the responses of the target-tracking.
The negative templates are in charge of suppressing the interference due to similar objects.

3.2. Scene Analysis Module

In Siamese trackers, only the maximum value of the responses is used to predict
the result for the candidate target position. However, the outcome may be unreliable
for complicated scenes, such as out-of-view and occlusion situations. Nevertheless,
the SiamRPN-based trackers provide discriminative responses on foregrounds and back-
grounds (Figure 3a). After the generation of the score map, we take the map as a whole
and analyze the statistical characteristics of the response distribution. The estimated distri-
bution is further segmented into instance-aware clusters, where each cluster corresponds
to a potential object that is similar to the tracked target. The distribution variance of the
objects and their bounding boxes are used to establish a tracking confidence criterion and
fit false positive objects.

(a) (b) (c) (d)

Figure 3. (a) Score map visualized by a heat map. (b) Score map in three dimensions. (c) Density estimation outcome
of GMM. The GMM components are visualized using ellipses in different colors. (d) Instance segmentation. The GMM
components are further segmented in instance-aware clusters, where each cluster corresponds to a potential object.

3.2.1. Density Estimation

Figure 3a shows a tracking frame and its corresponding responses after cross-correlation.
The tracking frames were obtained from the OTB dataset [11]. The backbone was obtained
from SiamRPN++ [15]. Figure 3b shows the responses in three dimensions. We can see
that with the improvement in training [17] and the [15] network, the responses distribute
densely within the potential tracking targets. Therefore, we take the responses as a distribu-
tion and first sample it using the accept-reject algorithm. Specifically, given the responding
distribution d(x), we select a known probability distribution q(x) and a sufficiently large
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constant m, such that ∀x, we have mq(x) ≥ d(x). Then, we repeatably sample from a
uniform distribution U(0, 1). If the ith sample satisfies

ui ≤
d(xi)

mq(xi)
, (1)

we accept xi as a sample, or reject it otherwise. Figure 3c shows the sampled points from
the score map.

After sampling from the score map, we adopt the Gaussian mixture model (GMM) to
estimate the probability density. The GMM is a parametric probability density function
represented as the sum of Gaussian densities. The representation of GMM is

p(x|Θ) =
C

∑
c=1

ρcN (x|µc, Σc), (2)

where N (x|µ, Σ) is the multivariate Gaussian densities, whose parameter µ ∈ R2, Σ ∈
R2×2 are the mean vector and the covariance matrix. The scalar ρc is the weight of the
Gaussian component.

Since there is no closed-form solution for the GMM, the expectation–maximization
(EM) algorithm [27] is commonly used to find a solution by iteratively maximizing data
likelihood until the average data log-likelihood converges to a threshold. Figure 3c depicts
the fitting outcome of the example image. The components of the GMM are visualized as
different-colored ellipses.

3.2.2. Instance Segmentation

The density of the response map is estimated by the GMM; however, the GMM com-
ponents are not discriminative in instances. Biemann [28] adopted the Chinese whispers
algorithm to solve clustering problems using undirected and weighted graphs, which can
further facilitate segmenting the GMM into instance-aware mixtures.

We define G = (V, E) as a graph with nodes vi ∈ V and weighted edges (vi, vj, wij) ∈
E. The adjacent matrixW of graph G is a square matrix, where the entries wij denote the
weight of the edges between vi and vj. Since the segmentation is conducted on probability
densities, we use Kullback–Leibler divergence (KL divergence) as the metric to set up the
weights of the graph edges.

Given two components f = ρ fN (µ f , Σ f ) and g = ρgN (µg, Σg) of a mixture, according
to the definition, their KL divergence is given by

DKL( f , g) = ρ f

(
DKL

(
N (µ f , Σ f ),N (µg, Σg)

)
+ log

ρ f

ρg

)
, (3)

and a closed-form solution is derived as

DKL

(
N f ,Ng

)
=

1
2

log

∣∣Σg
∣∣∣∣∣Σ f

∣∣∣ − n + tr
(

Σ−1
g Σ f

)
+
(

ug − u f

)T
Σ−1

g

(
ug − u f

)
.


