
applied  
sciences

Article

Discrete Semantics-Guided Asymmetric Hashing for
Large-Scale Multimedia Retrieval

Jun Long 1,2,3, Longzhi Sun 1, Liujie Hua 1,2 and Zhan Yang 2,3,∗

����������
�������

Citation: Long, J.; Sun, L.; Hua, L.;

Yang, Z. Discrete Semantics-Guided

Asymmetric Hashing for Large-Scale

Multimedia Retrieval. Appl. Sci. 2021,

11, 8769. https://doi.org/

10.3390/app11188769

Received: 13 July 2021

Accepted: 12 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
junlong@csu.edu.cn (J.L.); sunlongzhi@csu.edu.cn (L.S.); liujiehua@csu.edu.cn (L.H.)

2 Network Resources Management and Trust Evaluation Key Laboratory of Hunan Province,
Central South University, Changsha 410083, China

3 Big Data Institute, Central South University, Changsha 410083, China
* Correspondence: zyang22@csu.edu.cn

Abstract: Cross-modal hashing technology is a key technology for real-time retrieval of large-scale
multimedia data in real-world applications. Although the existing cross-modal hashing methods
have achieved impressive accomplishment, there are still some limitations: (1) some cross-modal
hashing methods do not make full consider the rich semantic information and noise information
in labels, resulting in a large semantic gap, and (2) some cross-modal hashing methods adopt the
relaxation-based or discrete cyclic coordinate descent algorithm to solve the discrete constraint
problem, resulting in a large quantization error or time consumption. Therefore, in order to solve
these limitations, in this paper, we propose a novel method, named Discrete Semantics-Guided
Asymmetric Hashing (DSAH). Specifically, our proposed DSAH leverages both label information
and similarity matrix to enhance the semantic information of the learned hash codes, and the `2,1 norm
is used to increase the sparsity of matrix to solve the problem of the inevitable noise and subjective
factors in labels. Meanwhile, an asymmetric hash learning scheme is proposed to efficiently perform
hash learning. In addition, a discrete optimization algorithm is proposed to fast solve the hash
code directly and discretely. During the optimization process, the hash code learning and the hash
function learning interact, i.e., the learned hash codes can guide the learning process of the hash
function and the hash function can also guide the hash code generation simultaneously. Extensive
experiments performed on two benchmark datasets highlight the superiority of DSAH over several
state-of-the-art methods.

Keywords: cross-modal retrieval; discrete optimization; hashing

1. Introduction

In recent years, due to the rapid development of multimedia Internet of Things tech-
nologies, there has been an explosive growth in the amount of multimedia network data.
Consequently, the current unimodal search methods can no longer meet the multime-
dia data retrieval requirements in the complex environment of the new information era.
Therefore, cross-modal retrieval methods [1–3] have received increasing attention from the
information retrieval community and have become a hot research topic in both academia
and industry. Specifically, given a query in one modality (such as text), users expect to
return its semantically related modality (text) or different modalities (such as images or
videos). For decades, as a branch of nearest neighbor search (NNS), the hashing technique
has been an active research field in information retrieval community due to the following
advantages: (1) Lower storage cost and (2) improved retrieval speed with the hardware-
friendly bit-wise XOR and bit-count operations [4]. In the hash code learning process,
the learned hash codes should meet a condition, that is, similar instances have similar hash
codes in the Hamming space, and vice versa. Among the practical applications are the
image retrieval [5,6] and person re-identification [7,8].
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According to the learning principle, existing cross-modal hashing methods can be
mainly divided into the following categories: Unsupervised cross-modal hashing meth-
ods [9–15]: Unsupervised hashing methods focus on discovering the intra- and inter-
relations of multiple heterogeneous modalities without label information to learn the hash
codes and corresponding hash functions. However, due to the lack of label information,
the retrieval performance of unsupervised cross-modal hashing methods will be affected

accordingly, i.e., x
f (x;`)−−−→ z

d(z;ϕ)−−−→ x̂, where f (·; θ) can be considered as either a hash map-
ping function or an encoder, d(z; ϕ) can be regarded as a decoder. During the unsupervised
learning process, the key design factor of this learning paradigm is the choice of a suit-
able metric that can measure the distance between x and x̃, i.e., the distance between x, x̃
should be minimized: minθ,ϕ E||x− x̃||p, where typically p = 2. Then, the hash codes can
be computed by sgn(z). Supervised cross-modal hashing methods [16–22]: Supervised
hashing methods have obtained satisfactory retrieval results by using label information,

and have been extensively studied, i.e., x
f (x;θ)−−−→ z

c(z)−−→ L, where f (·; θ) denotes a hash
mapping function that selects certain latent representation z, c(·) denotes a classifier, sgn(·)
denotes the element-wise sign operation, L denotes the labels, and B denotes the learned
hash codes. Then, the hash codes can be computed by sgn(z).

Although supervised cross-modal hashing methods have achieved significant success,
they still have the following limitations: (1) Limited semantic utilization. Converting the
label matrix directly to the similarity matrix will lead to a semantic loss, resulting in a large
semantic gap, especially when facing multi-label datasets. (2) Inefficient learning strategy.
Some cross-modal hashing methods are based on symmetric learning strategies, resulting
in a worse retrieval performance than asymmetric learning ones. (3) Flawed optimization
strategy. As the optimization process of the hash codes is discrete, the existing optimization
strategies are mainly based on two kinds, one is to use the relaxation-based strategy, which
will lead to a large quantization error; the other is to use bit-to-bit optimization strategy, such
as Discrete Cyclic Coordinate (DCC) descent [23]. Although the problem of quantization
error is solved, optimizing the entire hash code requires k iterations, where k is the hash code
length, thus the optimization process is very time-consuming.

In order to solve the above limitations, in this paper, we proposed a novel yet simple
but effective method, named Discrete Semantics-Guided Asymmetric Hashing (DSAH).
Specifically, DSAH handles the nonlinear relations in different modalities with a kernel-
ization technique, then an asymmetric learning scheme is proposed to effectively perform
the hash function learning and hash code learning processes; meanwhile, our proposed
DSAH considers the following aspects. First, we leverage both label information and
similarity matrix to enhance the semantic information of the learned hash codes. Then,
we solve the problems of matrix sparsity and outlier processing. In addition, a discrete
optimization algorithm is proposed to solve the discrete problems. Our major contributions
can be summarized as follows:

1. A novel supervised cross-modal hashing method, i.e., DSAH, is proposed to learn
the discriminative compact hash codes for large-scale retrieval tasks. DSAH takes the
label information and similarity matrix into consideration, which can improve the
discriminative capability of the learned hash codes, and solves the problems of matrix
sparseness and outlier processing.

2. An asymmetric learning scheme with real-valued embeddings is proposed to effec-
tively learn the hash function and the hash codes.

3. Comprehensive experiments are conducted on two famous datasets. The experimental
results demonstrate that DSAH outperforms some state-of-the-art baselines.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related works. Section 3 introduces the details of the DSAH model and presents the alter-
native optimization algorithm. In Section 4, we give the results of experiments performed.
Finally, we present the conclusions in Section 5.
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2. Related Works

Cross-modal hashing retrieval has been a widely used technology in the field of
information retrieval, machine intelligence, and computer vision. As mentioned above,
cross-modal hashing retrieval technology can be divided into supervised and unsupervised
categories. However, due to the space limitation, we refer readers to some surveys [4,24]
for a more comprehensive coverage of popular hashing methods.

