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Abstract: This work uses sequence-to-sequence (seq2seq) models pre-trained on monolingual corpora
for machine translation. We pre-train two seq2seq models with monolingual corpora for the source
and target languages, then combine the encoder of the source language model and the decoder
of the target language model, i.e., the cross-connection. We add an intermediate layer between
the pre-trained encoder and the decoder to help the mapping of each other since the modules
are pre-trained completely independently. These monolingual pre-trained models can work as a
multilingual pre-trained model because one model can be cross-connected with another model
pre-trained on any other language, while their capacity is not affected by the number of languages.
We will demonstrate that our method improves the translation performance significantly over the
random baseline. Moreover, we will analyze the appropriate choice of the intermediate layer, the
importance of each part of a pre-trained model, and the performance change along with the size of
the bitext.
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1. Introduction

Transfer learning with pre-training and fine-tuning has pushed the state-of-the-art re-
sults in many natural language processing (NLP) tasks since the famous success of BERT [1].
This method now has become a common practice in the NLP field. The unsupervised
pre-training on unlabeled data is particularly beneficial when the labeled training data are
limited. The neural machine translation (NMT) task is the case because parallel corpora are
expensive to construct and not easily available for many languages, while monolingual
corpora are relatively easier to find and large in scale. Therefore, we expect a translation
model’s performance to be improved by pre-training using rich monolingual data and
fine-tuning with parallel data.

However, when using transfer learning for NMT, there are two issues. First, NMT
is a cross-lingual task, which involves at least two languages. Recent approach for the
cross-lingual tasks is to pre-train a model with multilingual objective [2–4], but there
are also several monolingual pre-trained models of various languages, such as [5] for
Brazilian [6,7], for Dutch [8], for Romanian [9], for Russian [10–12], for French [13,14],
for Italian, and [15] for Portuguese. In multilingual models, each language has only a
limited allocation for model capacity, unlike in monolingual models. Furthermore, the
monolingual models are relatively easier to create. Therefore, it would be beneficial if the
monolingual models can be reused for the machine translation task.

Another issue is that NMT is a sequence generation task. Natural language generation
(NLG) tasks, including NMT, usually need both the encoder and the decoder. It can be
thought that both the pre-trained encoder and decoder would improve the performance of
a language generation model. However, reuse of a whole pre-trained sequence-to-sequence
(seq2seq) [16] model is not very common. Existing approaches usually leverage only a part
of a seq2seq model, namely an encoder such as BERT and XLM [17], and a decoder such as
GPT [18].
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Our purpose is to reuse the monolingual seq2seq models pre-trained for monolingual
tasks, such as classification or summarization, also for the machine translation task. Yet,
a monolingual pre-trained seq2seq model is not fully appropriate for NMT since it is a
cross-lingual task. For this, we propose the ‘cross-connection’, a simple method that use
monolingual pre-trained seq2seq models for NMT.

In this paper, we pre-train whole seq2seq models with monolingual corpora, then we
construct a translation model by ‘cross-connecting’ a seq2seq of one language with another
seq2seq of a different language, and then we fine-tune the translation model with a parallel
corpus. For pre-training, each model receives inputs where some tokens are dropped, and
it is trained for each language to predict the dropped tokens. For fine-tuning, a seq2seq
model is initialized by the encoder of the source language model and the decoder of the
target language model, and it is fine-tuned on parallel data for translation. A remaining
problem is that the encoder and the decoder are pre-trained completely separately for
different languages, and do not know which language they would be composed with. For
mediation between these two modules, we insert an additional ‘intermediate layer’. This
layer helps mapping of the independently pre-trained encoder and decoder.