We take the GMM components as the nodes in G. If the KL divergence of two nodes

is greater than a threshold, an edge is established and the reciprocal of its divergence is set
to the corresponding position in the adjacent matrixW . Then, the algorithm iteratively
segments by grouping nodes that have the maximum mutual weights.

Figure 3d presents an example of an outcome of applying instance segmentation.
The GMM components are segmented into four clusters, where each cluster corresponds to
a potential object in Figure 3a.
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3.3. Reliability Estimation

The instance segmentation clusters responses into instance-aware GMM mixtures.
When tracking in reliable circumstances, each object has its own cluster as illustrated in
Figure 3d, and the size of the cluster remains stable. However, when a potential occlusion
occurs, the instance clusters merge together given their small divergence values, resulting
in a large size variation. The upper row of Figure 4 illustrates example scenes before and
after potential occlusion. We define the standard deviation matrix of the ith instance as si,
and σi as the max eigenvalue of si. We introduce a reliability parameter τ:

τ =
max{σi}

0.5 ∗ SIZEscore
, (4)

where SIZEscore is the size of the response map.
Figure 4 shows the values of τ over frames on Girl2 of the OTB dataset. When a

potential occlusion occurs, τ presents a peak. We set a threshold parameter τt. When
τ ≥ τt, it indicates a potential occlusion (see the τ values in frames 50, 70, 100, 120, etc.);
the tracking results are unreliable. Conversely, if τ satisfies τ ≤ τt in Nr successive tracking
frames, the result is considered reliable.

Frame #

Figure 4. The plot of τ values on Girl2 of the OTB dataset (bottom row), the heated score map of potential occlusion
scenes, and corresponding negative templates (top row). In the τ plot, the peaks indicate potential occlusions, leading to an
unreliable tracking result.

3.4. Templates Collection
3.4.1. Positive Templates

In Section 3.3, we proposed a tracking reliability criterion. Based on this criterion, we
can safely extract the latest reliable tracking target as a positive template. We define Npos
as the maximum number of positive templates stored during tracking tasks. The templates
are stored as a queue; if the number of templates exceeds Npos, we remove the top of
the queue.
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3.4.2. Negative Templates

The SAM segments the GMM into instance-aware mixtures. Based on the number
of segmented mixtures, we can infer the number of similar objects in the current tracking
scene; then, except for the tracked target, the bounding boxes of each object are regressed
and the object images are cropped as negative templates. As such, the false-positive
responses can be suppressed in the score map fusion step.

We set Nneg as the maximum number of negative templates stored during tracking
tasks. When a new negative template arrives, the Euclidean distances between the new
template feature and the stored template features are calculated. Then, the template that
has the smallest distance is removed, and the new template is added.

3.5. Score Fusion

Equation (5) describes the score fusion process, where Npos and Nneg are the number
of collected positive templates and negative templates, respectively; fpos and fneg are the
extracted features using the backbone network; and ϕ(·) is the cross-correlation procedure.

Score = ϕ( fgt) +
Npos

∑
i

ϕ( f i
pos)−

Nneg

∑
j

ϕ( f j
neg) (5)

The idea of score fusion is to enhance the responses of target-tracking using positive
templates and to suppress false responses using negative templates. Figure 1 presents
examples of the outcome of our score fusion procedure. Each column is a tracking frame.
The top to the bottom rows illustrate the score map of fusion, ground truth, and two negative
templates, respectively. We see that the ground truth score map not only responds to the
tracked target but also increases responses in many other areas where the tracker is easily
misled. After implementing our fusion, the unrelated responses are sufficiently suppressed.

4. Evaluation

To evaluate the performance of our method, we tested it on two collections of datasets:
the UGV dataset and a public dataset. The UGV dataset includes 17 image sequences of
outdoor person-following tasks recorded by a small unmanned ground vehicle (UGV).
The purpose of the person-following system is to reduce the workload of the teleoperator.
To conduct a more comprehensive evaluation, we further selected 27 image sequences
that involve person tracking from the OTB and UAV [29] datasets. Unlike other popular
public tracking datasets, the sequences of the UAV dataset were captured from an aerial
viewpoint of low-altitude UAVs.