2.1. Unsupervised Hashing

Unsupervised hashing methods do not leverage label information for the training
dataset. For example, Local Sensitive Hashing (LSH) [25] and its variants [26,27] use ran-
dom projections to map instances into a Hamming space. Iterative Quantization (ITQ) [28]
optimizes the projection by PCA, and then learns an orthogonal rotation matrix to bridge
the quantization gap. Unsupervised semantic deep hashing (USDH) [29] uses seman-
tic information to guide the training of hash mapping function. Unsupervised Deep
Video Hashing (UDVH) [30] learns the hash codes in a self-taught manner by jointly inte-
grating discriminative video representation with optimal code learning. Neighborhood
Discriminant Hashing (NDH) [31] learns hash function by preserving the neighborhood
discriminative information in Hamming space. Collective Matrix Factorization Hashing
(CMFH) [32] learns a shared common latent space by a collective matrix factorization
algorithm, and then adopts a thresholding operation to generate the hash codes. Fusion
Similarity Hashing (FSH) [33] proposes a novel fusion similarity method for hash learning
by capturing the latent relations between different heterogeneous modalities.

2.2. Supervised Hashing

Unlike unsupervised hashing methods, supervised ones utilize the labels to improve
the retrieval performance. For example, Semantic Correlation Maximization (SCM) [34] pre-
serves the pairwise similarities of the training dataset to learn the hash functions. Semantic
Preserving Hashing (SePH) [35] constructs a new semantic affinity matrix into a probability
distribution, and then learns the hash codes by using an approximate-based scheme. Dis-
crete Cross-modal Hashing (DCH) [36] learns the hash codes in a bit-by-bit manner by using
the discrete cyclic coordinate descent (DCC) algorithm. Label Consistent Matrix Factor-
ization Hashing (LCMFH) [37] directly uses semantic labels to guide the hashing learning
procedure. Scalable Discrete Matrix Factorization Hashing (SCRATCH) [38] is a two-step
hashing method, which first generates the hash codes, and then learns the hash functions
based on the learned hash codes. Nonlinear Robust Discrete Hashing (NRDH) [39] uses a
nonlinear model to solve the generalization error caused by kernelization, and generates
compact hash codes by constructing an asymmetric hash framework and discrete optimiza-
tion algorithms. Scalable Deep Asymmetric Hashing (SDAH) [40] builds an asymmetric
unequal-dimensional hash learning framework by exploring the information content of
different modalities. Nonlinear Supervised Discrete Hashing (NSDH) [41] consists of
two parts, the first part is a semantic enhancement descriptor, which is used to extract
comprehensive latent representations of heterogeneous multimedia data, and the second
part is a fast discrete optimization module, which is used to learn discriminative compact
hash codes. Subspace Relation Learning for Cross-modal Hashing (SRLCH) [42] handles
relationships of labels in a semantic subspace to make similar instances from different
modalities closer in the binary Hamming space.

2.3. Deep Hashing

Recently, with the great success of deep learning in the field of representation learn-
ing, many deep hashing methods [13,15,40,43] have been proposed. For example, Deep
Semantic-Alignment Hashing (DSAH) [44] is an unsupervised hashing method, which ex-
plores the similarity information of different modalities and proposes a semantic-alignment
loss to learn the hash codes. Unsupervised Deep Cross-modal Hashing with Virtual La-
bel Regression (UDCH-VLR) [45] proposes a novel unified learning framework to jointly
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perform deep hash function training, virtual label learning, and regression. Deep Saliency
Hashing (DSaH) [46] is a two-step end-to-end model, which mines salient regions and
learns semantic-preserving hash codes simultaneously. Supervised Hierarchical Deep
Cross-modal Hashing (SHDCH) [47] learns the hash codes by explicitly delving into
the hierarchical labels. Deep Semantic cross-modal hashing with Correlation Alignment
(DSCA) [48] designs two deep neural networks for image and text modality separately,
and learns two hash functions. First, due to the non-smooth property of the discrete opti-
mization causing the problem of unavailable gradient in back-propagation, these methods
use the relaxation-based optimization strategies to handle the problem. Even though
high retrieval performance is considered to be achieved, these methods still have a large
quantization error and can only produce sub-optimal hash codes. Second, they all need
large computing resources (e.g., GPUs) and a massive training dataset, which makes them
fairly computationally expensive.

3. The Proposed DSAH Framework

In this section, we introduce our proposed DSAH model. The framework of DSAH is
shown in Figure 1, which consists of three main parts: hash function learning, label
alignment scheme and asymmetric learning framework. We demonstrate each part in the
following section in detail.
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family are numerous "flying frogs". 

Although a few groups are primarily terrestrial, rhacophorids are predominantly 

treefrogs which are arboreal. Mating frogs, while in amplexus, hold on to a branch, 

and beat their legs to form a foam. The eggs are laid in the foam, and covered with 

seminal fluid, before the foam hardens into a protective casing. In some species, this 

is done in a large group. The foam is laid above a water source, so the tadpoles fall 

into the water once they hatch.[1] 

The species within this family vary in size from 1.5 to 12 cm (0.59 to 4.72 in).[1] 

Like other arboreal frogs, they have toe discs, and those of the genus Chiromantis 

have two opposable fingers on each hand. This family also contains the Old World 
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A rose is a woody perennial flowering plant of the genus Rosa, in the 

family Rosaceae, or the flower it bears. There are over three hundred 

species and thousands of cultivars. They form a group of plants that 

can be erect shrubs, climbing, or trailing, with stems that are often 

armed with sharp prickles. Flowers vary in size and shape and are 

usually large and showy, in colours ranging from white through 

yellows and reds. Most species are native to Asia, with smaller 

numbers native to Europe, North America, and northwestern Africa. 

Species, cultivars and hybrids are all widely grown for their beauty 

and often are fragrant. Roses have acquired cultural significance in 

many societies. 

Elephants are large mammals of the family Elephantidae in the order 

Proboscidea. Three species are currently recognised: the African bush 

elephant (Loxodonta africana), the African forest elephant (L. 

cyclotis), and the Asian elephant (Elephas maximus). Elephants are 

scattered throughout sub-Saharan Africa, South Asia, and Southeast 

Asia. Elephantidae is the only surviving family of the order 

Proboscidea; other, now extinct, members of the order include 

deinotheres, gomphotheres, mastodons, anancids and stegodontids; 

Elephantidae itself also contains several now extinct groups, such as 

the mammoths and straight-tusked elephants. 