Because they are composable, our monolingual pre-trained models can work as a
multilingual pre-trained model. A seq2seq model pre-trained on one language can be cross-
connected with another model that is pre-trained on any other language. For example, if
we have three pre-trained seq2seq models of English, Romanian, and German, we can reuse
them to the English-German, English-Romanian, German-Romanian translation models.
If we train another seq2seq model on Italian, we can reuse them to the English-Italian,
German-Italian, Romanian-Italian translation models. It is possible to create n(n − 1)
translation pairs with n encoders and decoders. Most existing multilingual pre-trained
models such as XLM-R [3] and mBART [2] use a fixed shared vocabulary, which can
learn only the languages already in the vocabulary. They are less extensible as both
the vocabulary and embedding need to be learned again when adding a new language.
Although [19] extended [2] by adding new embedding layers, they also used the fixed
shared vocabulary from [3]. In contrast, our method uses separate vocabularies and the
models are pre-trained independently. Additionally, according to [3], as the number of
languages increases, the per-language capacity decreases. They showed that the size of
the model and vocabulary should be larger to improve the performance of a multilingual
pre-trained model. However, our method does not need such a massive model size, and
the capacity of a pre-trained model is not affected by the number of languages.

We will demonstrate that our cross-connection method considerably improves the per-
formance over the random baseline, and the intermediate layer gives further improvement.
Transformer [20] is used as the base seq2seq architecture. For pre-training, the English and
German corpora of WMT17 English-German, the Romanian corpus of ParaCrawl English-
Romanian, and the Italian corpus of PacraCrawl English-Italian are used. For fine-tuning
the IWSLT14 English-German, IWSLT14 English-Romanian, IWSLT14 English-Italian,
IWSLT17 Romanian-Italian, IWSLT17 Italian-German, and IWSLT17 German-Romanian
corpora are used. The effect of size and configuration of the intermediate layer, the influ-
ence of each pre-trained module, and the initialization of cross-attention of the decoder
will be analyzed. We will also compare the performance changes along with the different
sizes of the fine-tuning datasets.

2. Related Work
2.1. Unsupervised Pre-Training

There are several studies that leverage pre-training and fine-tuning method for NLP
tasks in recent years. ELMo [21] proposes pre-trained contextualized representations.
GPT [18] uses the language modeling objective and BERT [1], RoBERTa [22], SpanBERT [23]
use the MLM objective to pre-train the model on the large monolingual corpora. These
models pre-train only the encoder or the decoder of a seq2seq model, which are not suit-
able architecture for natural language generation. There are other works that propose
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pre-training for language generation tasks. XLM [17] pre-trains the Transformer with
MLM objective on multiple languages. MASS [24] focuses on joint learning of encoder and
decoder for natural language generation. BART [25] applies the denoising autoencoder
method to the Transformer and proposes several denoising objectives. UNILM [26] and
UniLMv2 [27] proposes the unified modeling that can be applied to both understanding
and generation tasks. T5 [28] extensively studies transfer learning in NLP by transform-
ing all tasks to a sequence-to-sequence problem. Ref. [29] explored many unsupervised
pre-training objectives and systematically analyzed them in both supervised and unsuper-
vised settings.

2.2. Reusing Pre-Trained Models

Developing a new pre-training objective is important, but it is also necessary to lever-
age the existing pre-trained models. Our purpose is to reuse the pre-trained monolingual
models for machine translation. From this perspective, the work of [30] is the closest to
ours that leverages the pre-trained BERT and GPT checkpoints for language generation
tasks. However, their translation experiment is done only on the WMT14 En-De pair, and
there is no additional layer unlike ours. Furthermore, they use the multilingual BERT to
initialize the encoder, but we use monolingual pre-trained encoders. In addition, there
are other works such as [31] that fuses BERT into an NMT model by feeding it into both
the encoder and decoder, and [32] that proposes a training framework that integrates
pre-trained language models to NMT to solve the forgetting problem in resource-rich
translation, and [33] that recycles the BERT by replacing the Transformer encoder with
BERT, and [34] that studies the various ways to use pre-trained BERT to NMT model and
assesses translation quality. On reusing BERT for NMT, Ref. [35] analyzed the difference
between the representations that BERT and NMT encoder create and proposed a supervised
transformation method. In the field of computer vision, Ref. [36] shares similar concept
with ours for the image translation task.

