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Abstract: “Interaction” represents a critical term in the augmented and mixed reality ecosystem.
Today, in mixed reality environments and applications, interaction occupies the joint space between
any combination of humans, physical environment, and computers. Although interaction methods
and techniques have been extensively examined in recent decades in the field of human-computer
interaction, they still should be reidentified in the context of immersive realities. The latest tech-
nological advancements in sensors, processing power and technologies, including the internet of
things and the 5G GSM network, led to innovative and advanced input methods and enforced
computer environmental perception. For example, ubiquitous sensors under a high-speed GSM
network may enhance mobile users’ interactions with physical or virtual objects. As technological
advancements emerge, researchers create umbrella terms to define their work, such as multimodal,
tangible, and collaborative interactions. However, although they serve their purpose, various naming
trends overlap in terminology, diverge in definitions, and lack modality and conceptual framework
classifications. This paper presents a modality-based interaction-oriented diagram for researchers to
position their work and defines taxonomy ground rules to expand and adjust this diagram when
novel interaction approaches emerge.

Keywords: augmented reality; mixed reality; human-computer interactions; taxonomy; modalities;
modality-based classification

1. Introduction

Significant efforts have been spent, in both basic and applied research, to highlight
the importance of human–computer interaction (HCI) on the end-user experience in aug-
mented and mixed reality (AR)(MR) environments [1,2]. To a large extent, research focuses
on the user capability to perform tasks and interact with the virtual world, assisted by
various functions and control systems. User-centered system design (UCSD), first described
by Kling [3] and later by Norman [4], generally focuses on the user’s understanding of a
system. It examines what the user expects to happen, and how to perform a task or recover
from an error, presenting HCI as a communicative and collaborative process between
humans and machines. Exploiting immersive realities and the UCSD radically changed
the way humans perform everyday tasks or perceive historical and cultural information.
Mixed and augmented reality finally occupy significant space in our daily routine. The
achievement of several historical milestones, from routing [5] to entertainment [6], and
from social media [7] to engineering and remote collaboration [8], showcases the promising
future of AR and MR.

Technological achievements in AR and MR environments have made possible in-
teractive visualizations of previously unexplored virtual and real-world combinations.
According to Milgram et al. [9], the MR environment is where the real and the virtual
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coexist. Coutrix et al. [10] described a mixed object as a real object with a virtual equivalent.
Recently, Evangelidis et al. [11] defined the MR ecosystem, strictly separating it from
AR, by introducing geospatial modalities and implementing the concept of mixed objects,
thus achieving spatial and context awareness among realities. Over the past 25 years,
approximately since the introduction of the well-known reality–virtuality continuum [9],
published research work and applications have profoundly changed the way humans
perceive and interact with historical [12–16], future [17–21], and imaginary [22–24] reality
scenarios. However, the latest research findings and innovations in review papers regard-
ing interaction methods are not classified under a well-defined framework, thus leading to
misconnections and ambiguities. For example, having the taste, smell, and haptic modality
enclosed by the sensor-based modality, a system that utilizes all of them would still be, by
definition, unimodal. Bunt [25] and Quek [26] both stated that the interaction between this
world and humans is naturally multimodal [27]; therefore, overviewing AR and MR HCI
in the light of how humans perceive reality, through sensations, might improve creative
thinking and provoke novel interactions. Categorizations commonly taking place are
based on the field of application (tourism, architecture, medicine) the device of application
(mobile, desktop) [28], or umbrella terms (multimodal, tangible, collaborative) [29] and
without focusing on the modality or the context of interaction. As a result, an inaccurate
representation of available interaction methods can affect the creative thinking of future
researchers and act counterproductively concerning their efforts in the field of HCI. Previ-
ous attempts of listing or categorizing the components of HCI for augmented and mixed
reality [30–39] reveal that a clear, in-depth taxonomy of interactions either does not exist or
is not widely known to the scientific community.

Mixed reality is an ever-evolving field, and novel approaches and innovative ap-
plications could delineate new interaction methods. HCI is associated with established
theories, such as the theory of action described in Norman’s book The Design of Everyday
Things [40], the theory of communication [41], the theory of modalities [42], and the theory
of perception [43]. Interestingly, although the theory of modalities positions haptic together
with audio and visual modalities, the categorizations mentioned above include it within
the sensor-based modality, together with taste and smell. The taxonomy proposed here-
with is much more of an overview and a first attempt to expose all modalities with their
interactions in the first level. We expect that the taxonomy we propose will better organize
existing interaction methods, present a complete view of what has been accomplished so
far and define a set of ground rules regarding naming conventions. Pamparau and Vatavu,
in a recent position paper [44], stressed several issues to the community related to user
experience (UX) and HCI in AR and MR environments, one of which was to structure
design knowledge for the UX of interactions. A well-defined classification framework
needs to exist for this to happen, and the interaction challenges need to be known to test
UX [45]. In our understanding, interactions in immersive environments reveal three funda-
mental challenges. First, users need to naturally interact with machines to perform main
interaction tasks, such as selection, manipulation, navigation, and system control. The
interaction method should be as intuitive as possible to produce natural interactions, as any
disturbance of the user’s attention may detract from the immersive experience [46]. Sec-
ondly, current technological limitations in positional accuracy in such hybrid environments
may cause spatial misalignments [47,48] or dislocations [49]. Accurately determining the
end user’s position [50] is crucial for successfully visualizing an MR environment, and
technical challenges regarding coverage emerge. Finally, for interactions to be as “real” as
possible, there should be a semantic context connection among involved realities. Based on
the abovementioned, this paper aims to analyze research in HCI for immersive realities and
mobile environments and to give an overview of what has been done so far by presenting
a classified representation as part of a modality-based and interaction-oriented diagram of
the reviewed work. We present a new approach for classifying HCI for immersive realities
by interrelating modalities (audio-based, visual-based, haptic-based, and sensor-based)
with their context and methods. The main scope of this study is to present and organize
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the distinct interaction methods and organize them in a well-defined and structured clas-
sification that provides more depth and accuracy concerning how modalities are being
used, in what context, and with what method. This innovative classification model is the
outcome of a thorough study of pertinent research, as well as the result of a methodolog-
ical investigation of the optimal way to structure the categories so that the approaches
employed in the surveyed papers would be presented in a consistent, precise, and more
meaningful way.