A dragonfly is an insect belonging to the order Odonata, infraorder 

Anisoptera (from Greek ἄνισος anisos, "unequal" and πτερόν pteron, 

"wing", because the hindwing is broader than the forewing). Adult 

dragonflies are characterized by large, multifaceted eyes, two pairs of 

strong, transparent wings, sometimes with coloured patches, and an 

elongated body. Dragonflies can be mistaken for the related group, 

damselflies (Zygoptera), which are similar in structure, though usually 

lighter in build; however, the wings of most dragonflies are held flat 

and away from the body, while damselflies hold the wings folded at 

rest, along or above the abdomen. 
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tropical trees belonging to the flowering plant genus Mangifera, 

cultivated mostly for their edible fruit. The majority of these species 

are found in nature as wild mangoes. The genus belongs to the cashew 

family Anacardiaceae. Mangoes are native to South Asia,[1][2] from 
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Bats are mammals of the order Chiroptera;[a] with their forelimbs 
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Europe, Asia, and Africa, and in New Zealand by introduction. There 

are no hedgehogs native to Australia and no living species native to 

the Americas (the extinct genus Amphechinus was once present in 

North America). Hedgehogs share distant ancestry with shrews 

(family Soricidae), with gymnures possibly being the intermediate 

link, and they have changed little over the last 15 million years.[2] 

Like many of the first mammals, they have adapted to a nocturnal 

way of life.[3] 
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to Arctic, sub-Arctic, tundra, boreal, and mountainous regions of 

northern Europe, Siberia, and North America.[2] This includes both 

sedentary and migratory populations. Rangifer herd size varies greatly 

in different geographic regions. The Taimyr herd of migrating 

Siberian tundra reindeer (R. t. sibiricus) in Russia is the largest wild 

reindeer herd in the world,[4][5] varying between 400,000 and 

1,000,000. What was once the second largest herd is the migratory 

boreal woodland caribou (R. t. caribou) George River herd in Canada, 

with former variations between 28,000 and 385,000. 
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contained one genus, but now is split into four genera and 18 species. 
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Bangladesh and northeast India to southern China and Indonesia 

(including the islands of Sumatra, Borneo, and Java). 

Also called the smaller apes or lesser apes, gibbons differ from great 

apes (chimpanzees, bonobos, gorillas, orangutans, and humans) in 

being smaller, exhibiting low sexual dimorphism, and not making 

nests.[3] In certain anatomical details, they superficially more closely 

resemble monkeys than great apes do, but like all apes, gibbons are 

tailless. 

Rabbits are small mammals in the family Leporidae of the order 

Lagomorpha (along with the hare and the pika). Oryctolagus 

cuniculus includes the European rabbit species and its descendants, 

the world's 305 breeds[1] of domestic rabbit. Sylvilagus includes 13 

wild rabbit species, among them the 7 types of cottontail. The 

European rabbit, which has been introduced on every continent except 

Antarctica, is familiar throughout the world as a wild prey animal and 

as a domesticated form of livestock and pet. With its widespread 

effect on ecologies and cultures, the rabbit (or bunny) is, in many 

areas of the world, a part of daily life—as food, clothing, a 

companion, and as a source of artistic inspiration. 

A raven is one of several larger-bodied species of the genus Corvus. 

These species do not form a single taxonomic group within the genus. 

There is no consistent distinction between "crows" and "ravens", and 

these appellations have been assigned to different species chiefly on 

the basis of their size, crows generally being smaller than ravens. The 

largest raven species are the common raven and the thick-billed raven. 

The term "raven" originally referred to the common raven (Corvus 

corax), the type species of the genus Corvus, which has a larger 

distribution than any other species of Corvus, ranging over much of 

the Northern Hemisphere. 

Monkey is a common name that may refer to groups or species of 

mammals, in part, the simians of infraorder Simiiformes. The term is 

applied descriptively to groups of primates, such as families of new 

world monkeys and old world monkeys. Many monkey species are 

tree-dwelling (arboreal), although there are species that live primarily 

on the ground, such as baboons. Most species are also active during 

the day (diurnal). Monkeys are generally considered to be intelligent, 

especially the old world monkeys of Catarrhini. 

Simians and tarsiers emerged within haplorrhines some 60 million 

years ago. New World monkeys and catarrhine monkeys emerged 

within the simians some 35 million years ago. 

The Rhacophoridae are a family of frog species, which occur in 

tropical sub-Saharan Africa, South India and Sri Lanka, Japan; 

northeastern India to eastern China south through the Philippines and 

Greater Sundas, and Sulawesi. They are commonly known as shrub 

frogs, or more ambiguously as "moss frogs" or "bush frogs". Some 

Rhacophoridae are called "tree frogs". Among the most spectacular 

members of this family are numerous "flying frogs". Although a few 

groups are primarily terrestrial, rhacophorids are predominantly 

treefrogs which are arboreal. Mating frogs, while in amplexus, hold 

on to a branch, and beat their legs to form a foam. The eggs are laid in 

the foam, and covered with seminal fluid, before the foam hardens 

into a protective casing. 
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into the water once they hatch.[1] 

The species within this family vary in size from 1.5 to 12 cm (0.59 to 4.72 in).[1] 

Like other arboreal frogs, they have toe discs, and those of the genus Chiromantis 

have two opposable fingers on each hand. This family also contains the Old World 

flying frogs, including Wallace's flying frog (Rhacophorus nigropalmatus). These 

frogs have extensive webbing between their forelimbs and hindlimbs, allowing them 

to glide through the air.
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A rose is a woody perennial flowering plant of the genus Rosa, in the 

family Rosaceae, or the flower it bears. There are over three hundred 

species and thousands of cultivars. They form a group of plants that 

can be erect shrubs, climbing, or trailing, with stems that are often 

armed with sharp prickles. Flowers vary in size and shape and are 

usually large and showy, in colours ranging from white through 

yellows and reds. Most species are native to Asia, with smaller 

numbers native to Europe, North America, and northwestern Africa. 

Species, cultivars and hybrids are all widely grown for their beauty 

and often are fragrant. Roses have acquired cultural significance in 

many societies. 

Elephants are large mammals of the family Elephantidae in the order 

Proboscidea. Three species are currently recognised: the African bush 

elephant (Loxodonta africana), the African forest elephant (L. 

cyclotis), and the Asian elephant (Elephas maximus). Elephants are 

scattered throughout sub-Saharan Africa, South Asia, and Southeast 

Asia. Elephantidae is the only surviving family of the order 

Proboscidea; other, now extinct, members of the order include 

deinotheres, gomphotheres, mastodons, anancids and stegodontids; 

Elephantidae itself also contains several now extinct groups, such as 

the mammoths and straight-tusked elephants. 

A dragonfly is an insect belonging to the order Odonata, infraorder 

Anisoptera (from Greek ἄνισος anisos, "unequal" and πτερόν pteron, 

"wing", because the hindwing is broader than the forewing). Adult 

dragonflies are characterized by large, multifaceted eyes, two pairs of 

strong, transparent wings, sometimes with coloured patches, and an 

elongated body. Dragonflies can be mistaken for the related group, 

damselflies (Zygoptera), which are similar in structure, though usually 

lighter in build; however, the wings of most dragonflies are held flat 

and away from the body, while damselflies hold the wings folded at 

rest, along or above the abdomen. 

Mangoes are juicy stone fruit (drupe) from numerous species of 

tropical trees belonging to the flowering plant genus Mangifera, 

cultivated mostly for their edible fruit. The majority of these species 

are found in nature as wild mangoes. The genus belongs to the cashew 

family Anacardiaceae. Mangoes are native to South Asia,[1][2] from 

where the "common mango" or "Indian mango", Mangifera indica, 

has been distributed worldwide to become one of the most widely 

cultivated fruits in the tropics. Other Mangifera species (e.g. horse 

mango, Mangifera foetida) are grown on a more localized basis. 

Bats are mammals of the order Chiroptera;[a] with their forelimbs 

adapted as wings, they are the only mammals naturally capable of true 

and sustained flight. Bats are more manoeuvrable than birds, flying 

with their very long spread-out digits covered with a thin membrane 

or patagium. The smallest bat, and arguably the smallest extant 

mammal, is Kitti's hog-nosed bat, which is 29–34 mm (1.14–1.34 in) 

in length, 15 cm (5.91 in) across the wings and 2–2.6 g (0.07–0.09 oz) 

in mass. The largest bats are the flying foxes and the giant golden-

crowned flying fox, Acerodon jubatus, which can weigh 1.6 kg (4 lb) 

and have a wingspan of 1.7 m (5 ft 7 in). 