2.3. Multilingual Language Models

Our monolingual pre-trained models can be used as a multilingual pre-trained model
by cross-connection. Ref. [37] proposes a multiway, multilingual translation model, which
has multiple encoders and decoders with single shared attention. Ref. [38] perform ex-
tensive experiments in training massively multilingual NMT models. Ref. [39] adopts an
explicit interlingua that converts language-specific embeddings to common representations,
which looks similar to ours, yet the role of interlingua is opposite because our intermediate
layer does not appear in the pre-training stage. Currently, recent works usually focus on
making a single model handle multiple languages. XLM-R [3] is a multilingual masked
language model pre-trained in massive scale for cross-lingual understanding. mBART [2],
Ref. [19] is a multilingual seq2seq denoising autoencoder for NMT pre-trained with BART
objective. MARGE [40] is trained to reconstruct the target text in one language by retrieving
related texts in other languages. mT5 [4] inherits T5 and extends it to the multilingual
setting. mT6 [41] proposes new cross-lingual pre-training objectives. However, these works
use a shared vocabulary which limits the extensibility of multilingual language models and
needs a large model size. Ref. [42] demonstrates that the important factor is the effective
vocabulary size rather than the subwords sharing. They learn monolingual representation
with MLM objective and transfers the knowledge to another language by learning a new
embedding matrix while freezing other layers. In line with this, our method excludes the
shared vocabulary and trains the models on their respective monolingual data.

3. Method
3.1. Monolingual Unsupervised Pre-Training

The purpose of pre-training is to train the encoder and decoder to be ‘fluent’ in the
corresponding language. We expect the pre-trained model to learn some general knowledge
about the language.
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In the sequence-to-sequence architecture, the encoder is responsible for natural lan-
guage understanding (NLU) and the decoder is responsible for natural language generation
(NLG). The encoder creates the representation of a given input sequence, and the decoder
generates the target sequence conditioned on the encoder representation.

Unlike encoder-only pre-training models such as [1,3], we need the decoder to generate
the translated sequence because MT is an NLG task. Therefore, we pre-train the whole
sequence-to-sequence models consisting of the encoder and decoder. For the basic bilingual
translation system, we train two models for the source and target languages, respectively.

We use the denoising objective for unsupervised learning as in other works. The noise
function is simple token dropping which is mentioned in [28]. We choose this method
to keep the training simple and focus on the effect of cross-connection itself. 25% of the
input tokens are dropped randomly and the model is trained to predict only the dropped
tokens by minimizing the cross-entropy. Our implementation is based on the official BERT
pre-training code with the whole-word masking algorithm. Please note that any other
unsupervised objectives can be used, but we leave this for future work. The architecture of
monolingual pre-training is illustrated in Figure 1.

Figure 1. Monolingual pre-training of each model. The model is trained to generate the dropped tokens.

We use the separate disjoint vocabularies for all the languages to encourage the model
to reach full capacity for its language. As noted by [42], when using a shared vocabulary
for multiple languages, each language cannot occupy the whole vocabulary and has a
limited allocation. The vocabulary is inevitably split into portions for all languages, and
as the number of the languages grows, each portion becomes smaller. On the other hand,
the effect of subwords sharing is not very crucial, because not every subword is effectively
shared. To alleviate this problem, the size of the model and vocabulary should be large as
shown in [3,42]. However, we do not have these problems because each language model
can have its own vocabulary without any need for sharing. Each language occupies the
whole vocabulary, and the per language capacity is not affected by the number of languages.
The fluency of each pre-trained model is preserved intact.

3.2. Cross-Connection and Fine-Tuning

We compose the pre-trained models for fine-tuning. We reuse the two pre-trained
models for the source and target language, respectively. The encoder is initialized by the
weights of the encoder from the source language pre-trained model, and the decoder is
initialized by the weights of the decoder from the target language pre-trained model. We
call this the ‘cross-connection’. Then the model is fine-tuned with a parallel corpus for the
translation objective. Although the encoder and decoder are not trained for translation, they
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can be adapted for translation because the fine-tuning itself achieves implicit alignment as
noted in [35].