This paper is structured as follows: Section 2 presents a detailed explanation of the
taxonomy ground rules and highlights the categories with their definitions based on which
this paper organizes research findings. Then, Section 3 introduces a brief review of the
state-of-the-art interactions and an in-depth review of the visual, audio, haptic, and sensor-
based modalities. At this point, it is worth mentioning that, although we recognize the
taste and smell modalities, they are not part of the current review. Therefore, a detailed
review for these modalities remains a research gap as far as our categorization approach is
concerned. Finally, the last section concludes the paper.

2. Conceptual Framework Definition

A basic rule adopted is that there should exist one modality for each of the five human
senses. That being established, the visual-based, audio-based, haptic-based, taste-based,
and smell-based modalities have been created. Any other interaction unrelated to the
modalities mentioned above is included in the sensor-based modality (Section 3.4). Each
modality contains groups of contexts (Section 2.3), and ideally, the context categories of a
single modality should not overlap. Although this is a debatable issue, the decision taken is
that whenever an overlap occurs, researchers should analyze a new category semantically
to justify its creation [51]. The taxonomy should always be expandable and adjustable
when a new context group is identified. The context groups should be simple and broad
enough so that someone can raise specific questions regarding common problems or testing
methodologies. Some of the issues that should be avoided when categorizing, are the lack
of focus, clarity, inspiration or creativity, redundant ideas, and the inability of locating the
ideal case, identifying challenges, and inducing lateral thinking.

Each context should define its own set of tests to identify the efficacy of the interaction
methods it includes (Section 2.4). For example, new users of an interaction method that
involves equipment may be satisfied with the overall experience when completing a group
of tasks for a specific period. At the same time, those having utilized the equipment for
years find it difficult to operate [52]. Therefore, long-term usage of equipment should be a
prerequisite when testing such interactions. In addition, the keywords for naming methods
should be checked for adaptability by the research community. For example, the keyword
gaze detection used in the previous classification [30] is replaced with eye gaze detection as it is
more informative. Finally, some methods might be able to be positioned in more than one
context group. For example, location-aware sound effects can be placed in both location-based
and sound-based contexts. In this case, the researchers will have to define which group
better characterizes their work, and if this is not possible, they should position their work
in all relative context groups. A representation of the taxonomy levels is presented in the
Figure 1 diagram. Future researchers may expand this diagram to include the “techniques”
level, determining all techniques used to utilize a specific interaction method.
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2.1. Interaction Tasks

Mixed reality environments contain four basic interaction tasks. As also stated in
Bachmann et al.’s work in 2018 [53], these are selection, manipulation, system control,
and navigation.

• Selection: Refers to the task of selecting an object to perform actions, such as retrieving
information or storing it as an argument for another action [54].

• Manipulation: Provides to the user the capability of changing any of the object’s
attributes, e.g., scale, position etc. [55].

• Navigation: Provides to the user the capability of navigating in an immersive environ-
ment by changing position or orientation [56].

• System control: Refers to the user capability of performing changes in the system state,
such as menu-based changes [57].

2.2. Modality

A user interface [57] is based on information inputs and outputs (IO) via bidirectional
human–computer communication channels. As input or output, we consider any human
actions that convey meaning for interaction to a computer or any intentional augmentation
or alteration of the human perceptual modalities. Every independent channel is called
a modality, and every system that uses only one of these channels for IO is called a
unimodal system. Systems that incorporate more than one of the modalities above are
called multimodal. We define six modalities that allow information IO: visual-based, audio-
based, haptic-based, taste-based, smell-based, and sensor-based modalities. As the taste
and smell-based modalities are not reviewed in this paper, we do not provide definitions
for them. Therefore, we define the visual, audio, haptic, and sensor-based modalities
as follows:

• Visual-based: The visual-based modality includes any state changes that a camera
sensor can capture, convey meaning and can be used to describe the user’s intention
to interact or present visual feedback.

• Audio-based: The audio-based modality contains all actions and feedback that include
sound perception and sound stimuli.

• Haptic-based: The haptic-based modality defines all interactions that can be perceived
through the sense of touch or executed through graspable-tangible objects.

• Sensor-based: Finally, the sensor-based modality includes all interactions requiring
any sensor to capture information regarding an action or transmit feedback back to
the user, besides visual, auditory, haptic, taste, and smell inputs/outputs. An example
of this modality includes the pressure detection method.

2.3. Context

Context defines the conceptual framework through keywords used by researchers to
describe their work in publications. A context is a subcategory of a modality that abstractly
expresses specific interactions without fully explaining them. The usually adopted pattern
comprises a noun followed by the word “based” to describe the base context, such as
gesture-based, speech-based, or touch-based. At this point, it is worth noticing that the
word “based” follows both a modality and a context, resulting in a repetitive naming
convention for an interaction method (covered in the following subsection). We have
decided to keep it this way in the taxonomical table, as the research community widely
adopts these terms, and in most cases, these are used separately. With that being said,
“a method of interaction that belongs in the marker-based context of the visual-based
modality” is a sentence that conveys meaning and immediately positions the method in
our proposed table.

