
applied
sciences

Article

Real-Time Semantic Image Segmentation with Deep Learning
for Autonomous Driving: A Survey

Ilias Papadeas 1,* , Lazaros Tsochatzidis 1 , Angelos Amanatiadis 2 and Ioannis Pratikakis 1

����������
�������

Citation: Papadeas, I.; Tsochatzidis,

L.; Amanatiadis, A.; Pratikakis, I.

Real-Time Semantic Image

Segmentation with Deep Learning for

Autonomous Driving: A Survey. Appl.

Sci. 2021, 11, 8802. https://doi.org/

10.3390/app11198802

Academic Editor: Francesco Bianconi

Received: 2 August 2021

Accepted: 11 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Visual Computing Group, Department of Electrical and Computer Engineering, Democritus University of
Thrace, 67100 Xanthi, Greece; ltsochat@ee.duth.gr (L.T.); ipratika@ee.duth.gr (I.P.)

2 Department of Production and Management Engineering, Democritus University of Thrace,
67100 Xanthi, Greece; aamanat@pme.duth.gr

* Correspondence: ipapadea@ee.duth.gr

Abstract: Semantic image segmentation for autonomous driving is a challenging task due to its
requirement for both effectiveness and efficiency. Recent developments in deep learning have
demonstrated important performance boosting in terms of accuracy. In this paper, we present a
comprehensive overview of the state-of-the-art semantic image segmentation methods using deep-
learning techniques aiming to operate in real time so that can efficiently support an autonomous
driving scenario. To this end, the presented overview puts a particular emphasis on the presentation
of all those approaches which permit inference time reduction, while an analysis of the existing
methods is addressed by taking into account their end-to-end functionality, as well as a comparative
study that relies upon a consistent evaluation framework. Finally, a fruitful discussion is presented
that provides key insights for the current trend and future research directions in real-time semantic
image segmentation with deep learning for autonomous driving.

Keywords: semantic image segmentation; real time; deep learning; autonomous driving

1. Introduction

Semantic segmentation is the task of assigning each pixel of an image to a correspond-
ing class label from a predefined set of categories [1]. Although it can be considered to be
a pixel-level classification problem in the pixels of an image, it is a much more complex
procedure, compared to the standard classification which targets predicting the label of the
entire image.

The enormous success of deep learning has made a huge impact in semantic seg-
mentation methods, improving their performance in terms of accuracy. This promising
progress has attracted the interest of many technological and research fields that require
high-end computer vision capacities. Such an application is autonomous driving, in which
self-driving vehicles must understand their surrounding environment, i.e., other cars,
pedestrians, road lanes, traffic signs or traffic lights. Semantic segmentation based on deep
learning is a key choice for accomplishing this goal, due to the phenomenal accuracy of
deep neural networks in detection and multi-class recognition tasks.

Nevertheless, in applications, such as autonomous driving, that require low-latency
operations, the computational cost of these methods is still quite limiting. Autonomous
driving belongs to these applications because of the crucial need to take decisions in
precise intervals. It is, therefore, necessary to improve the design of segmentation models
towards achieving efficient architectures that will be able to perform in real time with the
appropriate precision. To this end, in this paper, we review the best semantic segmentation
architectures in terms of speed and accuracy. For the best and most complete evaluation of
the examined architectures, all the models are compared based on their performance in a
consistent evaluation framework.

Appl. Sci. 2021, 11, 8802. https://doi.org/10.3390/app11198802 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5032-8790
https://orcid.org/0000-0002-4634-7419
https://orcid.org/0000-0002-1595-2683
https://orcid.org/0000-0002-4124-3688
https://doi.org/10.3390/app11198802
https://doi.org/10.3390/app11198802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198802
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198802?type=check_update&version=1

Appl. Sci. 2021, 11, 8802 2 of 28

The contribution of this paper is three-folded: (1) it presents in a consistent way an
exhaustive list of the most efficient methods for designing real-time semantic segmenta-
tion models aiming at achieving both high accuracy and low latency. (2) it provides a
comparative study of the state-of-the-art real-time semantic segmentation models based
on their accuracy and inference speed. (3) it presents a fruitful discussion on current
issues and improvements that results in key insights in the field of real-time semantic
image segmentation.