Each pre-trained model has its expertise in a particular language. Then each language
component can be freely combined with any other language component. Once we pre-train
multiple seq2seq models and obtain multiple pre-trained encoders and decoders, this
enables the fine-tuning for all combinations of the languages among them. We can pick
the encoder and decoder for each language and put them together just like blocks. By this,
we can exploit the full capacity of the models not losing any ability learned from their
pre-training. The architecture of cross-lingual fine-tuning is shown in Figure 2 and the
illustration of cross-connection is shown in Figure 3. When translating from language X to
language Y, the encoder X and the decoder Y are used. When translating from language Y
to language X, the encoder Y and the decoder X are used.

Figure 2. Fine-tuning of the cross-connected model. IL means the additional intermediate layer. We initialize the encoder
with the source language pre-trained encoder and the decoder with the target language pre-trained decoder.

Figure 3. Illustration of cross-connection among multiple pre-trained encoders and decoders. The
intermediate layer is omitted for simplification. When creating a translation model, we can pick and
compose a proper module for each language among the pre-trained encoders and decoders. Thus,
we can use the composition of monolingual models such as a pseudo-multilingual pre-trained model.

3.3. Intermediate Layer

Since the encoder and decoder have been pre-trained independently for different
languages, it cannot be guaranteed that the model is suitable for cross-lingual tasks. The
encoder knows the source language well, also the decoder knows the target language well,
but it is not certain that the combined encoder-decoder model can actually perform the
translation well, which is a cross-lingual task.

Therefore, we insert an additional intermediate layer between the encoder and decoder.
This layer works as a mediator between the monolingual pre-trained encoder and decoder.
The additional parameters help the components to adapt to each other. This is similar to
the ‘feature mapping layer’ from [36] that fills the gap between the representations, which
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the encoder is pre-trained to generate and the decoder is pre-trained to reconstruct from. It
can be said that this layer maps the separately pre-trained language spaces.

The best configuration of the intermediate layer may vary depending on the size of
the model and dataset. We consider the feed-forward network, a self-attention layer, a
sublayer of the encoder from the Transformer architecture, and a simple dense layer as
the intermediate layer. The feed-forward network consists of two dense layers with ReLU
activation, dropout, and layer normalization. The sublayer of the encoder consists of a
self-attention layer and a feed-forward network. We will further investigate the effect of
configuration change of the intermediate layer in Section 4.5.1.

This layer looks similar to the interlingua of [39], but our approach is different. The pur-
pose of interlingua is to convert language-specific embeddings to language-independent
embeddings. It learns all the languages during the training and creates common rep-
resentation across the languages. However, our intermediate layer does not appear in
the pre-training stage but is tailored to each fine-tuning language pair, only helping the
mapping of pre-trained encoder and decoder as an intermediator.

4. Experiment
4.1. Architecture and Datasets

We use the standard Transformer model with the Tensorflow official 2.3.0 implemen-
tation [43]. We adopt a Transformer-Base architecture with 6-layers of encoder and 6-layers
of decoder. The hidden size, number of attention heads, feed-forward filter size is 512, 8,
2048, respectively. The intermediate layers are different for each language pair and the best
score is reported among the experiments described in Section 4.5.1 (∼58 M params). We tie
the weights of target embeddings and output layer.

For pre-training of English and German, we use the WMT17 [44] En-De. newstest2013
is used as the validation set. For pre-training of Romanian, the Romanian corpus from
Paracrawl [45] En-Ro is used. We use newsdev2016 from WMT16 [46] En-Ro as validation
set. For pre-training of Italian, we use the Italian corpus from Paracrawl En-It as the
training set and the 1% split of the training data as the validation set.

For fine-tuning, we use IWSLT14 [47] En-De, En-Ro, En-It, and IWSLT17 Ro-It, It-De,
De-Ro datasets. 7K split of training data are used for the validation of IWSLT14, and
dev2010 is used for validation of IWSLT17. For test, we use the concatenation of dev2010,
dev2010, tst2010, tst2011, tst2012 for IWSLT14 and tst2010 for IWSLT17. Our preprocessing
scripts are adapted from Fairseq [48] translation examples.