2.4. Method

An interaction method is a keyword combination that describes or includes a series of
coordinated procedures used to accomplish an interaction task. A pattern that researchers
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and inventors usually adopt to describe their methods comprises two parts, the first one
to be the base medium of interaction and the second one to be a verb or a noun that
defines the action to be performed. For example, eye gaze detection and body posture analysis
are simple and easy to understand. However, “optical mouse sensor attached to finger”
could be renamed as a finger motion tracking method in the motion-based context of the
sensor-based modality. The techniques used to exploit a method should be avoided as part
of the naming, as the resulting method names (e.g., YOLO hand gesture recognition and
R-CNN hand gesture recognition, etc.), violate several ground rules previously defined,
such as redundant ideas or inability of inducing lateral thinking. However, some methods
presented in the final model-based diagram (e.g., fiducial marker recognition and infrared
marker recognition) overlap in concept. Nevertheless, they are included as they induce
lateral thinking.

3. Research Results

Before analyzing each modality, a brief state-of-the-art review is presented to identify
current trends. In a recent study, Rokhsaritalemi et al. stressed that “mixed reality is an
emerging technology that deals with maximum user interaction in the real world compared
to other similar technologies” [58]. The impact of augmented reality on a user’s satisfaction
in numerous applications in the fields of engineering [59], archaeology [60], medicine [61],
or education [62] cannot be questioned. Nevertheless, separating the physical world from
the virtual has a significant impact on the user’s immersion level. This enforced the de-
velopment of mixed reality environments and upgraded augmented reality interactions
to become more natural and include more aspects of the physical world. Chen et al. in
2017 [63] proposed a framework to boost the user’s immersion experience in augmented
reality through material-aware interactions by training a neural network for material recog-
nition. In 2018, Chen et al. [64] mentioned that semantic understandings of the scene
are necessary for mixed reality interactions to become realistic. The importance of struc-
tural information of physical objects is inextricably connected with proper augmentation
and placement, but natural interactions between virtual and real objects require semantic
knowledge. We have noticed a lack of publications related to material-aware MR interac-
tions, and it seems that more research needs to be done in this field. Context-aware and
material-aware interactions can lead to realistic physically-based sound propagation and
rendering. In 2018 [65], Serafin et al., in their work on sonic interactions in virtual reality,
concluded that the auditory outcomes of sound synthesis are not yet indistinguishable from
real ones. Sonic interactions involve the techniques of sound propagation [66] and binaural
rendering for binaural hearing [67] to provide immersive action and environmental sounds.
An example includes the sound of the footsteps of a virtual man walking in a grass field.
Through context-aware and material-aware interactions, the sound propagation algorithm
would “consider” the material of the grass and the open area to generate the sound. The
same material would sound differently inside a cave.

3.1. Visual-Based Modality

The visual-based modality includes any state changes that a camera sensor can cap-
ture, convey meaning, and can be used to describe the user’s intention to interact or
present visual feedback. Figure 2 visualizes all the contexts and methods identified
for the visual-based modality. A detailed review for each context is presented in the
following subsections.
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There are two ways of interacting with or visually perceiving a mixed reality environ-
ment. As previously stated, an MR environment is where the real and the virtual coexist.
Thus, two of the main ways of visual coexistence are [68]:

• Optical see-through systems (OST): by displaying digital objects in a semi-transparent
screen where real objects can be directly perceived through the glass.

• Video see-through systems (VST): by displaying digital objects on a screen together
with real objects captured by a camera sensor, commonly used by smartphones in AR.

3.1.1. Gesture-Based

When interacting through the gesture-based context, computers get visual input and
recognize body language without any other sensory information. Eye gaze detection is
included in this context of interaction. It is characterized by two major issues: (a) avoidance
of unintended actions and (b) limitations related to eye movement accuracy. The gaze and
dwell interaction model [69] is used for this method, as described by Microsoft [70], where
basically the user needs to look at an object and retain this action by staring to select it. It has
a high accessibility rate [71] as even severely constrained users can perform this interaction.
In 2017, Piumsomboon et al. explored the advantages of this interaction by exploiting some
of the basic functionalities of the human eye [72]. This method takes advantage of the eye
inertial and the natural vestibulo-ocular reflex (the ability to lock a target regardless of
head movements) and is used with head-mounted displays. The authors conclude that
more research should be done analyzing the collected large-scale eye movement tracking data
and improving user experience. Jacob [73] examined techniques and challenges related
to eye movement interactions. He proposed an approach based on separating the actual
data (eye movements) from noise and then estimating the user’s intention of interaction.
An interesting interaction method related to the eyes is pupil dilation detection. In [74], the
authors used this method as a reliable indicator of cognitive workload.

In 2017 Samara et al. [75] performed task classification in HCI via the visual channel.
The authors combined facial expression analysis and eye-gaze metrics for computer-based
task classification. The outcome was that these two interaction methods combined resulted
in higher classification accuracy. Facial-expression interactions exploit the face detection [76]
method and can be used in controlling a user’s virtual avatar facial expressions [77] in facial
emotion analysis [78] and emotion recognition [79]. Face recognition [80] also exploits the face
detection method but is usually used to identify a person by facial characteristics. In 2017
Mehta et al. [81] conducted a review on human emotion recognition which could assist
in teaching social intelligence in machines. Techniques commonly used to exploit emotion
recognition and emotion analyses methods include, without being limited to, the geometric
feature-based processes [82] and machine learning [83].