A hedgehog is any of the spiny mammals of the subfamily 

Erinaceinae, in the eulipotyphlan family Erinaceidae. There are 

seventeen species of hedgehog in five genera found through parts of 

Europe, Asia, and Africa, and in New Zealand by introduction. There 

are no hedgehogs native to Australia and no living species native to 

the Americas (the extinct genus Amphechinus was once present in 

North America). Hedgehogs share distant ancestry with shrews 

(family Soricidae), with gymnures possibly being the intermediate 

link, and they have changed little over the last 15 million years.[2] 

Like many of the first mammals, they have adapted to a nocturnal 

way of life.[3] 

The reindeer (Rangifer tarandus), also known as the caribou in North 

America,[3] is a species of deer with circumpolar distribution, native 

to Arctic, sub-Arctic, tundra, boreal, and mountainous regions of 

northern Europe, Siberia, and North America.[2] This includes both 

sedentary and migratory populations. Rangifer herd size varies greatly 

in different geographic regions. The Taimyr herd of migrating 

Siberian tundra reindeer (R. t. sibiricus) in Russia is the largest wild 

reindeer herd in the world,[4][5] varying between 400,000 and 

1,000,000. What was once the second largest herd is the migratory 

boreal woodland caribou (R. t. caribou) George River herd in Canada, 

with former variations between 28,000 and 385,000. 

Gibbons are apes in the family Hylobatidae. The family historically 

contained one genus, but now is split into four genera and 18 species. 

Gibbons live in tropical and subtropical rainforests from eastern 

Bangladesh and northeast India to southern China and Indonesia 

(including the islands of Sumatra, Borneo, and Java). 

Also called the smaller apes or lesser apes, gibbons differ from great 

apes (chimpanzees, bonobos, gorillas, orangutans, and humans) in 

being smaller, exhibiting low sexual dimorphism, and not making 

nests.[3] In certain anatomical details, they superficially more closely 

resemble monkeys than great apes do, but like all apes, gibbons are 

tailless. 

Rabbits are small mammals in the family Leporidae of the order 

Lagomorpha (along with the hare and the pika). Oryctolagus 

cuniculus includes the European rabbit species and its descendants, 

the world's 305 breeds[1] of domestic rabbit. Sylvilagus includes 13 

wild rabbit species, among them the 7 types of cottontail. The 

European rabbit, which has been introduced on every continent except 

Antarctica, is familiar throughout the world as a wild prey animal and 

as a domesticated form of livestock and pet. With its widespread 

effect on ecologies and cultures, the rabbit (or bunny) is, in many 

areas of the world, a part of daily life—as food, clothing, a 

companion, and as a source of artistic inspiration. 

A raven is one of several larger-bodied species of the genus Corvus. 

These species do not form a single taxonomic group within the genus. 

There is no consistent distinction between "crows" and "ravens", and 

these appellations have been assigned to different species chiefly on 

the basis of their size, crows generally being smaller than ravens. The 

largest raven species are the common raven and the thick-billed raven. 

The term "raven" originally referred to the common raven (Corvus 

corax), the type species of the genus Corvus, which has a larger 

distribution than any other species of Corvus, ranging over much of 

the Northern Hemisphere. 

Monkey is a common name that may refer to groups or species of 

mammals, in part, the simians of infraorder Simiiformes. The term is 

applied descriptively to groups of primates, such as families of new 

world monkeys and old world monkeys. Many monkey species are 

tree-dwelling (arboreal), although there are species that live primarily 

on the ground, such as baboons. Most species are also active during 

the day (diurnal). Monkeys are generally considered to be intelligent, 

especially the old world monkeys of Catarrhini. 

Simians and tarsiers emerged within haplorrhines some 60 million 

years ago. New World monkeys and catarrhine monkeys emerged 

within the simians some 35 million years ago. 

The Rhacophoridae are a family of frog species, which occur in 

tropical sub-Saharan Africa, South India and Sri Lanka, Japan; 

northeastern India to eastern China south through the Philippines and 

Greater Sundas, and Sulawesi. They are commonly known as shrub 

frogs, or more ambiguously as "moss frogs" or "bush frogs". Some 

Rhacophoridae are called "tree frogs". Among the most spectacular 

members of this family are numerous "flying frogs". Although a few 

groups are primarily terrestrial, rhacophorids are predominantly 

treefrogs which are arboreal. Mating frogs, while in amplexus, hold 

on to a branch, and beat their legs to form a foam. The eggs are laid in 

the foam, and covered with seminal fluid, before the foam hardens 

into a protective casing. 
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seminal fluid, before the foam hardens into a protective casing. In some species, this 

is done in a large group. The foam is laid above a water source, so the tadpoles fall 

into the water once they hatch.[1] 

The species within this family vary in size from 1.5 to 12 cm (0.59 to 4.72 in).[1] 

Like other arboreal frogs, they have toe discs, and those of the genus Chiromantis 

have two opposable fingers on each hand. This family also contains the Old World 

flying frogs, including Wallace's flying frog (Rhacophorus nigropalmatus). These 

frogs have extensive webbing between their forelimbs and hindlimbs, allowing them 

to glide through the air.
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Figure 1. The framework of Discrete Semantics-Guided Asymmetric Hashing (DSAH). In our proposed DSAH, we first
handle the nonlinear relations in different modalities with the kernelization, then an asymmetric learning scheme is
proposed to effectively perform the hash learning process; meanwhile, our proposed method fully considers the label
information to enhance the semantic information. In addition, a discrete optimization algorithm is proposed to solve the
discrete problems.

3.1. Definitions

Suppose that the multimedia training data contains M modalities, represented by
X = {X(1), X(2), ..., X(M)}, where X(m) = {x(m)

1 , x(m)
2 , ..., x(m)

n } ∈ Rdm×n is the m-th modality
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data features and dm is the dimension of modality X(m). In this paper, we focus on the
supervised hashing paradigm; therefore, label information L ∈ {0, 1}c×n is available, c
denotes the number of categories, and l j

i = 1 indicates the j-th instance belongs to category
i, and lij = 0 otherwise. B ∈ Rk×n denotes the hash codes, where k is the length of hash
codes. f (·) denotes the hash function. The main notations used in this paper are listed in
Table 1.

Table 1. Notations.

Notation Explanations

X(t) ∈ Rdm×n Features of heterogeneous modalities
L ∈ Rc×n Label information
B ∈ {−1, 1}k×n Hash codes
Pt ∈ Rk×q Hash mapping matrix
D ∈ Rc×c Projection matrix for label information
V ∈ {−1, 1}k×n Auxiliary matrix
Jb ∈ Rk×n Auxiliary matrix
dm Dimension of modality X(m)

n Number of instances
c Number of categories
q Number of Kernelized features

3.2. Hash Function Learning
3.2.1. Kernelization

Kernelization is a widely used technique to handle the nonlinear relations in different
modalities. Therefore, in this paper, we use Radical Basis Function (RBF) kernel to express
the nonlinear correlations among original high dimensional features [49–51]. Specifically,
we define the RBF function φ(·) as follows:

φ(xi) =


exp

(
−||xi−a1||

2œ2

)
,

...,

exp
(−||xi−aq ||

2œ2

)
.