We use the Wordpiece algorithm [49] for tokenization and the vocabulary size is 10K per
language. The size of the datasets is shown in Table 1. Please note that our pre-training data
are relatively small compared to other works due to the limited computational resources.

Table 1. Size/MB of each pre-training and fine-tuning dataset.

Pre-training

WMT17 ParaCrawl

En De Ro It

639 714 264 1667

Fine-tuning
IWSLT14 IWSLT17

En-De En-Ro En-It It-Ro It-De De-Ro

29.6 30.3 30.5 44.7 45.6 44.3

4.2. Training and Decoding

1 GPU is used for both pre-training and fine-tuning. The batch size is 4096 and the
max sequence length is 256. We use Adam optimizer and rsqrt decay scheduling. The
hyperparameters are set as β1 = 0.9, β2 = 0.997, ε = 1 × 10−9, warmup step = 16,000,
initial learning rate = 2.0 for pre-training, and β1 = 0.9, β2 = 0.997, ε = 1 × 10−9, warmup
step = 1600, initial learning rate = 0.5 for fine-tuning. We set the dropout rate as 0.1 for
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all experiments. We use beam-search with beam size = 4 and α = 0.6 for decoding. Our
baseline is a randomly initialized Transformer with the same hyperparameters and training
schedule of the fine-tuning models. The final models are selected based on the validation
loss. The results are reported in BLEU [50] uncased score.

4.3. Models

We compare the fine-tuning models as follows:

• Random a randomly initialized baseline without pre-training.
• Cross-connected Our cross-connected models that the encoder is pre-trained with

source language and the decoder is pre-trained with target language.
• Cross-connected + IL Our cross-connected models with the additional intermediate layer.
• ENC2ENC It is possible to use the pre-trained encoder weights to initialize the decoder

such as BERT2BERT from [30], because the encoder and decoder of the Transformer
are implemented in the same architecture except for the cross-attention of the decoder.
We compare this scenario with our cross-connected method to see the effect of the
pre-trained decoder. We initialize the encoder with the source language encoder
weights, and we initialize the decoder with the target language encoder weights. In this
case, the cross-attention of the decoder is initialized randomly.

4.4. Results

As shown in Table 2, for all datasets, our method has significant improvement over the
random baseline, especially +4.27 points for De-En and +4.03 points for It-En. We observe
that the most important factor is pre-training itself. The simple cross-connection obtains a
large gain of BLEU, which demonstrates that reusing the monolingual pre-trained models
by cross-connection can considerably improve the translation performance. When compare
ENC2ENC and Cross-connect, ENC2ENC improves over Random but the cross-connected
models report higher scores overall. This shows that initializing the decoder with pre-
trained encoder weights is useful than random but not optimal. Furthermore, the scores of
cross-connection models further improve with the additional intermediate layer, which
means that the intermediate layer helps to combine the independently trained encoder and
decoder to some extent, although not as crucial as our initial assumption.

Table 2. BLEU scores for the IWSLT14 En-De, IWSLT14 En-Ro, IWSLT14 En-It, and IWSLT17 It-Ro
datasets. IL is the intermediate layer and its configuration is different for each model. We indicate
the best scores with bold font.

Model En-De De-En En-Ro Ro-En En-It It-En

Random (Baseline) 26.11 33.83 27.49 37.47 29.10 31.44
ENC2ENC 28.36 37.16 29.31 39.06 31.18 34.22
Cross-connected 29.06 37.75 30.04 39.73 32.17 35.05
Cross-connected + IL 29.63 38.10 30.64 40.39 32.29 35.47

Model It-Ro Ro-It It-De De-It De-Ro Ro-De

Random 21.73 22.27 18.91 19.70 18.37 19.50
ENC2ENC 22.58 23.64 20.74 22.17 20.94 20.53
Cross-connected 22.36 23.91 21.53 22.65 20.98 21.20
Cross-connected + IL 23.03 24.33 22.04 23.32 21.26 21.71

4.5. Ablation Study
4.5.1. Intermediate Layer

We conduct several experiments to see the effects of different architecture and size of
the intermediate layer. We consider the feed-forward network with various filter sizes, a
self-attention layer, a single sublayer of the encoder that consists of a self-attention layer
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and a feed-forward network with filter size 2048, and a simple dense layer of size 512 with
layer normalization and dropout.