In the experiments, we applied the designed algorithm to two representative Siamese
trackers: SiamRPN and SiamRPN++. SiamRPN adopts AlexNet as the backbone and
takes the feature of the final layer for the correlation. SiamRPN++ uses ResNet50 as
the backbone and outputs features by fusing the outputs of multiple layers. We ap-
plied our framework to these two approaches and observed the performance improve-
ment. The applied networks and pre-trained weights were obtained from https://github.
com/STVIR/pysot (accessed in 20 April 2021). We further applied DaSiamRPN (https:
//github.com/foolwood/DaSiamRPN, accessed in 20 April 2021) and its update-based
variation UpdateNet (https://github.com/zhanglichao/updatenet, accessed in 20 April
2021) for comparisons. Therefore, the SiamRPN and our improvement, SiamRPN++ and
our improvement, and DaSiamRPN and UpdateNet shared weights respectively and can
be seen as three comparing groups.

As the evaluation method, we used one pass evaluation (OPE) [11]. The OPE criterion
scores tracker performance using center location error and the bounding box overlap,
which yield a precision plot and a success plot according to the threshold, respectively.
The success plots are calculated as the percentage of frames with an intersection-over-union
(IOU) overlap exceeding a threshold and scored using the area under the curve (AUC) score.

https://github.com/STVIR/pysot
https://github.com/STVIR/pysot
https://github.com/foolwood/DaSiamRPN
https://github.com/foolwood/DaSiamRPN
https://github.com/zhanglichao/updatenet
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Since our approach provides improvements in terms of robustness instead of localization
accuracy, the precision plots were omitted.

The experiments were conducted on a desktop with an NVIDIA RTX3090 GPU and
an Intel i7 CPU. We set the number of GMM fitting components to six. The KL divergence
threshold of setting adjacent matrix was two. The threshold parameter τt = 0.19, Npos = 2,
Nneg = 3.

4.1. UGV Dataset

The UGV dataset is a self-constructed dataset that contains images from a small un-
manned ground vehicle that performed person-following tasks in outdoor environments.
The robot was following a single-person target in a campus environment under varying
road conditions (e.g., brick roads, cement roads, snowy roads, and grasslands) and illu-
mination conditions (backlight, shadow, dawn, and night). The vehicle performed servo
moving in accordance with the relative position of the tracked target. We set the target per-
son being followed to pose different challenging situations such as teams wearing similar
clothes, partial and full occlusion, etc. The images were collected by an Intel Realsense
D435i camera that was rigidly attached to the robot. The camera collected images at 30 fps
in the following tasks. We downsampled the frame rate to 10 fps in our dataset. The image
resolution is 640× 480 pixels. The robot was following the target person up to speeds of
2 m/s.

The dataset contains 17 image sequences that vary in the appearance of the tracking tar-
gets, the appearance and number of distractors, road conditions, weather, and experiment
duration. The detailed information of each subset is provided in Table 1. The distractor
information states the attributes of different subsets, including campus environments with
pedestrians (PED), the number of pedestrians with different-colored clothes actively in-
terfering (#DAI), number of pedestrians with similar-colored clothes actively interfering
(#SAI), illumination variation (IV), and low illumination (LI).

Table 1. Detailed information of the UGV dataset.

Set Name Road Condition Distractor Info Duration

UGV01 Brick Road PED 25 s
UGV02 Brick Road PED 19 s
UGV03 Asphalt Road PED 20 s
UGV04 Asphalt Road 1DAI 184 s
UGV05 Cement Road 1SAI 325s
UGV06 Asphalt Road IV,1SAI 247 s
UGV07 Asphalt Road 1DAI 423 s
UGV08 Snowy Asphalt Road 1DAI,1SAI 529 s
UGV09 Grassland PED 53 s
UGV10 Grassland 2DAI 76 s
UGV11 Grassland & Asphalt Road PED 301 s
UGV12 Snowy Asphalt Road PED 201 s
UGV13 Cement Road LI 206 s
UGV14 Cement Road & Grassland LI 82 s
UGV15 Cement Road & Grassland LI 76 s
UGV16 Cement Road & Grassland LI,PED 537 s
UGV17 Cement Road & Grassland LI,DAI 146 s

4.1.1. Results and Analysis

The results are divided into two groups. The short-term group presents the results of
the sequences that are less than 100 s. Furthermore, the long-term group gives the results
of the rests. Figure 5 illustrates the success plots of short-term tasks. Figure 6 presents the
qualitative results of UGV02, UGV03, and UGV14.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Success plots of the short-term following.