This paper is organized as follows: in Section 1, an introduction for our survey of real-
time semantic image segmentation with deep learning for autonomous driving is presented,
while in Section 2, the basic approaches that reduce the inference time of real-time models
are presented. In Section 3, we present an exhaustive list of the state-of-the-art models.
In Section 4, the most popular datasets and metrics used in evaluation are summarized.
Section 5 presents a discussion including our findings and key insights. In Section 6,
promising future research issues are presented aiming to improve the performance of
real-time semantic segmentation, and conclusions are drawn in Section 7.

2. Approaches for Inference Time Reduction

Although semantic segmentation models based on deep learning have achieved great
accuracy in recent years, the need for efficiency that requires less inference time is still
vital, especially for applications such as autonomous driving. In the following, we present
all existing approaches that can be used in the deep neural network architecture design
aiming to achieve a reduced response time in semantic image segmentation models.

2.1. Convolution Factorization—Depthwise Separable Convolutions

It is known that for most deep-learning models the convolutional layers are vital
structural components. Therefore, transforming the convolutions that are performed in the
layers of the network into more computationally efficient actions is an excellent way to im-
prove the model’s performance in terms of speed. A popular design choice for improving
convolutions is the use of depthwise separable convolutions, which is a type of factor-
ized/decomposed convolutions [2]. Standard convolution performs channel-wise and
spatial-wise computation in a single step. On the contrary, depthwise separable convolu-
tion breaks the computation process into two steps. In the first step, a single convolutional
filter per each input channel is applied (depthwise convolution), while in the second step,
a linear combination of the output of the depthwise convolution is considered by means of
a pointwise convolution [3]. These two different procedures are shown in Figure 1. It is
important to compare the computational burden of these two tasks. More specifically, for N
filters of size D × D, the ratio of computational complexity between depthwise separable
convolutions and standard convolutions equals to Ratio = 1/N + 1/D2. For example,
given 100 filters of size 256 × 256, the ratio of complexity is 0.01, which means that a series
of depthwise separable convolution layers execute 100 times less multiplications than a
corresponding block of standard convolutional layers.

This approach was first used in Xception [4], where the designers replaced Inception
module [5] with depthwise separable convolutions. Likewise, MobileNets [6] comprise
depthwise separable convolutions to improve efficiency. Overall, the efficiency by design
offered by this approach is a strong argument for being used in any new efficiency-oriented
network implementations.

Appl. Sci. 2021, 11, 8802 3 of 28

(a)
(b)

Figure 1. (a) Standard convolution. (b) Depthwise separable convolution (adapted from [3]).

2.2. Channel Shuffling

Another way to reduce computational cost significantly while preserving accuracy is
channel shuffling. This approach was introduced in ShuffleNet [7]. Although in standard
group convolution every input channel is associated with only a single output channel,
in the case of channel shuffling, a group convolution acquires data from different in-
put groups. In particular, every input channel will correlate with every output channel,
as shown in Figure 2. Specifically, for the feature map generated from the previous group
layer, we can first divide the channels in each group into several subgroups and then feed
each group in the next layer with different subgroups.

This can be efficiently implemented by a channel shuffle operation that is described as
follows: suppose a convolutional layer with g groups whose output has g × n channels;
we first reshape the output channel dimension into (g, n), transposing and then flattening
it back as the input of next layer. Channel shuffle is also differentiable, which means it
can be embedded into network structures for end-to-end training. Overall, this approach
comprises appealing characteristics, but one should be careful with the selection of the
parameter g which defines the number of groups. For optimal results, experimentation is
required to achieve the best g value.

Figure 2. Channel shuffling.

2.3. Early Downsampling

In ENet [8] model architecture, it is stated that since processing large input frames is
very expensive, a good way to solve this is to downsample these frames in the early stages
of the network, resulting in the use of only a small set of feature maps.