The results are shown in Table 3. Overall a feed-forward network reports the best
score though the size varies. The single dense layer consistently results in low scores as
expected, except for Ro-It. However, more numbers and bigger size of the intermediate
layer do not necessarily lead to higher BLEU scores, which indicates that a larger number
of parameters does not exactly mean better performance. Further, we assumed that the
self-attention mechanism would benefit the mapping of the encoder and decoder, but it
does not result in the best score except for the En-Ro experiment which uses a sublayer of
the encoder as the intermediate layer. Overall, We recommend a feed-forward network
with filter size 512 or 768 because this network usually performs well with relatively fewer
parameters than the encoder sublayer or the self-attention layer.

Table 3. Comparisons of the fine-tuning models with various intermediate layers for each translation pair. FFN is the
feed-forward network with ReLU activation. Dense is a fully connected layer with layer normalization and dropout. Results
below ‘No intermediate layer’ are sorted by the number of parameters in decreasing order. We indicate the best scores with
bold font.

Model En-De De-En En-Ro Ro-En En-It It-En

No intermediate layer 29.06 37.75 30.04 39.73 32.17 35.05
2FFN (filter size = 2048) 29.43 38.08 30.31 40.01 31.80 35.14
Encoder Sublayer (filter size = 2048) 29.55 38.00 30.64 40.02 32.06 35.20
2FFN (filter size = 1024) 29.20 38.01 30.29 40.39 32.09 35.22
1FFN (filter size = 2048) 29.37 38.10 30.23 40.21 32.29 35.45
1FFN (filter size = 1024) 29.57 37.91 30.37 40.20 32.08 35.23
Self-Attention 29.33 38.03 30.45 40.14 32.01 35.17
1FFN (filter size = 768) 29.63 38.01 30.27 40.20 32.02 35.44
1FFN (filter size = 512) 29.52 37.94 30.28 40.27 32.09 35.47
Dense (size = 512) 29.18 37.77 30.01 40.20 32.08 35.06

Model It-Ro Ro-It It-De De-It De-Ro Ro-De

No intermediate layer 22.36 23.91 21.53 22.65 20.98 21.20
2FFN (filter size = 2048) 22.61 23.94 21.62 23.19 21.18 21.71
Encoder Sublayer (filter size = 2048) 22.72 23.92 21.46 23.32 20.69 21.44
2FFN (filter size = 1024) 22.95 24.26 21.29 23.05 21.03 21.32
1FFN (filter size = 2048) 22.96 23.50 21.41 23.17 20.58 21.19
1FFN (filter size = 1024) 22.42 24.16 21.69 23.16 21.05 20.93
Self-Attention 22.39 24.07 21.64 22.96 20.68 21.03
1FFN (filter size = 768) 23.03 23.74 21.90 23.01 21.00 21.03
1FFN (filter size = 512) 22.08 24.11 22.04 23.28 21.26 21.14
Dense (size = 512) 22.24 24.33 21.80 22.89 21.02 21.42

4.5.2. Initialization of Decoder Cross-Attention

As we mentioned earlier, we can use the pre-trained encoder weights to initialize the
decoder. Furthermore, since our method pre-trains each model with only monolingual
data, the decoder cross-attention could not be suitable for the cross-lingual task. Therefore,
we conduct two additional experiments to investigate the initialization of the decoder.
First, we use the pre-trained decoder weights but initialize the cross-attention randomly
(Random cross-attention). Second, we use the pre-trained encoder weights to initialize
both the encoder and decoder as in Section 4.4 and add the intermediate layer (ENC2ENC).
We compare these settings with our cross-connected models (ENC2DEC) and random
baselines (RND2RND).