In the context of emotion analyses and human psychology, another method interprets
body language. The body movements in immersive realities and how they enhance the
sense of presence is examined in-depth by Slater’s and Usoh’s work [84]. In 2020 Lee [85]
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applied the Kinect Skeletal Tracking (KST) System in an augmented reality application to
improve the social interaction of children with autism spectrum disorder (ASD). They used
a Kinect camera to scan the therapist’s body gestures and visualized them on a 3D virtual
character. In another work [86], the authors used a webcam exploiting the user’s body
movement tracking method to interact with the AR system. The user had to do simple tasks
like jumping, stretching, or boxing to “hit” the correct answers presented in the virtual
world. Such methods utilizing physical exercise make the learning process more appealing
to students of younger ages. Umeda et al. [87] exploited the body posture analysis method
to locate a person’s two hands perceived by a Firewire camera and superimpose artificial
fire on them in real time. Algorithms of hand tracking and gesture recognition are used
to detect the gestures through a camera sensor and perform functions accordingly. In
2016 Yousefi et al. [88] introduced a solution for real-time 3D hand gesture recognition. They
used the embedded 2D camera of a mobile device, supporting 2D and 3D tracking, joint
analysis and 10+ degrees of freedom. They accomplished these features by pre-processing
the image to segment the hand from the background and matching the normalized binary
vector outcome with gestures already stored in a database. Some of the issues to be
further examined as regards the hand-gestures interaction method are (a) the efficiency of
gesture recognition algorithms, (b) the efficiency on low contrast environments, (c) high
consumption of computing resources, (d) lack of haptic feedback, and (e) hand occlusion
with the augmented scene. However, the applications of hand gestures in real-life scenarios
are unlimited due to the naturalness of the interaction. MixFab [89] is an example of how
this interaction method can be helpful to non-expert users and allow them to perform
tasks in a 3D environment with ease. The authors, Weichel et al., present this application
prototype facilitating the manipulation of 3D objects by hand gestures and have them
3D printed without the need for any 3D modelling skills. Yang and Liao [90] utilized
hand-gesture interactions to create interactive experiences for enhancing online language
and cultural learning.

The virtual controls handling method of interaction refers to any interactivity between
the user and a virtual control panel. In [91], Porter et al. demonstrated a prototype
system that projects virtual controls onto any surface, using finger-tracking techniques to
understand the user’s intention of interaction with the virtual control panel. One of the
benefits of the virtual controls interaction method is that any control component (virtual
button, display, etc.) is rearrangeable. Therefore, its ergonomic design can vary to satisfy
different needs and users. Besides hand gestures, they used 3D tabletop registration to
place the virtual objects at any location on their tabletop.

3.1.2. Surface-Based

Surface detection is an interaction method of the surface-based interaction context in
which the geometry, position, or rotation of a surface is considered in the interaction. Telep-
resence, the experience of distant worlds from vantage points [92], is a field where surface
detection interactions can be applied to create realistic representations of the remote world
to surpass the virtual–real occlusion problem. This method is commonly based on algo-
rithms that provide solutions in the simultaneous localization and mapping (SLAM) [93]
computation problem where both the point of view of an unknown environment and the
user’s position in it are updated and need to be tracked [94]. It is also used in marketing
applications that exploit the advantages of immersive environments, such as the IKEA
app [95]. In [96], the authors state that one of the well-designed features such applications
should contain, among others, is “match between system and the real world”, which refers
to scaling and positioning virtual objects in the real world properly. In engineering, a
frequently used method used for interactions is the surface analysis method. This method is
somewhat more sophisticated than surface detection. It is used to analyze geometries and
predict user intention of assembling different compartments [97] or interact with flexible
clay landscapes to create new terrain models with surface refinement [98]. Surface refinement,
another interaction method of the surface-based context, describes the techniques that
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alter the geometry or the material of a natural surface. Punpongsanon et al. demonstrated
SoftAR [99], an application capable of visually manipulating the haptic softness perception.
The authors proposed that by virtually exaggerating the deformation effect of a material, it
is possible to alter the haptic perception of the object’s softness. Such interactions also have
applications in realistic representations of mixed reality environments, such as a virtual
object projecting shadow onto a natural surface or a virtual light source to illuminate an
actual surface [100]. In [101], the authors present the interaction model and the techniques
that lead to a successful application of instant indirect illumination for dynamic mixed
reality scenes. For the placement of the 3D models in the MR environment, they used
marker-based interactions.

3.1.3. Marker-Based

Marker-based interactions contain all interactions in immersive environments sup-
ported by marker tags, such as ARTag markers [102]. Onime et al. [103] performed a
reclassification of markers for mixed reality environments based, among other things, on
the level of realism, the level of immersion and visibility. However, not all markers are
suitable for marker-based interaction. In [104], Mark Fiala mentions that Data Matrix,
Maxicode, and Quick Response (QR) codes are ideal for conveying information when held
in front of a camera and not localized. Thus, they are not suitable to be used as a fiducial
marker, as is needed for applications of immersive realities. In contrast, InterSense [105],
Reac-TIVision [106], Cyber-code [107], Visual Code [108], Binary Square Marker [109],
Siemens Corporate Research (SCR) [110], and BinARyID [111] are several examples of fidu-
cial marker systems that can be used in AR and MR applications. Mateos [112] proposed
AprilTags3D that improves the accuracy of fiducial marker recognition of AprilTags in field
robotics with only an RGB sensor by adding a third dimension to the marker detector.
In [113], Wang et al. used the infrared marker recognition method and proposed an AR system
for industrial equipment maintenance. As the markers are infrared and invisible to the
naked eye, they do not cause any visual disturbance to the user [114]. A camera capable of
capturing infrared light can detect information from infrared markers regarding position
and rotation and successfully superimpose virtual objects in the real environment.