Appl. Sci. 2021, 11, 8802 4 of 28

The primary role of the initial network layers should be feature extraction and the
preprocessing of the input data for the following parts of the architecture, rather than
contributing to the classification stage [8].

This approach has been employed by the ENet model architecture so that spatial infor-
mation loss due to downsampling is prevented. ENet relied on the SegNet [9] approach of
saving indices of elements chosen in max-pooling layers and using them to produce sparse
upsampled maps in the decoder, as shown in Figure 3. This approach allows reducing
memory requirements while recovering spatial information. Overall, since the proposed
approach relies upon spatial downsampling, it is not recommended for applications where
the initial image contains fine image details that have the potential to disappear after the
corresponding max-pooling operation.

Figure 3. SegNet decoder uses the max-pooling indices to upsample (without learning) the feature
maps (adapted from [9]).

2.4. The Use of Small Size Decoders

The encoder–decoder network is one of the most standard architectures of semantic
segmentation. As a result, it is crucial to optimize the performance of this architecture
as it influences plethora of models. In [8], it is suggested that the architecture of an
encoder–decoder model can be simplified by reducing the decoder’s size, in order to
save computational cost. In particular, they introduced an architecture in which the
encoder is larger than the decoder [8], following a different approach from the symmetric
encoder–decoder architecture [9]. This novelty is based on the idea that encoder should
process input data with smaller resolution of the input image. On the contrary, the one and
only decoder’s role is to upsample the output of the encoder by perfecting its details. Thus,
reducing the decoder’s size results in computational cost savings. Overall, this approach is
appealing since in most of the times the reduction in the decoder’s size does not affect the
effectiveness.

2.5. Efficient Reduction of the Feature Maps’ Grid Size

In CNNs, the reduction of the feature maps’ grid size is achieved by the application of
pooling operations. A problem that occurs is that the pooling operations can lead to repre-
sentational bottlenecks, which can be avoided by expanding the activation dimension of
the network filters. However, this process increases the computational cost. To remedy this,
Szegedy et al. [10] suggested a pooling operation with a convolution of stride 2 performed
in parallel, followed by the concatenation of the resulting filter banks. This technique
of reducing the grid size of the feature maps (shown in Figure 4) is proven in the works
of [8,10] that can achieve a significant improvement in inference time. Overall, several
approaches exist that result in reducing the features map size which has been proven to
not only achieve efficiency but to also achieve state-of-the-art effectiveness [11].

Appl. Sci. 2021, 11, 8802 5 of 28

Figure 4. Efficient reduction of grid size of the feature maps (adapted from [10]).

2.6. Increasing Network Depth While Decreasing Kernel Size

Research in [12] suggested that the use of very small (3 × 3) convolutional filters shows
improvement on the standard configurations of CNNs. Smaller convolutional filters can
permit an increase in the depth of the network by adding more convolutional layers and at
the same time reducing the number of parameters of the network. This technique reduces
computational cost, and at the same time, increases the accuracy of the network [13].

2.7. Two-Branch Networks

The trade-off between accuracy and inference time, has been addressed using two-
branch networks: the one branch captures spatial details and generate high-resolution
feature representation, while the other branch obtains high-level semantic context. Two-
branch networks manage to achieve a beneficial balance between speed and accuracy
because one of the two pathways is used to be a lightweight encoder of sufficient depth and
the other pathway is a shallow, still wide branch consisting of a few convolutions [14–16].
At the same time, unlike the encoder–decoder architecture, two-branch networks pre-
serve partial information that is lost after downsampling operations [16]. A standard
two-branch network of [15] is shown in Figure 5. Overall, the proposed approach re-
lies upon a lightweight architecture which achieves efficiency that is coupled with the
possibility of both low- and high-level features representation learning that results in
improved effectiveness.

Figure 5. Example of two-branch networks (adapted from [15]).

Appl. Sci. 2021, 11, 8802 6 of 28

2.8. Block-Based Processing with Convolutional Neural Networks

A novel and innovative method to speed up inference time is block-based processing,
where as in [17] an image is split into blocks and adjusts the resolution of each block by
downsampling the less important. This reduction of the processing resolution results in
the reduction of the computational burden and the memory consumption.