As shown in Table 4, the cross-connection models result in the best scores. The scores
decrease when we initialize the cross-attention randomly, and the ENC2ENC with IL
models report similar or lower scores than the random cross-attention models. Therefore,
it can be said that the monolingual pre-trained decoder can be more effectively reused
than the pre-trained encoder for machine translation. Although its cross-attention never
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learned cross-lingual tasks, it is better than the simple random initialization. Furthermore,
the score gap between the ENC2ENC+IL and ENC2DEC+IL is bigger than the score gap of
ENC2ENC and ENC2DEC without IL in Section 4.4. This indicates that the intermediate
layer is more effective for the cross-connected model than for ENC2ENC.

Table 4. Fine-tuning models with different decoder initialization. The Baseline is a randomly initialized Transformer and IL
is the intermediate layer. We indicate the best scores with bold font.

Model En-De De-En En-Ro Ro-En En-It It-En

RND2RND (baseline) 26.11 33.83 27.49 37.47 29.10 31.44
ENC2DEC+IL 29.63 38.10 30.64 40.39 32.29 35.47
ENC2DEC+IL (Random Cross-attention) 29.24 37.90 30.14 39.72 31.81 35.03
ENC2ENC+IL 28.68 37.19 29.73 38.98 31.34 34.22

Model It-Ro Ro-It It-De De-It De-Ro Ro-De

RND2RND (baseline) 21.73 22.27 18.91 19.70 18.37 19.50
ENC2DEC+IL 23.03 24.33 22.04 23.32 21.26 21.71
ENC2DEC+IL (Random Cross-attention) 22.65 23.84 21.32 22.71 20.91 21.14
ENC2ENC+IL 22.71 23.43 20.33 22.01 20.80 20.76

4.5.3. Importance of Each Module

We perform some analysis to show the importance of each module of the pre-trained
model in fine-tuning. We compare four models: a random baseline (RND2RND), a model
with the pre-trained encoder and random decoder (ENC2RND), a model with random
encoder and pre-trained decoder (RND2DEC), and our cross-connected model (ENC2DEC).
We do not add the intermediate layer to the ENC2RND or the RND2DEC model because
there is no need for mediation, and we neither use it to the cross-connected ENC2DEC
model for fair comparison.

The results are reported in Table 5. As expected, when reusing a part of a pre-trained
model, the encoder is much more important than the decoder. Both the pre-trained encoder
and pre-trained decoder improves the model performance, but the ENC2RND model
obtains a larger gain. This seems natural because the decoder depends on the source
information from the encoder side, and the performance of a sequence-to-sequence model
is heavily affected by the sentence representation that the encoder generates [51]. This
result suggests that if only a part of a pre-trained model can be reused, it is more efficient to
reuse the encoder part than the decoder part. However, the scores of the ENC2DEC models
are the highest except for It-Ro, which indicates that cross-connection is more effective than
reusing only the encoder.

Table 5. BLEU scores of the fine-tuning models with partial module reusing. We indicate the best
scores with bold font.

Model En-De De-En En-Ro Ro-En En-It It-En

RND2RND (baseline) 26.11 33.83 27.49 37.47 29.10 31.44
ENC2RND 28.35 36.63 29.63 39.22 30.66 33.80
RND2DEC 27.13 34.88 28.01 37.86 29.81 32.10
ENC2DEC 29.06 37.75 30.04 39.73 32.17 35.05

Model It-Ro Ro-It It-De De-It De-Ro Ro-De

RND2RND (baseline) 21.73 22.27 18.91 19.70 18.37 19.50
ENC2RND 22.69 23.14 20.64 22.58 20.43 20.85
RND2DEC 20.59 22.27 19.40 19.96 18.94 20.24
ENC2DEC 22.36 23.91 21.53 22.65 20.98 21.20
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4.5.4. Low-Resource and Mid-Resource

The IWSLT14 and IWSLT17 datasets are low-resource datasets. We perform additional
experiments to see if the cross-connection method is also effective for a larger dataset. We
use WMT16 En-Ro and IWSLT14 En-Ro to exclude the linguistic characteristics and only
compare the size of the fine-tuning datasets. For fine-tuning on the WMT16 En-Ro dataset,
we use the same pre-trained weights and different training schedule: initial learning
rate = 2.0 and warmup steps = 16,000.