(a) UGV02

(b) UGV03

(c) UGV14

Ours(Siamrpn++) Ours(Siamrpn) Siamrpn++ Siamrpn DaSiamrpn UpdateNetOurs(Siamrpn++) Ours(Siamrpn) Siamrpn++ Siamrpn DaSiamrpn UpdateNet

Figure 6. Qualitative results of short-term tasks.

For UGV02 and UGV03, we can see that the tracking boxes usually drift when a dis-
tracting person passes through and temporarily occludes the target. For UGV14, the varia-
tion in light severely impacts the trackers’ performance. In general, our approach performs
well and provides improvements in both AUC scores and robustness.

Figure 7 presents the success plots of long-term following tasks. Our approach ranks
high amongst all considered methods. Without fine-tuning the network, the outcomes of
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DaSiamRPN and UpdateNet are poor on our dataset. Updatenet, which is the update-based
variation of DaSiamRPN, does not provide an improvement over DaSiamRPN. Despite
the already excellent performance of SiamRPN and SiamRPN++, the AUC score of our
approach is improved. The qualitative results are provided in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 7. Success plots of long-term following.

In the robot following situations, the robot moves accordingly based on the target
location command given by the tracking result: if the tracker tracks the wrong target,
the real target will soon be out of view, leading to failure of the following mission. Even
though the tracker sometimes does not return a precise bounding box of the following
target, a rough result (IOU > 0) can still maintain the target within the tracking view,
allowing a chance to recover the target. Therefore, we define tracking robustness as the
percentage of the bounding box that satisfies IOU > 0 (namely, the value of the success rate
when the overlap threshold = 0 in the success plots). In our opinion, discussing tracking
robustness in the following missions is even more meaningful than the AUC score. Since
the SiamRPN-based approaches regress bounding boxes from pre-defined anchors, the size
adjustment is minor; we demonstrate that the robustness criterion will not be biased by
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the large-area bounding boxes. As shown in the success plots, our approach provides a
substantial gain in terms of tracking robustness compared to the base trackers.

(a) UGV04

(b) UGV05

(c) UGV06

(d) UGV07

(e) UGV08

(f) UGV16

(g) UGV17

Ours(Siamrpn++) Ours(Siamrpn) Siamrpn++ Siamrpn DaSiamrpn UpdateNetOurs(Siamrpn++) Ours(Siamrpn) Siamrpn++ Siamrpn DaSiamrpn UpdateNet

Figure 8. Qualitative results.

For UGV04 (Figure 7a) and UGV07 (Figure 7d), even though the target and distracting
person have sufficient disparity in appearance (Figure 8a,d), the tracking box drifts to the
distracting person frequently after crossing. By eliminating the responses of the distractors,
our approach provides a substantial improvement compared to the other approaches.
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For UGV05 and UGV06, the target and distractor person dress similarly (both wear-
ing a black coat), and the following tasks were conducted under intense light variation
(see Figure 8b,c). With the light change, the target appearance varies significantly. The com-
peting trackers were impacted and their results presented a random pattern. By continuing
to obtain the latest positive templates, our approach distinguishes the target and distractor
more robustly, resulting in stable and better performance.

In UGV08 (Figure 7e), the following was conducted on a cloudy day, without light
variation; our approach produced stable results and outperformed the others even with a
similar-appearance distracting person.

UGV16 (Figure 7i) and UGV17 (Figure 7j) were conducted in the evening (Figure 8f,g);
similar to UGV14 and UGV15, the success rates of the other approaches were heavily
decayed. Our approach exhibited its strength in these situations, where both AUC score
and tracking robustness outperformed the corresponding approaches.

For other UGV tasks, our approach yielded better or comparable results.