3.1.4. Location-Based

In a recent paper, Evangelidis et al. [11] demonstrated an application prototype that
constitutes a continuation of the research proposal development called Mergin’Mode [115].
Their demonstration used the QR code recognition method to locate a user in the real world
and serve virtual objects presented in an MR environment. In addition, QR codes contain
information regarding the user’s orientation and which content should be delivered from
several predefined virtual worlds created to promote cultural heritage. Each observation
point (the stations where the QR codes are located) exposed specific interactions in selecting
a virtual agent to obtain information. In [116], Stricker et al. used the image registration
method to determine the user’s position and serve virtual content. The technique they
describe needs a sufficient number of calibrated reference images stored in a database and
requires a continuous internet connection. However, this method can provide the user’s
position accurately, thus improving the interaction experience.

3.2. Audio-Based Modality

The audio-based modality contains all actions and feedback, which are included in
sound perception and sound stimuli. Auditory stimuli are essential in human understand-
ing of the environment as contextual information provides situational awareness. Through
auditory inputs, one can obtain information beyond visual boundaries (places out of sight,
behind walls, etc.). Thus audio-based interactions can improve the immersive experience,
making it “feel natural” and closer to the human way of experiencing reality. Figure 3
presents all the contexts and methods identified for the audio-based modality. Afterwards,
a detailed analysis follows for each context.
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3.2.1. Sound-Based

Sound source recognition and sound visualization are two methods Shen et al. used
in [117] to augment human vision in identifying sound sources for people with hearing
disabilities. The system can successfully perform identification based on recognition
algorithms that exploit the microphone’s capabilities and AR tags placed on variant objects
to position a virtual object that indicates the sound source. Rajguru et al. [118] reviewed
research papers to determine challenges and opportunities in spatial soundscapes. Spatial
soundscapes exploit the spatial sound perception method to enhance situational awareness.
Audio superimposition is another method that is commonly used in audio augmented reality.
In [119], the authors Harma et al. combined virtual sounds with real sounds captured by a
microphone and reproduced them with stereo earphones. However, the users that utilized
this method expressed difficulties in separating the virtual from the real sounds.

Sound synthesis, often used in real time for immersive realities, includes the techniques
and algorithms that estimate the ground reaction force based on physical models exploited
by a sound synthesis engine. Nordahl et al. [120] proposed a system that affords real-time
sound synthesis of footsteps on different materials. To feed the sound synthesis engine,
they used inputs regarding the surface material. For solid surfaces (metal and wood), they
exploited the impact and friction model to simulate the act of walking and the sound of
creaking wood accordingly. For aggregate surfaces (gravel, sand, snow, etc.), they further
enhanced the previous models by using some reverberation by convolving in real time
the footstep sounds with the impulse response recorded in different indoor environments.
In addition, sound synthesis combined with sound spatialization can create realistic environ-
mental sounds. Verron et al. [121] presented a 3D immersive synthesizer dedicated to
environmental sounds. Based on Gaver’s work [122], three basic categories concerning en-
vironmental sounds stood out: liquid sounds, vibrating objects, and aerodynamic sounds.
The proposed system reduces the computational cost per sound source compared with
implementations and constitutes a reliable tool for creating multiple sound sources in a
3D space.

3.2.2. Speech-Based

Besides engineering, sound-based interactions can produce benefits in education by
exploiting speech recognition. Hashim et al. [123] developed an AR application to enhance
vocabulary learning in early education. The authors integrated visual scripts for orthogra-
phy and audio for phonology. As a result, they concluded that such applications provide
high levels of user satisfaction and can significantly affect pronunciation as students repeat
words and phrases until they get correct feedback. In Billinghurst et al.’s [124] work, the
authors modified the VOMAR application [125]. They added the Ariadne [126] spoken
dialogue system using Microsoft’s Speech API [127] as a speech recognition engine to
allow people to rapidly put together interior designs by arranging virtual furniture in
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empty rooms. Speech recognition is commonly used for computers to understand auditory
commands and execute tasks. Among others, the authors used in their application the
“select”, “move”, and “place” commands. Having an answer to the question “what are they
saying”, the next step is to answer the question “who is speaking”. Speaker recognition is the
method of interaction where machines can produce several pieces of information about the
person who is speaking or even identify the person when the information provided can
support that. In Hanifa et al.’s [128] exceptional review, several research papers regarding
the speaker recognition method were included. They further classified this method in identi-
fication, verification, detection, segmentation, clustering, and diarization and proposed
issues regarding variability, insufficient data, background noise, and adversarial attacks.
Chollet et al. [129] reviewed technological developments in augmented reality worlds,
emphasizing speech and gesture interfaces. They stressed that speaker verification could
be used for authentication purposes before starting a dialogue, for example, regarding a
bank transfer in a virtual world.

Lin et al. [130] designed and built an emotion recognition system in smart glasses to
help improve human-to-human communication utilizing speech emotion analysis. The target
group for such applications that could benefit the most includes doctors and autistic adults.
The authors collected speech sentiments and speech intonation data using Microsoft’s
Azure API and their intonation model to analyze the collected data. The system communi-
cates the detected emotions to the users via audio, visual, or haptic feedback in real time.
Text to speech synthesis is an interaction method that synthesizes auditory outputs based
on texts. Mirzaei et al. [131] combined speech recognition, speech to text synthesis, and text
to speech synthesis methods to support deaf people. The system they presented captures
the narrator’s speech, converting it into texts, and displays it to the user’s AR display.
Additionally, the system converts typed text into speech to talk back to the narrator if the
user wants to respond.