, (1)

where A = [a1, a2, ..., aq] denotes the randomly chosen q anchors from the database and σ is
the free parameter. Therefore, the complex original feature X(m) ∈ Rdm×n can be converted
into a nonlinear relation representation φ(X(m)) ∈ Rq×n.

3.2.2. Feature Mapping

The aim of DSAH is to project the original features to compact hash codes. In this
paper, we adopt two linear projections as the hash mapping functions for image modality
X(1) and text modality X(2), respectively.

f1(X(1)) = sgn(P1φ(X(1))),

f2(X(2)) = sgn(P2φ(X(2))),
(2)

where P1 ∈ Rk×q and P2 ∈ Rk×q are the hash mapping matrices, which map specific kernel
features into Hamming subspace, and f1(·) and f2(·) are hash functions for image modality
and text modality, respectively.

3.3. Label Alignment Scheme

As described above, labels contain rich semantic information, directly converting
the complex label vectors into binary semantic matrix will cause the loss of semantic
information. The results of Gui’s work [52] demonstrate that the ordinary least squares
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regression is sensitive to the boundary contour. Inspired by the work in [53], we consider
`p,q norm instead of `2 norm to handle the problem, the `p,q norm can be formulated as

min
E
||E||p,q = min

E
(

c

∑
i=1

(
n

∑
j=1
|Eij|p)q/p)1/q, (3)

where E = R>B− L and R ∈ Rk×c is the semantic projection matrix. It is easy to find
that when p = q = 2, Equation (3) is a standard Frobenius norm. However, in order to
improve the robustness of the model for outliers and the sparsity of the label alignment
matrix, we need to redefine the values of p, q. In general, the sparsity of the model can be
guaranteed when the constraint conditions satisfy p ≥ 2 and 0 ≤ q ≤ 2. Therefore, in the
paper, we set p = 2 and q = 1, as if q = 0, the problem is not convex. Then, we can rewrite
the Equation (3) as min

E
||E||2,1. After some algebraic manipulations, we obtain

min
R,B

tr(E>DE), (4)

where D ∈ Rc×c is the diagonal matrix, and the i-th element of D is defined as dii =
1

2||e(i) ||2
,

where e(i) is the i-th row of E.

3.4. Asymmetric Learning Framework

We briefly review the related work Supervised Hashing with Kernels (KSH) [51],
the symmetric learning framework can be formulated as

min
B
||B>B− kS||2F

s.t. B ∈ {−1, 1}k×n,
(5)

where B is the learned hash codes. However, there are two major problems of Equation (5):
(1) It is very time-consuming to directly compute S, as the similarity information S is a n× n
matrix. (2) Some works [54,55] show that the use of an asymmetric learning framework
can not only solve the problem of high time consumption, but also improves retrieval
accuracy, because the value range of the asymmetric learning framework is wider than
that of symmetric learning. Therefore, in this paper, we construct an asymmetric learning
framework to learn the compact hash codes, that is,

min
B,P1,P2

||(P1φ(X(1)))>B1 − kS||2F + ||(P2φ(X(2)))>B2 − kS||2F

+ α
2

∑
i=1
||Bi − Piφ(X(i))||2F,

s.t. Bi ∈ {−1, 1}k×n

(6)

The advantages of Equation (6) are as follows:

1. The learning mode uses an efficient asymmetric learning architecture instead of a
time-consuming symmetric one.

2. The use of the real-valued embeddings instead of the binary embeddings produces a
close semantic similarity relation, and the value of the objective function is smaller.

3. The last term is used to reduce the quantization errors, which leads to a better
retrieval performance.

However, there is a limitation of Equation (6) that is for the purpose of cross-modal
retrieval tasks, we need to obtain a unified hash codes. Therefore, we need to consider
another discrete constraint, i.e., min

B1,B2
||B1−B2||2F. In order to make the optimization easy, we
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set a unified hash code B = B1 = B2 instead of minimizing the constraint min
B1,B2
||B1 − B2||2F,

then Equation (6) can be rewritten as

min
B,P1,P2

||(P1φ(X(1)))>B− kS||2F + ||(P2φ(X(2)))>B− kS||2F

+ α||B− 0.5
(

P1φ(X(1)) + P2φ(X(2))
)
||2F,

s.t. B ∈ {−1, 1}k×n

(7)

where α is the balance parameter.

3.5. The Joint Framework

Combining the above constraints and individual objective function, we obtain

min
B,R,P1,P2

||(P1φ(X(1)))>B− kS||2F + ||(P2φ(X(2)))>B− kS||2F + tr(E>DE)

+ α||B− 0.5
(

P1φ(X(1)) + P2φ(X(2))
)
||2F + γ Re(P∗1 , P∗2 , R),

s.t. B ∈ {−1, 1}k×n

(8)

where γ is the trade-off parameter, P∗i = Piφ(X(i)), Re(·) = || · ||2F is the Frobenius norm
regularization term, which is used to prevent overfitting.

3.6. Optimization

In this part, we use an alternating strategy to solve the four variables B, R, P1, P2 in
Equation (8), as the four variables are coupled with each other. The problem is split into
four steps as follows.

Fix R, P1, P2, update B. The sub-problem of Equation (8) related to B can be formu-
lated as

min
B
||(P1φ(X(1)))>B− kS||2F + ||(P2φ(X(2)))>B− kS||2F + tr(E>DE)

+ α||B− 0.5
(

P1φ(X(1)) + P2φ(X(2))
)
||2F,

s.t. B ∈ {−1, 1}k×n

(9)

In the next step, we need to solve the following problem:

min
B

tr
(
−2kSB>P1φ(X(1))− 2kSB>P2φ(X(2)) + B>RDR>B

−2B>RDL− 2αCB>
)

s.t. B ∈ {−1, 1}k×n

(10)

where C = 0.5(P1φ(X(1)) + P2φ(X(2))). As the B is the discrete value, it is challenging to
directly solve the value of B. In this solution, we propose an augmented Lagrangian multi-
plier (ALM) [39] to compute B. Specifically, we introduce an auxiliary value V ∈ {−1, 1}k×n

to replace the B of second term, i.e., B>RDR>B. Then, we obtain the following formula:

min
B

tr
(
−2kSB>P1φ(X(1))− 2kSB>P2φ(X(2))− 2αCB>

+B>RDR>V− 2B>RDL
)
+

ξ

2
||B−V +

Jb
ξ
||2F,

s.t. {B, V} ∈ {−1, 1}k×n

(11)

where Jb measures the gap between B and V.