2.9. Pruning

Pruning is a method suitable for producing models that perform more accurately,
while being faster with less memory cost. The visual information is highly spatially
redundant, and thus can be compressed into a more efficient representation. Pruning is
distinguished in two categories: weight pruning and filter (channel) pruning. Both weight
pruning and filter pruning are shown in Figure 6.

In weight pruning, individual parameters (connections), and hence the weights, are
being removed, generating a sparse model that preserves the high-dimensional features of
the original network. The work of [18] suggested weight pruning with a three-step method
in which first the network is being trained to learn important connections. In the second
step, unessential connections are being pruned. Lastly, the network is trained again to
fine-tune the weights of the remaining connections. This way, network pruning can reduce
the number of connections by 9x to 13x without reducing its effectiveness [18,19].

Filter (or channel) pruning is also a very successful type of method which leads to
successful results. By removing filters that have negligible effect on the output accuracy
alongside with their corresponding feature maps, the computation costs are significantly
reduced [20]. He et al. [21] proposed an efficient method based on channel pruning which
improves inference time, while preserving the accuracy of the network. Overall, this
approach puts emphasis on the efficiency with the cost of losing information used in the
network at the spatial and functional level resulting in reduced effectiveness.

Figure 6. Synapses and neurons before and after pruning (adapted from [18]).

2.10. Quantization

An additional method to ameliorate the efficiency of semantic segmentation is to use
quantization to reduce the number of bits needed for the weight representation of the
network. A standard way to represent each weight is to employ 32 bits. However, 32-bit
operations are slow and have large memory requirements [22]. Han et al. [19] proposed a
quantization approach that reduces the number of bits that represent each connection from
32 to 5 and at the same time restrict the number of effective weights by sharing the same
weights between multiple connections, and then fine-tune them.

3. State-of-the-Art Deep-Learning Models

In this Section, we present the current state-of-the-art models of real-time semantic
segmentation, based on their performance in terms of accuracy and inference time for

Appl. Sci. 2021, 11, 8802 7 of 28

“Cityscapes” and “CamVid” datasets. In our presentation, we follow a grouping of the
models based on the approaches that have been used to achieve efficiency.

In the case of using a two-branch network, several models appear in the state-of-
the-art. SS [23] belongs to the multi-branch networks as it uses two branches, one for
receiving the input image and the other for receiving a half-resolution version of that image.
Moreover, SS introduces spatial sparsity in this type of architecture, managing to reduce
the computational cost by a factor of 25, alongside with using in-column and cross-column
connections and removing residual units. Its architecture is shown in Figure 7.

Figure 7. The inference pipeline of SS (adapted from [23]).

Another model that constitutes of two branches is ContextNet [24]. Taking a deeper
look at Figure 8, the first branch achieves cost efficient and accurate segmentation at low
resolution, while the second combines a sub-network at high resolution to provide detailed
segmentation results. ContextNet also uses depthwise separable convolutions for speeding
up inference time and bottleneck residual blocks. Very important factor for its performance
is network compression and the pyramid representation to segment in real time with low
memory cost. Apart from these approaches, ContextNet uses also pruning to decrease the
parameters of the network.

Figure 8. The inference pipeline of ContextNet (adapted from [24]).

Fast-SCNN [25] proposes a “learning to downsample” module for computing low-
level features for multiple resolution branches in parallel, as shown in Figure 9. Fast-
SCNN also features a global feature extractor for capturing the global context for semantic
segmentation. Finally, Fast-SCNN uses depthwise separable convolutions and residual
bottleneck blocks [26] to increase speed and reduce the number of parameters and the
computational cost.

Appl. Sci. 2021, 11, 8802 8 of 28

Figure 9. The framework of Fast-SCNN (adapted from [25]).