3.2.3. Music-Based

Musical interactions refer to all methods related to sounds arranged in time that
composite the melody, harmony, rhythm, or timbre elements. In Altosaar et al.’s [132]
paper, the authors present a technique of interacting with virtual objects to produce musical
pre-recorded sounds. As the musician manoeuvers VR controllers and collides with the
virtual objects, musical feedback is played. In addition, the musician can interact with full-
body movements to produce music, a method that can enhance musical expression. Bauer
and Bouchara [133], exploiting the music visualization method, presented a work in progress
where a user can visualize the parts of a music clip (intro, middle and outro) and individual
audio components, such as kick, synthesizer or violins. Then, the user can manipulate
these components, altering the final music outcome.

3.2.4. Location-Based

Bederson [134] proposed a technique that exploits the location-aware audio superimposi-
tion method to enhance the social aspects of museum visits. An infrared transmitter detects
the visitor’s location, which signals a computer to play or stop playing a pre-recorded
description audio message. Paterson et al. [135] stressed that immersion, besides inter-
action, involves the “creation of presence”, which is the feeling of being in a particular
place. They have created a location-aware augmented reality game where the user navi-
gates a field looking for ghosts. Based on the user location, sound effects were triggered
indicating the paranormal activity level, thus exploiting the location-aware sound effects
method. Lyons et al. [136] presented an RF-based location system to play digital sounds
corresponding to the user’s location. They have created a fantasy AR game where the
user enters a game space (convention hall, gallery, etc.) with RF beacons set up. Through
superimposed environmental sounds, sound effects, and narrator’s guidance, the story
of the game evolves. In another research paper [137], the authors described the technical
aspects of a smartphone application that helps blind people experience their surrounding
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environment. They utilized location-aware sound effects and non-spatialized sound details,
such as the full name of their location. It is worth mentioning that navigation accuracy
posed an important challenge in both previous papers.

3.3. Haptic-Based Modality

The haptic-based modality defines all interactions that can be perceived through the
sense of touch or executed through graspable-tangible objects. Figure 4 visualizes the
contexts and methods that we identified for the haptic-based modality. In the following
subsections, we explain each individual context.
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3.3.1. Touch-Based

Yang et al. [138] presented an authoring tool system for AR environments using
single-touch and multi-touch interaction methods of the touch-based context of interaction.
Single-touch refers to any touch interaction that requires only one finger, while multi-touch
benefits from more than one finger. These methods make the ‘select’ and ‘manipulate’ tasks
available for virtual objects through the touch and drag interaction model. Jung et al. [139]
proposed another on-site AR authoring tool for manipulating virtual objects, utilizing the
multi-touch method for mobile devices. They presented two interaction tasks, selection and
manipulation (select, translate, and rotate), which can be executed simultaneously, and
stated that this method is convenient for non-expert users. Kasahara et al. [140] extended
the touch interaction by manipulating (moving and rotating) the device. Later, Yannier
et al. [141] examined the effect of mixed reality on learning experiences. In [142], the authors
created a multi-touch input solution for head-mounted mixed reality systems, making
any surface capable of interaction similar to touchscreens. The problems they provide
solutions to are relative to the constant user’s motion that constrain the use of a simple
static background model. This approach also provides a solution to the haptic feedback
problem of many of the other HMD available interactions. Zhang et al. [143] examined the
haptic touch-based interactions that can take place on the skin. They proposed ActiTouch,
a novel touch segmentation technique that uses the human body as a radio frequency
waveguide that enables touchscreen-like interactions.

3.3.2. Marker-Based

Jiawei et al. [144] suggested an interactive pen tool that transforms the actions in real
space into the virtual three-dimensional CAD system space. To achieve that, they used
fiducial marker recognition for markers placed on top of a simple pen to capture its position
and orientation. Then, the system could locate any movements and draw virtual lines
and shapes into the CAD system space. In [145], Yue et al. presented WireDraw, a 3D
wire object drawing using a 3D pen extruder. They also used fiducial marker recognition
for identification purposes in the mixed environment and superimposed virtual objects as
indicators to help the user design high-quality 3D objects. Yet another pen-based interaction
is demonstrated by Yun and Woo [146], this time using a space-occupancy-check algorithm.
First, they used a depth map to capture the 3D information of the natural world, and
then the algorithm checked if any point in a depth map collides with the geometry of the
virtual object. Haptic-based modality also utilizes the RFID marker recognition method.
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For example, Back et al. [147] described an interaction that can augment the experience of
reading a book with sound effects. To achieve that, they used RFID tags embedded into
each page and an electric field sensor located in the bookbinding to sense the proximity of
the reader’s hands and control audio parameters.

3.3.3. Controls-Based

Leitner et al. [148] presented IncreTable, a mixed reality tabletop game that exploits
the digital controls handling interaction method. The users can perform interactions by
utilizing digital pens with an embedded camera that tracks Anoto patterns printed on a
special backlit foil. Hashimoto et al. [149] employed a joystick-based interaction to help the
user drive a remote robot. The virtual 3D axes (x,y,z) were color-displayed on top of the
real robot, which the user observed from a camera. Through the color indications of the
robot’s local axes system, the user could decide how to move the joystick to complete a
task. Chuah et al. [150] used MR applications to train students in medical examinations
of vulnerable patients (e.g., children with speaking disabilities). They have created two
interfaces for interaction; a natural interface that utilizes a tablet for drawing shapes and a
mouse-based interface for the same purpose. A final survey showed that the participants
preferred the natural interface from the mouse-based interaction. Finally, Jiang et al. [151]
proposed HiKeyb, a typing system with a style of mixed reality. They used a depth camera,
a head-mounted display (HDM) and a QWERTY keyboard to enhance the immersive
experience of typing in MR.