Appl. Sci. 2021, 11, 8769 8 of 19

Then, the value of B can be solved with a closed-form solution:

B = sgn(2kP1φ(X(1))S + 2kP2φ(X(2))S + 2αC− RDR>V

+ 2RDL + ξV− Jb).
(12)

However, the computational complexity of P∗φ(X(∗))S|2∗=1 is O(n2), which is not
suitable for large-scale retrieval tasks. To address this problem, we use the label matrix
L ∈ Rc×n to replace the similarity matrix S ∈ Rn×n. Specifically, we let L̃ij = lij/||li||2,
as the element at the i-th row and the j-th column in the matrix L. Then, the similarity
matrix S can be rewritten as

S = 2L̃>L̃− 1n1n
>, (13)

where 1n is a vector with all elements being 1. Therefore, we can rewrite the term
P∗φ(X(∗))S|2∗=1 as

P∗φ(X(∗))S|2∗=1 = 2P∗φ(X(∗))L̃>L̃− P∗φ(X(∗))1n1n
>|2∗=1, (14)

which consumes O((q + c)kn).
Fix B, update V. The sub-problem related to V can be formulated as

min
V

tr(B>RDR>V) +
ξ

2
||B−V +

Jb
ξ
||2F.

s.t. {B, V} ∈ {−1, 1}k×n
(15)

Then, the value of V can be solved with a closed-form solution,

V = sgn(−RD>R>B + ξB + Jb). (16)

Update Jb. The sub-problem related to Jb can be updated as

Jb = Jb + ξ(B−V), ξ = ρξ, (17)

where ρ is a parameter to control the convergence speed.
Fix B, P1, P2, update R. The sub-problem of Equation (8) related to R can be formu-

lated as
min

R
tr(E>DE) + γ Re(R). (18)

In the next step, we need to solve the following problem:

min
R

tr(B>RDR>B− 2BL>DR>) + γtr(RR>). (19)

Setting the derivative Equation (20) w.r.t R to 0, we obtain

BB>RD + γR = BL>D. (20)

We transform Equation (20) into

BB>R + γRD−1 = BL>. (21)

Then, it can be seen that Equation (21) is a Sylvester equation. Therefore, the value
of R can be easily solved. Due to the space limitation, the detail about the solution is not
given here.
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Fix B, R, P2, update P1. The sub-problem of Equation (8) related to P1 can be formu-
lated as

min
P1
||(P1φ(X(1)))>B− kS||2F + α||B− 0.5

(
P1φ(X(1)) + P2φ(X(2))

)
||2F

+ γ Re(P∗1),

s.t. B ∈ {−1, 1}k×n

(22)

Setting the derivative Equation (22) w.r.t P1 to 0, we obtain

2P1φ(X(1))φ(X(1))
>
− 2kBS>φ(X(1))

>
− 4αBφ(X(1))

>
+ 2αP1φ(X(1))φ(X(1))

>

+ 2αP2φ(X(2))φ(X(1))
>
+ 2γP1(X(1))φ(X(1))

>
= 0

(23)

Then, the value of P1 can be solved with a closed-form solution:

P1 =(kBS>φ(X(1))
>
+ 2αBφ(X(1))

>
− αP2φ(X(2))φ(X(1))

>
)·

((1 + α + γ)φ(X(1))φ(X(1))
>
)−1

(24)

where S is also transformed using Equation (13); then, we have

BS>φ(X(1))
>
= 2(BL̃>)(φ(X(1))L̃>)> − (B1n)(φ(X(1))1n)

>, (25)

which consumes O((q + k)cn).
Fix B, R, P1, update P2. The sub-problem of Equation (8) related to P2 can be formu-

lated as

min
P2
||(P2φ(X(2)))>B− kS||2F + α||B− 0.5

(
P1φ(X(1)) + P2φ(X(2))

)
||2F

+ γ Re(P∗2),

s.t. B ∈ {−1, 1}k×n

(26)

It is easy to find that the optimization of P2 is almost identical to P1-subproblem. Then,
the value of P2 can be solved with a closed-form solution:

P2 =(kBS>φ(X(2))
>
+ 2αBφ(X(2))

>
− αP1φ(X(1))φ(X(2))

>
)·

((1 + α + γ)φ(X(2))φ(X(2))
>
)−1

(27)

Moreover, the terms of φ(X(1))φ(X(1))
>

and φ(X(2))φ(X(2))
>

are constants and can
be computed once before the iterative optimization.

The objective function is solved by iteratively updating four variables until the objec-
tive function converges or reaches the preset maximum number of iterations. The iterative
optimization for solving the Equation (8) is summarized in Algorithm 1.
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Algorithm 1 DSAH

Input: Training modalities X = {X(1), ..., X(M)}, labels L, hash code length k, parameter
α, γ, maximum iteration number T.

Output: Hash mapping functions P1 and P2.

Procedure:
1. Centralize X by means.
2. Computing Kernelized features φ(X).
3. Initialize V, B, R, P1, P2, Jb by random initialization.

4. Repeat
B-Step: Update B according to (12).
V-Step: Update V according to (16).
Jb-Step: Update Jb according to (17).
R-Step: Update R according to (21).
P1-Step: Update P1 according to (24).
P2-Step: Update P2 according to (27).

Until up to T.

3.7. Out-of-Sample Extension

In the query phase, the proposed DSAH can easily map the original high-dimensional
instances into compact hash codes. Specifically, given a new query x(t)q * X(m), DSAH learns
its corresponding hash codes by

b(t)
q = sgn(Ptφ(x

(t)
q )), (28)

where φ(x(t)q ) is the nonlinear kernelized embedding of x(t)q .

3.8. Complexity Analysis

For each iteration, the time complexity is analyzed as follows. The time computational
complexity of B isO(k2c+ kc2 +(q+ c+ k)kn), V isO(kc2 + k2c+ k2n), R isO((k2 + kc)n+
k2c + kc2 + c3), P1 and P2 are all O(q3 + kq2 + (kq + kc + qc + q2)n). As {k, c, q} � n,
the training complexity is O((kq + k2 + kc + q2)n). Given the iteration T, the overall
training complexity for DSAH is O((kq + k2 + kc + q2)nT), where T � {k, c, q} is very
small , which is linear to the training set size. Therefore, DSAH is highly scalable for
large-scale cross-modal retrieval tasks.

4. Experiments
4.1. Datasets

To evaluate the performance of DSAH, we conducted experiments on two widely
used datasets, i.e., MIRFlickr [56] and NUS-WIDE [57] datasets.

4.1.1. MIRFlickr

It contains 25,000 instances collected from open website, which are annotated by at
least one of 24 tags. Similar to the work in [38], we ignored the instances that textual tags
appear less than 20 times and finally selected 20,015 instances. We randomly selected 2k
instances as the query set and the rest as the retrieval set. Each image is represented as a
512-D GIST feature and each text is represented as a 1386-D bag-of-word (BOW) vector.

4.1.2. NUS-WIDE

It contains 269,648 instances collected from Flick with 5018 unique tags and 81 ground-
truth concepts that can be used for evaluation. Similar to the work in [38], we selected the
ten most frequent tags and corresponding 186,577 instances. We randomly selected 2000
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instances as the query set and the rest as the retrieval set. Each image is represented as a
500-D SIFT feature and each text is represented as a 1000-D bag-of-word (BOW) vector.

4.2. Methodology

To verify the effectiveness of our proposed DSAH method, seven state-of-the-art
cross-modal hashing methods are compared. Among them, CMFH [32] and FSH [33] are
unsupervised cross-modal hashing methods, and SCM-Seq [34], SePH-km [35], DCH [36],
LCMFH [37], and SRLCH [42] are supervised ones. We have briefly introduced the com-
pared baselines in Section 2. For fair comparison, the experimental results with citations
are copied from the corresponding works.

To evaluate our proposed DSAH, we conducted two cross-modal retrieval tasks: (1)
“Image2Text” using an image query to retrieve texts; (2) “Text2Image” using a text query to
retrieve images. In this paper, three widely-used evaluation measures are used to evaluate
the retrieval performance, i.e., mean average precision (mAP), precision-recall curves (PR)
and precisions w.r.t top-k returned image (P@k).