The results are reported in Table 6. We observe that the improvement gap becomes
smaller in WMT16 En-Ro as shown in the top section. We conjecture that this result is
mainly because of the relatively small amount of our pre-training. However, it is also
consistent with the results of other works such as [2,28] that the effect of pre-training
decreases or is lost as the size of the parallel data grows. In the middle section, WMT16
ENC2RND obtains the best score and RND2DEC reports a lower score than the random
baseline, contrary to IWSLT14. To investigate this further, we illustrate the test scores along
with the training steps in Figure 4. WMT16 RND2DEC is outperformed by the RND2RND
baseline after training 30K steps. We assume that the effect of cross-connection in a richer
dataset is limited by this forgetting of decoder pre-training. It seems to be the reason the
ENC2RND obtains a better score than ENC2DEC in WMT16 unlike in IWSLT14.

Table 6. BLEU scores of the IWSLT14 En-Ro dataset and WMT16 En-Ro dataset with partial pre-
trained module reusing. We indicate the best scores with bold font.

Models IWSLT14 WMT16

RND2RND (baseline) 27.49 23.89
ENC2DEC 30.04 24.51

ENC2RND 29.63 24.77
RND2DEC 28.01 23.73

RND2ENC 27.41 24.03
ENC2ENC 29.31 24.68

(a) IWSLT14 (b) WMT16

Figure 4. BLEU scores of the IWSLT14 En-Ro dataset and WMT16 En-Ro dataset along with the training steps.

This is in line with the results of [30] where their multilingual BERT and English
GPT model (BERT2GPT) could not reach the highest score in De-En translation. We
surmise that their pre-trained GPT forgot its pre-training because WMT14 En-De is a
high-resource dataset. Furthermore, their RND2GPT model gets a score even below the
random baseline just like our RND2DEC, and BERT2BERT is similar to the BERT2RND and
RND2BERT is better than RND2GPT. These are in agreement with our results reported in
the bottom section of Table 6. In WMT16 En-Ro, ENC2ENC obtains the second-best score
and RND2ENC is better than RND2DEC, whereas RND2DEC is better than RND2ENC
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in IWSLT14 En-Ro. When the amount of bitext grows, the performance of the pre-trained
decoder is soon outperformed by the random baseline even though it was higher at first.
Therefore, we conclude that cross-connection of pre-trained encoder and decoder is effective
for low-resource language translation, and when the resource is rich enough, it is rather
effective to use the pre-trained encoders to initialize both the encoder and decoder.

5. Conclusions

In this work, we proposed a novel method that efficiently reuses the pre-trained
monolingual seq2seq models for machine translation. Our method pre-trains several
seq2seq models with monolingual corpora independently, cross-connects them with an
additional intermediate layer, and then fine-tunes the translation model on the parallel
corpus. Because we can create n(n − 1) translation pairs with n encoders and decoders,
the monolingual pre-trained models can work as a multilingual pre-trained model. Their
capacity is not affected by the number of languages because each model is pre-trained
separately. We showed that the translation performance is improved significantly by our
cross-connection method. We investigated the size and architecture of the intermediate
layer and we found that the bigger parameters of the intermediate layer do not necessarily
improve the performance. Furthermore, we showed that random initialization of decoder
cross-attention is not optimal. When initializing the decoder, using pre-trained encoder
weights is possible but using pre-trained decoder weights is better. The pre-trained decoder
contributes to the performance improvement, although its effect is not as crucial as the
encoder because the decoder depends on the representations that the encoder generates.
Further, we found that the pre-trained decoder loses its effect when the fine-tuning data
are plenty, and the cross-connection method is suitable for the low-resource machine
translation. Our limitation is that the size of the model and the number of languages are
limited due to the computational resources. For future work, we will extend our study to
other language pairs and increase the number of languages.
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