4.1.2. Statistical Significance

The test results above present improvements of our approaches over their base ap-
proaches in general cases. We further perform a statistical test to see if the improvements
are statistically significant. Specifically, we set the null hypothesis as the subtraction of the
paired data comes from a normal distribution with mean equal to zero and unknown vari-
ance. Then, the paired–sample t-test is employed. If the p value falls below 0.05 significance
level, the null hypothesis is rejected or accepted otherwise.

Table 2 presents the statistical significance condition and the corresponding p value of the
three comparing groups. The results show that the improvements are statistically significant.

Table 2. Statistical significance of three comparative approaches.

DaSiamRPN
vs.

UpdateNet

SiamRPN
vs.

Ours (SiamRPN)

SiamRPN++
vs.

Ours(SiamRPN++)

Statistical Significance Yes Yes Yes
p value 0.0249 0.0048 0.0241

4.1.3. Compare with State-of-the-Art

We additionally compare our approaches with several latest state-of-the-art approaches:
SiamCAR [19], SiamGAT [21], SiamBAN [20], DiMP [30], and PrDiMP[31]. The overall
success plot of the dataset is depicted in Figure 9.

Figure 9. Overall success plot of the state-of-the-art approaches.
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Compared with the base methods, our approaches bring substantial gain in terms of
both AUC score and robustness. Among all 11 competing methods, our two approaches
ranked first and fifth respectively in AUC scores; in terms of robustness, they ranked
second and third respectively. The PrDiMP method also shows good tracking performance
in the dataset.

4.2. Public Dataset

All approaches are further tested on a dataset composed of 27 public datasets in-
volving person tracking. The selected sequences, their source, and the results of tracking
robustness are listed in Table 3. The uparrow and downarrow indicate the relative im-
provement provided by our approach compared to the base approaches. The red, green,
and blue denote the methods that ranked first, second, and third in the experimental
results, respectively.

Table 3. The tracking robustness on public datasets. The uparrow and downarrow indicate the relative improvement.
The red, green, and blue denote the methods that ranked first, second, and third in the experimental results.

Source Set Name
DaSiamRPN

vs.
UpdateNet

SiamRPN
vs.

Ours (SiamRPN)

SiamRPN++
vs.

Ours (SiamRPN++)

SiamCAR
&

SiamGAT

DiMP
&

PrDiMP
SiamBAN

OTB100

Girl2 9.20/13.53 70.60 / 95.67 ↑ 85.27 / 89.67 ↑ 89.53 / 97.20 61.47 / 95.40 27.73
Human3 2.12 / 2.12 76.15 / 93.88 ↑ 5.59 / 94.35 ↑ 27.21 / 99.53 2.18 / 90.81 2.00

Human4-2 51.57 / 51.57 52.02 / 82.31 ↑ 90.85 / 98.50 ↑ 51.72 / 64.92 99.85 / 56.52 85.61
Jogging-1 98.05 / 98.37 95.11 / 100.00 ↑ 96.74 / 96.74 - 96.09 / 97.39 98.05 / 99.35 91.53
Walking 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.76 / 99.76 99.76 / 99.76 99.76

Walking2 55.80 / 55.80 65.40 / 76.00 ↑ 67.00 / 72.20 ↑ 99.80 / 53.60 50.00 / 72.10 53.60
Woman 100.00 / 95.81 98.49 / 99.33 ↑ 100.00 / 100.00 - 99.16 / 99.66 67.84 / 100.00 99.83

bike1 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 85.67 / 99.97 99.97 / 99.97 99.97