BiSeNet (Bilateral Segmentation Network) [14] introduces a feature fusion module
used for the efficient combination of the features and an attention refinement module to
filter the features of each stage. In that fashion, it improves precision while upsampling
operations are being avoided and thus the computational cost is kept low. BiSeNet V2 [15]
is the evolution of BiSeNet, which presents good trade-off between speed and accuracy. It
features a Guided Aggregation Layer to fuse the features extracted from the Detail and the
Semantic branch, and proposes booster training strategy. Creators use fast-downsampling in
the Semantic Branch to advance the level of the feature representation and increase the receptive
field rapidly. The structure of both networks are presented in Figures 10 and 11, respectively.

Network Architecture

Attention Refinement Module

Feature Fusion Module

Figure 10. An overview of BiSeNet Network Architecture including the Attention Refinement and
the Feature Fusion Module (adapted from [14]).

Figure 11. An overview of BiSeNet V2 (adapted from [15]).

FasterSeg [27] employs neural architecture search [28,29] and proposes a decoupled
and fine-grained latency regularization to balance the trade-off between high inference
speed and low accuracy. The scope of neural architecture search is the design of deep-
learning architectures in an automatic fashion, thus reducing the involvement of the human

Appl. Sci. 2021, 11, 8802 9 of 28

factor [30]. Another contribution is the use of knowledge distillation [31] and specifically,
the introduction of a co-searching teacher-student framework that improves accuracy.
Knowledge distillation aims to transfer the features learned from a large and complex
network (teacher network) to a smaller and lighter network (student network). In the
proposed co-searching teacher-student framework the teacher and student networks share
the same weights, working as a supernet, thus not creating extra burden in terms of memory
usage and size. The general structure is shown in Figure 12.

Figure 12. Network architecture of FasterSeg (adapted from [27]).

ESNet [32] follows a symmetric encoder–decoder architecture, as shown in Figure 13.
It involves a parallel factorized convolution unit module with multiple branch parallel
convolutions, multi-branch dilated convolution and pointwise convolutions. The symmetry
of ESNet’s architecture reduces network’s complexity and as a result leads to a reduction of
the inference time. The parallel factorized convolution unit module with multiple branch
parallel convolutions manage to learn imparallel feature representations in a powerful
manner, without increasing the computational complexity.

Figure 13. Overall symmetric architecture of ESNet (adapted from [32]).

ShelfNet18 [33] structure is presented in Figure 14. More specifically, it is composed of
multiple encoder–decoder branches, uses shared-weights and a residual block. To decrease
inference time, ShelfNet18 proposes channel reduction to efficiently reduce to computation
burden. The use of different encoder–decoder branches ameliorates the computational
process, increasing the segmentation accuracy. Weights are being shared between convo-
lutional layers of the same residual block, in order to decrease the number of network
parameters without decreasing accuracy.

Appl. Sci. 2021, 11, 8802 10 of 28

Figure 14. Network architecture of ShelfNet (adapted from [33]).

ICNet [34] proposes a framework for saving operations in multiple resolutions and
features a cascade feature fusion unit. Its architecture is shown in Figure 15. It processes,
simultaneously, semantic information from low resolution branches, along with details
from high-resolution images in an efficiently manner.

Figure 15. Network architecture of ICNet (adapted from [34]).

In the case of using factorized convolutions to reduce latency the efficiency is achieved
by modifying the way convolutions work in the network architecture to boost speed [2,35].
In the literature, several models employ such an approach. First, ESPNet [36] introduces
a convolutional module, called efficient spatial pyramid, which functions efficiently in
terms of computational cost, memory usage and power. ESPNet depends on a principle
of convolution factorization. More analytically, convolutions are resolved into two steps:
(1) pointwise convolutions and (2) spatial pyramid of dilated convolutions. ESPNet’s
network structure, shown in Figure 16, is fast, small, capable of handling low power,
and low latency while preserving semantic segmentation accuracy.

Appl. Sci. 2021, 11, 8802 11 of 28

Figure 16. Network architecture of ESPNet (adapted from [36]).