4.3. Implementation Details

DSAH consists of several parameters, i.e., α and γ. We tune the balance parameters, i.e., α
and γ using grid search, and the best performance is achieve when {α = 10−1, γ = 10−3}
and {α = 10−2, γ = 10−3} on MIRFlickr and NUS-WIDE datasets, respectively. q is the
number of kernel and optimal performance is obtained when q = 2000. ξ and ρ are used
for ALM algorithm and the best performance is obtained when {ξ = 10−2, ρ = 1.5} and
{ξ = 10−1, ρ = 1.5} on MIRFlickr and NUS-WIDE datasets, respectively. All our experiments
are conducted on a workstation with a Intel Xeon Silver 4210 CPU@2.20 GHz of 10 cores and
128 G RAM.

4.4. Results

Tables 2 and 3 show the mAP scores of different compared cross-modal hashing
methods at 8 bits, 16 bits, 32 bits, 64 bits, and 128 bits on MIRFlickr and NUS-WIDE
datasets, respectively. Note that the mAP metric is one of the comprehensive evaluation
criterions used to measure the effectiveness of the proposed method. From these tables, it
can be observed that the mAP scores of DSAH are higher than most compared baselines
with different code lengths on the two datasets. In the seven compared baselines, only
SRLCH, LCMFH, and DCH obtain satisfactory retrieval performance. The main reason is
that they learn the common latent representation across different modalities through matrix
factorization operations, thus the common latent representation can be used as a bridge
to solve the heterogeneous gap between different modalities. However, they ignore the
use of an asymmetric learning framework to enhance the semantic similarity of different
modalities and the noises contained in the labels. In contrast, our proposed DSAH leverages
both the similarity matrix and label information to enhance the semantic information of the
learned hash codes, and solves the problem of noises contained in the labels. Specifically,
on the MIRFlickr dataset, compared to the best baselines, i.e., SRLCH, the mAP scores of
DSAH have an increase of 2.7% on average, and on the NUS-WIDE dataset, DSAH obtains
the highest mAP scores of all compared baselines, which demonstrates the efficacy of DSAH.
Meanwhile, by comparing supervised cross-modal hashing methods and unsupervised
ones on the two datasets, we find that the supervised hashing methods, i.e., SCM-Seq,
SePH-km, DCH, LCMFH, and SRLCH, can always outperform the unsupervised hashing
methods, i.e., CMFH and FSH, as the supervised information can improve the ability of
hash learning process. In addition, the mAP scores of most cross-modal hashing methods
increase as the length of the hash codes becomes longer, revealing that the longer codes
can handle more discriminative information. The performance on the T2I task, i.e., the use
of text modality to retrieve image modality is better than that on the I2T task, i.e., the use
of image modality to retrieve text modality. The reason is that the semantic information in
text modality is more than that in image modality.
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Table 2. Performance comparison on MIRFlickr dataset measured by mAP.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T

CMFH 0.5599 0.5687 0.5680 0.5685 0.5687
FSH 0.5911 0.6016 0.6149 0.6194 0.6242
SCM-seq 0.6235 0.6373 0.6478 0.6537 0.6611
SePH-km 0.6641 0.6685 0.6818 0.6830 0.6873
DCH 0.6659 0.6738 0.6859 0.6897 0.7030
LCMFH 0.6821 0.6812 0.6887 0.6909 0.7034
SRLCH 0.7092 0.7113 0.7241 0.7276 0.7359
DSAH 0.7156 0.7236 0.7412 0.7498 0.7556

T→I

CMFH 0.5615 0.5615 0.5606 0.5606 0.5608
FSH 0.5869 0.5979 0.6114 0.6186 0.6251
SCM-seq 0.6103 0.6206 0.6298 0.6372 0.6427
SePH-km 0.7033 0.7076 0.7212 0.7293 0.7348
DCH 0.7256 0.7511 0.7585 0.7681 0.7909
LCMFH 0.7351 0.7308 0.7544 0.7689 0.7806
SRLCH 0.7467 0.7613 0.7798 0.7899 0.8071
DSAH 0.7526 0.7782 0.8041 0.8163 0.8180

Table 3. Performance comparison on NUS-WIDE dataset measured by mAP.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T

CMFH 0.3406 0.3437 0.3399 0.3409 0.3440
FSH 0.3620 0.3732 0.3894 0.4014 0.4084
SCM-seq 0.5013 0.5120 0.5422 0.5488 0.5483
SePH-km 0.5256 0.5537 0.5627 0.5622 0.5698
DCH 0.5840 0.5808 0.5907 0.5932 0.5843
LCMFH 0.5955 0.6113 0.6286 0.6337 0.6412
SRLCH 0.5789 0.5932 0.6378 0.6398 0.6529
DSAH 0.6231 0.6432 0.6517 0.6667 0.6791

T→I

CMFH 0.3456 0.3498 0.3435 0.3486 0.3529
FSH 0.3623 0.3717 0.3835 0.3973 0.4007
SCM-seq 0.4709 0.4836 0.5067 0.5141 0.5161
SePH-km 0.6102 0.6407 0.6515 0.6608 0.6651
DCH 0.7106 0.7103 0.7098 0.7260 0.7223
LCMFH 0.6765 0.7198 0.7389 0.7614 0.7667
SRLCH 0.6874 0.6989 0.7567 0.7581 0.7875
DSAH 0.7324 0.7596 0.7756 0.7834 0.8024

Figure 2 plots the precision–recall and P@k curves in the cases of 64-bit code length for all
compared baselines on two datasets. From the figure, we can draw the following observations.

1. From the precision–recall curves, we can observe that the area under the precision–
recall curves of DSAH is larger than the compared baselines, which shows the effec-
tiveness of DSAH.

2. From the P@k curves, we can observe that DSAH outperforms the compared baselines
in most cases, which further demonstrate its superiority.
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Figure 2. Precision–Recall and P@k curves obtained by different baselines and tested on MIRFlickr and NUS-WIDE datasets.

4.5. Further Study
4.5.1. Effects of Discrete Optimization

To validate the effects of the proposed discrete optimization strategy, we denote a
variant of DSAH, named DSAH-Re. Specifically, we first relax the discrete constraints, then
Equation (9) can be solved as

min
B

α
2

∑
i=1
||B− Piφ(X(i))||2F + tr(E>DE). (29)

Setting the derivative Equation (29) w.r.t. B to 0, and the value of B can be solved with
a closed-form solution:

B = (RDR>)−1
(

α(P1φ(X(1)) + P2φ(X(2))) + RDL
)

. (30)

Then, we obtain the hash codes by mean-thresholding operation. The mAP results
of DSAH and DSAH-Re on two datasets are shown in Table 4 and 5. From the table,
we can observe that the performance of DSAH is better than that of DSAH-Re on two
datasets. These results demonstrate that our proposed discrete optimization algorithm
performs well in avoiding quantization errors and improving the performance of cross-
modal retrieval tasks.