UAV123

group1_1 73.07 / 73.14 73.07 / 72.69 ↓ 98.65 / 88.92 ↓ 99.47 / 95.27 99.92 / 99.85 99.10
group1_2 54.69 / 81.15 56.55 / 94.84 ↑ 34.49 / 98.99 ↑ 94.84 / 99.75 99.92 / 99.92 81.15
group1_3 86.96 / 82.85 66.83 / 69.81 ↑ 82.71 / 87.03 ↑ 53.65 / 70.80 57.69 / 98.37 88.80
group1_4 65.65 / 67.23 83.35 / 73.45 ↓ 93.89 / 79.13 ↓ 53.32 / 88.62 99.89 / 99.79 75.87
group2_1 10.69 / 10.69 10.69 / 10.69 - 10.69 / 10.69 - 10.69 / 10.69 10.80 / 10.69 10.69
group2_2 98.03 / 98.03 58.73 / 98.03 ↑ 97.92 / 98.03 ↑ 97.92 / 97.92 97.92 / 97.92 92.60
group2_3 81.05 / 79.85 81.93 / 82.37 ↑ 80.61 / 82.26 ↑ 82.37 / 82.37 82.26/ 69.66 56.85
group3_1 100.00 / 2.87 100.00 / 100.00 - 99.81 / 100.00 ↑ 99.94 / 99.68 99.94 / 99.94 99.94
group3_2 21.25 / 21.25 21.25 / 84.54 ↑ 21.25 / 87.63 ↑ 21.25 / 21.25 21.25 / 21.25 21.02
group3_3 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.94 / 99.94 99.94 / 99.94 94.82
group3_4 42.54 / 42.54 42.54 / 83.69 ↑ 42.54 / 71.35 ↑ 42.54 / 93.62 42.54 / 90.85 42.54
person11 36.62 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.86 / 99.86 39.67 / 99.86 99.86
person18 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.86 / 99.93 99.93 / 99.93 99.93

person19_1 86.48 / 87.13 85.92 / 92.36 ↑ 86.48 / 92.36 ↑ 87.05 / 86.48 86.48 / 92.20 92.28
person19_2 42.87 / 42.87 42.87 / 94.84 ↑ 94.84 / 94.84 - 94.58 / 94.77 42.87 / 94.77 94.77
person20 100.00 / 100.00 100.00 / 100.00 - 93.33 / 96.80 ↑ 94.11 / 99.94 100.00 / 100.00 98.09
person4_1 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.93 / 99.93 99.93 / 99.93 99.93
person4_2 100.00 / 100.00 100.00 / 100.00 - 100.00 / 100.00 - 99.92 / 99.92 99.92 / 99.92 99.92
person9 47.66 / 19.82 18.76 / 94.25 ↑ 63.99 / 88.96 ↑ 94.10 / 18.76 19.21 / 94.10 6.96

Overall Mean 69.05 / 67.65↓ 74.08 / 88.85 ↑ 79.51 / 89.94 ↑ 80.52 / 84.13 73.30 / 88.26 74.63
Statistical Significance No Yes Yes - - -

From the table, in most of the subsets, our approach provides extra improvement
compared to the base approaches. In general, the mean tracking robustness increases by
14.77% and 10.43% compared to SiamRPN and SiamRPN++, respectively. Furthermore, the
improvements are statistically significant. Among all the comparison methods, the average
robustness of our proposed approaches ranks first and second respectively. In addition,
except for group2_1, our approaches converge to high robustness in all datasets, showing
strong target capture ability of our approaches.

In some subsets, the tracking performance is heavily impacted by the long-term or
large-scale occlusion of roofs, buildings, and trees; the anti-occlusion strategy of the aerial
viewpoint needs to be further explored.
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5. Conclusions

In this paper, a robust visual tracking approach aiming to enable robot person-
following tasks was proposed. To solve the problem where fixed templates cannot adapt
to the robustness demand of long-term tracking, a multi-templates tracking method was
proposed. The confident templates and distract templates are yielded during tracking lever-
aging the distribution of the central responses. By merging the responses of ground-truth
templates, confident templates, and distract templates, the responses of target-tracking are
enhanced and false responses are suppressed, leading to robust tracking. The proposed
method was incorporated into two state-of-the-art approaches, SiamRPN and SiamRPN++,
and validated on a robot person-following dataset as well as a collection of public person-
tracking datasets. The results showed that our approaches outperform their base ap-
proaches in terms of both AUC score and tracking robustness. Furthermore, the approaches
are compared with seven state-of-the-art methods. In the UGV dataset, among 11 ap-
proaches, they rank first and fifth in terms of AUC score and second and third in terms of
tracking robustness. In the public dataset, they rank first and second.

Based on the proposed robust visual tracking approach, in the future, we will con-
tinue to explore human–robot interaction and failure recovery methods to construct an
autonomous and control terminal-free person following system, so that it can be applied to
facilitate police patrols, factory manufacturing, and other scenarios.
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