A practical method that allows haptic interactions is capacitive sensing. This method
uses the measurable distortion that an object with electrical characteristics (such as ca-
pacitance) creates within an electric field oscillating at low frequency [152]. Poupyrev
et al. [153] proposed Touché; a novel swept frequency capacitive sensing technique that can
detect a touch event and recognize complex human hands and body configurations with
extremely high accuracy. Kienzle et al. [154] proposed ElectroRing, a 3D-printed wearable
ring similar to an active capacitive sensing system that can detect touch and pinch actions.
Finally, HydroRing [155] was presented by Han et al., which is yet another wearable device
that can provide tactile sensations of pressure, vibration, and temperature on the fingertip,
enabling mixed-reality haptic interactions using liquid travelling through a thin, flexible
latex tube.

3.3.4. Feedback-Based

Besides input functionality, the haptic-based modality also includes a feedback-based
context of interaction. An exceptional review was published by Shepherd et al. [156]. The
authors present a study on elastomeric haptic devices and stress that in haptics we have
seen much slower technological advances than visual or auditory technologies because the
skin is densely packed with mechanoreceptors distributed over a large area with complex
topography. Their review includes haptic wearables, haptic input devices (dataglove,
VR tracker, VR controller), haptic feedback output methods (direct force feedback, force
substitution-skin deformation, shape morphing-surface, virtual shape rendering with
lateral force control), and haptic perception. Talasaz et al. [157] explored the effect of
force feedback or direct force feedback on the performance of knot tightening in robotics-
assisted surgery. They stressed that presenting haptic force feedback to the user performing
such tasks increased the effectiveness, although this is a debatable subject [158]. Another
example of the use of the direct force feedback method is PneumoVolley [159]. The authors,
Schon et al., presented a wearable cap prototype that is capable of providing pressure
feedback to simulate the interaction between a virtual ball and the user’s head through
pneumatic actuation. Schorr and Okamura [160] presented a device wearable on the
fingertip, capable of transmitting haptic stimuli exploiting the skin deformation method as a
force substitution. In a greater depth, a review of wearable haptics and their application
in AR is presented by Meli et al. [161]. Yang et al. [162] used the shape morphing method.
They mentioned several shape-morphing surfaces, such as (a) the shape display inFORM,
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(b) a bio-inspired pneumatic shape-morphing device based on mesostructured polymeric
elastomer plates capable of fast and complex transformations, and (c) rheological test
results of MR fluid affected by a magnetic field. They stated that morphing devices are not
yet mature, but they have explosive potential.

3.4. Sensor-Based Modality

The sensor-based modality includes all interactions requiring any type of sensor to
capture information regarding an action or transmit feedback to the user, besides visual,
auditory, haptic, taste, and smell inputs/outputs. Figure 5 presents all the contexts and
methods recognized for the sensor-based modality. A detailed review for each context is
presented in the following paragraphs.
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3.4.1. Pressure-Based

Kim and Cooperstock [163] used the pressure detection method and proposed a wear-
able mobile foot-based surface simulator whose haptic feedback varies as a function of
the applied foot pressure. Their purpose was to simulate the surface of a frozen pond
and include “crack” sound effects based on the applied foot pressure. Qian et al. [164],
exploiting the center of pressure trajectory method, combined floor pressure data for both
feet to improve recognition of visually ambiguous gestures. The outcome was a sys-
tem reliable in recognizing gestures from similar body shapes but with different floor
pressure distributions.

3.4.2. Motion-Based

Minh et al. [165] designed a low-cost smart glove equipped with a gyroscope/
accelerometer and vibration motors. Using finger motion tracking and hand motion tracking,
hand and finger motions can be detected through the glove, including angular move-
ments of the arm and joints. Using the same concept, Zhu et al. [166] proposed another
smart glove capable of multi-dimensional motion recognition of gestures to achieve haptic
feedback. The glove is equipped with piezoelectric mechanical stimulators that provide
feedback when interacting with a virtual object. In another research paper [167], the au-
thors used Microsoft’s Hololens HMD, exploiting the head movement tracking and head
gaze detection methods. They introduced a novel mixed reality system for nondestructive
evaluation (NDE) training, for which, after a user study, they concluded that such systems
are preferred for NDE training. In [168], Gul et al. presented a Kalman filter for head-
motion prediction for cloud-based volumetric video streaming. Practically, server-side
rendering systems, although they can provide high-resolution 3D content in any device
with an acceptable internet connection speed, suffer from interaction latency. Although the
research results were promising, the authors stressed that more research is necessary to
examine several shortcomings, including predicting spherical quantities and more accurate
predictions of head orientations.
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3.4.3. Location-Based

Another context in the sensor-based modality that provides interaction for AR and
MR environments is the location-based context. Radio frequency identification (RFID) uses
passive, active, or semi-passive electronic tags that store a small amount of data, usually
an ID or a link, and need readers to obtain the data from the tags. The communication of
readers with the tags is made through RF [169]. Tags are deployed across the environment,
and readers are carried on or attached to the positioning subjects. Benyon et al. [170], in their
work “Presence and digital tourism”, mention that using GPS/GNSS coordinates and near-
field communication (NFC) can create location-based triggered events for user interaction.
Schier [171] designed a novel model for evaluating educational AR games. Using the
location-aware triggered events method, the participants can interact with virtual historical
figures and items, which GPS triggers to appear on their personal digital assistant (PDA).
Other ways of acquiring the user’s location to achieve interaction regarding navigation
or present information include, without being limited, dead reckoning and WiFi [172,173],
visible light communication and cellular networks (GSM, LTE, 5G) [174,175].