Table 4. mAP scores of different ablated versions of DSAH on MIRFlickr dataset.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T

DSAH-Re 0.5982 0.6076 0.6081 0.5911 0.5784
DSAH-Ke 0.6832 0.6872 0.6898 0.6913 0.6906
DSAH-Nm 0.6991 0.7212 0.7245 0.7289 0.7310
DSAH 0.7156 0.7236 0.7412 0.7498 0.7556

T→I

DSAH-Re 0.5543 0.5521 0.5760 0.5773 0.5801
DSAH-Ke 0.7362 0.7690 0.7772 0.7887 0.7921
DSAH-Nm 0.7111 0.7304 0.7297 0.7358 0.7439
DSAH 0.7526 0.7782 0.8041 0.8163 0.8180
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Table 5. mAP scores of different ablated versions of DSAH on NUS-WIDE dataset.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T

DSAH-Re 0.4558 0.4611 0.4732 0.4798 0.4832
DSAH-Ke 0.5842 0.5911 0.6287 0.6334 0.6499
DSAH-Nm 0.6069 0.6093 0.6421 0.6429 0.6551
DSAH 0.6231 0.6432 0.6517 0.6667 0.6791

T→I

DSAH-Re 0.4568 0.4650 0.4717 0.4823 0.4804
DSAH-Ke 0.7287 0.7452 0.7676 0.7704 0.7799
DSAH-Nm 0.7225 0.7407 0.7589 0.7621 0.7697
DSAH 0.7324 0.7596 0.7756 0.7834 0.8024

4.5.2. Effects of Kernelization

In this paper, DSAH adopts a kernelization technique to handle the nonlinear relations
between different heterogeneous modalities to improve the retrieval accuracy and efficiency.
To demonstrate the effects of kernelization, we denote a variant of DSAH, named DSAH-ke,
which directly uses the original features to learn the hash codes. We conduct experiments on
two datasets with the code length varying from 8 bits to 128 bits to evaluate the performance
of DSAH-ke. The mAP results of DSAH-ke are reported in Tables 4 and 5. From the tables,
we can observe that the lack of using kernelization will reduce the retrieval performance.

4.5.3. Effects of `2,1 Norm

As shown in Section 3.3, the `p,q norm, i.e., `2,1, is used to improve the robustness
for outliers. Therefore, in this section, to verify its effectiveness, we denote a variant of
DSAH, named DSAH-Nm, which replaced the term ||R>B− L||2,1 in Equation (8) with
||R>B− L||2F. The mAP results on two datasets with the code length varying from 8 bits
to 128 bits are reported in Table 4 and 5. From the table, we can observe that the `2,1
norm is effective to improve the performance of DSAH, the reason may be that the label
information often inevitably contains some noises or subjective factors.

4.5.4. Effects of Word Embeddings

In order to verify the impact of different word embeddings on the performance of
cross-modal retrieval. We denote a Bidirectional Encoder Representations from Transformers
(BERT)-based [58] variant of DSAH, named DSAH-BERT. The BERT-based word embeddings
are generated by summing the 786-D features from the last 4-hidden layers of a 12 layers
BERT trained in an uncased way (https://github.com/huggingface/transformers, accessed
on 13 July 2021). We conduct experiments on NUS-WIDE dataset to evaluate the effects of
word embeddings. The mAP scores on NUS-WIDE dataset with the code length varying
from 8 bits to 128 bits are reported in Table 6. From the table, we can find that BERT-based
word embedding provides a slightly higher average mAP scores than those with bag-of-
word embedding.

Table 6. mAP scores on NUS-WIDE dataset using BERT and bag-of-word embeddings of DSAH.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T DSAH 0.6231 0.6432 0.6517 0.6667 0.6791
DSAH-BERT 0.6212 0.6491 0.6521 0.6634 0.6747

T→I DSAH 0.7324 0.7596 0.7756 0.7834 0.8024
DSAH-BERT 0.7311 0.7558 0.7801 0.7907 0.8071

4.5.5. Effects of Deep Learning Based Representation

More recently, deep neural networks have achieved promising performance in the field
of representation learning. To validate the effectiveness of DSAH, we conduct experiments on

https://github.com/huggingface/transformers
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NUS-WIDE dataset to evaluate the effects of deep learning based representations. The corre-
sponding variant of DSAHis named DSAH-Deep. Specifically, each image is represented as a
4096-D vector extracted by the fc7-layer of VGG-16 net [59]. The mAP scores on NUS-WIDE
dataset with the code length varying from 8 bits to 128 bits are shown in Table 7. From the
table, we can observe that the use of deep learning based representation for cross-modal
retrieval improves the accuracy of retrieving text through images, but reduces the accuracy of
retrieving images through text. The reason may be that deep learning-based representation
improves the semantics of the image representation, but the difficulty of retrieving images is
increased due to the increase of the dimensionality simultaneously.

Table 7. mAP scores on NUS-WIDE dataset using deep and shallow representations of DSAH.

Task Method 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

I→T DSAH 0.6231 0.6432 0.6517 0.6667 0.6791
DSAH-Deep 0.7232 0.7421 0.7519 0.7630 0.7793

T→I DSAH 0.7324 0.7596 0.7756 0.7834 0.8024
DSAH-Deep 0.6533 0.6982 0.7106 0.7218 0.7295

4.5.6. Effects of Parameters

In this section, we conduct parameter sensitivity analysis experiments to observe the
variation of mAP scores under different α and γ. In this experiment, by prefixing the code
length as 64 bits, we vary the parameters α and γ in the range of {10−5, 10−4, ..., 104, 105}.
Figures 3 and 4 report the results. From these results, we observe that the performance of
our proposed DSAH is relatively stable on a wide range of α and γ values. Specifically,
on the MIRFlickr dataset, when α < 100 and γ < 101, the retrieval performance becomes
stable. On the NUS-WIDE dataset, when α < 102 and γ < 101, the scores of mAP
have a very small fluctuation. Therefore, our proposed method can be easily tuned for
practical implementations.
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Figure 3. Parameter sensitivity analysis of α and γ on MIRFlickr dataset with 64 bits.
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Figure 4. Parameter sensitivity analysis of α and γ on NUS-WIDE dataset with 64 bits.

4.5.7. Convergence Analysis

In order to show the convergence of our proposed DSAH, we conduct the experiments
on two datasets with the codes length fixed as 64 bits. Similar results can be obtained
on other lengths of hash codes. The results are shown in Figure 5. Note that, in order to
visually represent the convergence of the objective function, the value can be normalized
by dividing by the maximum value on each dataset. From the figure, we can easily see that
the values of objective function can converge very fast, i.e., less than 12 iterations, which
demonstrates the efficiently of the closed-form solutions of the optimization algorithm.
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Figure 5. Convergence curves of DSAH on two datasets with 64 bits.
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4.6. Limitations

The main potential limitation of our proposed DSAH is that the time complexity of
constructing the pairwise similarity matrix is O(n2). Although the method we proposed
uses label matrices instead of a pairwise similarity matrix for matrix decomposition, it
cannot effectively solve the large time complexity problem. Therefore, compared with the
hash methods that only use label information for learning, the time cost of DSAH is slightly
high. In addition, without point-to-point label information, there is no general algorithm
to process similarity matrices on all datasets.

5. Conclusions

In this paper, we present a novel cross-modal hashing method, named DSAH, for large-
scale cross-modal retrieval. In detail, to enhance the feature representation in the linear
model, we handle the nonlinear relations with a kernelization technique. Meanwhile,
DSAH incorporates the label information and semantic matrix into the learning process.
Therefore, DSAH can obtain more semantic information to improve the discriminative
capability of the learned hash codes. However, due to the inevitable noise and subjective
factors in labels for large-scale dataset, the `2,1 norm is used to sparse the matrix and effec-
tively deal with outliers. In addition, a discrete optimization algorithm is proposed to solve
the quantization errors and improve the optimization efficiency. Extensive experiments on
two datasets demonstrate the superiority of DSAH on cross-modal retrieval tasks.
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