3.4.4. IoT-Based

Since the term IoT was first used in the late 1990s by Ashton [176], exceptional research
work has been published. Through IoT-based interactions, it is easier to provide humans
with situational and context awareness, enhance decision-making in everyday tasks, and
control any type of system and offer novel interactions to disabled individuals. Atsali
et al. [177] used open-source web technologies, such as X3DoM, to integrate 3D graphics
on the web. Their paper described a methodology that connects IoT data with the virtual
world and the benefits of using web-based human–machine interfaces. They used the
Autodesk 3ds Max Design software to develop a 3D scene, including a four-apartment
building. An autonomous, self-sufficient IoT mixed reality system was installed to exploit
the infrastructure control and data monitoring methods for the water management infrastruc-
ture. In another work, Natephra and Motamedi [178] installed markers and an IoT system
in an apartment for monitoring indoor comfort-related parameters, such as air temperature,
humidity, light level, and thermal comfort. As the mobile device scans a marker, it can
acquire real-time data transmitted by the sensors and visualize them as augmented reality
content. Phupattanasilp et al. [179] introduced AR-IoT, a system that superimposes IoT
data directly onto real-world objects and enhances object interaction. Their purpose was
to achieve novel approaches to monitoring crop-related data, such as coordinates, plant
color, soil moisture content, and nutrient information. Other applications of IoT-based
data monitoring methods include fuel cell monitoring [180], campus maintenance [181],
and environmental data monitoring utilizing serious gaming [182]. Using the IoT-based
context, we can also interact with virtual agents to “humanize” interactions with objects
or living organisms. Morris et al. [183] developed an avatar to express a plant’s “emotion
states” for plant-related data monitoring. The IoT system calculates arousal and valence
based on soil, light, and moisture levels. By turn, the virtual avatar is designed to express
these states on behalf of the plant. For example, the avatar will grow large and angry if the
plant is left unwatered or be happy when the plant’s soil moisture is at the proper levels.

4. Discussion

This paper describes a modality-based interaction-oriented taxonomy (Figure 6) aim-
ing to organize existing interaction methods and present a complete view of the heretofore
accomplishments after a thorough review of more than 200 relevant papers. A significant
challenge this venture undertakes to address is the lack of a well-defined and structured
schema representing human–computer interaction in the context of mixed and augmented
reality environments. For example, representations commonly included in research studies
classify the visual-based modality by method (e.g., gesture recognition) and the sensor-
based modality by the device (e.g., pen-based or mouse-based) [33]. Other representations,
generally accepted by the research community, organize interactions by research areas,
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thus avoiding defining an in-depth classification [30]. These research areas are described
using methods (e.g., facial expression analysis), umbrella terms (e.g., musical interaction),
devices (e.g., mouse and keyboard), and keywords that arbitrarily define a research area
such as “taste/smell sensors”. Our classification approach is based on several established
theories, such as the theory of modalities and the theory of perception, following basic
taxonomy rules and aspiring to eliminate inconsistencies in previous classifications.
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Nevertheless, it should be stressed that the scope of the presented work is not to
elaborate or evaluate the interaction methods gathered in terms of comparable parame-
ters such as efficiency, popularity, applicability, impact on human beings, nor to present
challenges and limitations. Besides, such a task would require a significant effort only to
identify existing implementations and applications. Rather, the proposed work attempts
to identify a sufficient amount of interaction methods and organize them exploiting well-
defined taxonomy rules. These rules will, in turn, place them in the field of the context
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applied, such as gesture-based, marker-based, location-based, and others, and the asso-
ciated modality, i.e., visual/audio/haptic/sensor-based. In other words, the scope of
this review paper is only to identify distinct interaction methods and present them in a
well-defined structured classification.

When defining the taxonomy rules, one of the principal decisions was that although an
interaction method may be present in multiple contexts, we consider only those resulting in
interactivity in an immersed environment (interaction-oriented classification). For example,
in mixed reality projects, QR codes are employed to identify a user’s location and therefore
perform an interaction based on that location. Thus, although a QR code is usually placed
in the marker-based context, in terms of interactivity, it is strictly located in the location-
based context since location is what triggers the interaction and not the actual QR code
image representation. Examples where a fiducial marker system actively participates in
the interaction include ARTag and AprilTag systems. Such systems enable marker-based
augmented reality, where 3D virtual objects are positioned over the identified markers. The
rotation and angle of view are constantly acquired from the markers through perspective
transformations. Therefore, the latter can be included in the marker-based context.

We faced several challenges throughout our research process, such as fragmentation
of abstract umbrella terms (e.g., musical interactions) and semantically identifying new
context categories (e.g., music-based). This process revealed their respective methods
(e.g., musical feedback and music visualization), thus clarifying the actual contribution of
previous work and highlighting research gaps. It is noteworthy that while categorizing
the recognized modalities with their respective contexts in a graph, some modalities
share context (Figure 7). An interesting future study may present modalities, contexts,
and methods as RDF triples, representing the proposed taxonomy semantically. As this
paper makes the first attempt at classifying human perceptual modalities, further research
is required to establish a robust representation. Furthermore, this taxonomy may be
readjusted to include a wider field of modalities, such as the smell-based and taste-based
modalities not covered in this paper. The proposed contexts and methods may also be
enriched, and the final taxonomy can be expanded to cover the techniques used in each
method. For example, the hand gesture recognition method may include techniques that
exploit the YOLO (you only look once) algorithm or R-CNN (region convolutional neural
network). Expanding the classification to include the techniques used for each method can
later connect methods with testing frameworks and methodologies. Well-defined testing
frameworks can provide a schema based on which users can endorse or disapprove an
interaction model and, therefore, provide ratings generated through a shared process.
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