ESPNetv2 [37] based on ESPNet, outperforms the latter by 4–5% and has 2–4× fewer
FLOPs on the PASCAL VOC and the “Cityscapes” dataset. ESPNetv2 modifies efficient
spatial pyramid module and introduces an Extremely Efficient Spatial Pyramid unit by
replacing pointwise convolutions with group pointwise convolutions, computationally
expensive 33 dilated convolutions with depthwise dilated separable convolution. Lastly, it
fuses the feature maps employing a computationally efficient hierarchical feature fusion
method. According to [37], pruning and quantization are complementary methods for
ESPNetv2. A structural unit of its architecture is presented in Figure 17.

Figure 17. Strided Extremely Efficient Spatial Pyramid unit with shortcut connection to an input
image (highlighted in red) for downsampling (adapted from [37]).

ESSGG [38] improves runtime of ERFNet by over a factor of 5X, by replacing its
modules with more efficient ones, such as the aforementioned depthwise separable convo-
lutions, grouped convolutions and channel shuffling. In this manner the inference time
is reduced efficiently. Another contribution of this work is the training method, called
gradual grouping where dense convolutions are transformed to grouped convolutions
optimizing the function of gradient descent. Furthermore, it is important to refer that
ESSGG uses a small decoder’s size. Finally, pruning and quantization are proposed as sec-
ondary options used in the later stages of the network to improve efficiency. The detailed
network’s architecture is shown in Table 1.

Appl. Sci. 2021, 11, 8802 12 of 28

Table 1. Network architecture of ESSGG [38].

Layer Type Output Channel Output Resolution

1 Downsampling block 16 512 × 256

2
3–5
5–7

Downsampling block
3 × Non-bt-1D
2 × Conv-module

64
128
64

256 × 128
128 × 64
256 × 128

8
9
10
11
12
13
14
15
16

Downsampling block
Non-bt-1d (dilated 2)
Non-bt-1d (dilated 4)
Non-bt-1d (dilated 8)
Non-bt-1d (dilated 16)
Conv-module (dilated 2)
Conv-module (dilated 4)
Conv-module (dilated 8)
Conv-module (dilated 16)

128
128
128
128
128
128
128
128
128

128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64

17
18–19

Deconvolution (upsampling)
2 × Non-bt-1D

64
64

256 × 128
256 × 128

20
21–22

Deconvolution (upsampling)
2 × Non-bt-1D

16
16

512 × 256
5125 × 256

23 Deconvolution (upsampling) C 1024 × 512

DABNet [39] introduces a Depthwise Asymmetric Bottleneck module, which extracts
combined local and contextual information and reduces the number of parameters of
the network. This specific module uses depthwise asymmetric convolution and dilated
convolution. DABNet is build on the idea of creating a sufficient receptive field which aids to
the dense use of the contextual information. DABNet’s design, shown in Figure 18, achieves
an efficient and accurate architecture with reduced number of parameters compared to other
real-time semantic segmentation models. It is of high importance to note that DABNet uses
convolution factorization by choosing depthwise separable convolutions to speed up and
inference time. DABNet presents 70.1% mIoU on “Cityscapes” test set, involving solely
0.76 million parameters, and can run at 104 fps on 512 × 1024 high-resolution images.

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

× ×
×

Figure 18. Architecture of Depthwise Asymmetric Bottleneck Network. C means concatenation,
dashed lines indicate average pooling operation. (adapted from [39]).

DFANet [40] focuses on deep feature aggregation using several interconnected encod-
ing paths to add high-level context into the encoded features. Its structure is shown in
Figure 19.

Appl. Sci. 2021, 11, 8802 13 of 28

Figure 19. Overview of Deep Feature Aggregation Network: sub-network aggregation, sub-stage
aggregation, and dual-path decoder for multi-level feature fusion. In the Figure, C denotes concate-
nation, xN is N upsampling operation (adapted from [40]).

ShuffleSeg [41] achieves satisfactory levels of accuracy by employing higher resolution
feature maps. A deeper analysis of Figure 20, puts emphasis that in its encoder features
grouped convolutions and channel shuffling which ameliorate performance. Shuffleseg
was one of the first works that involved these two approaches for decreasing inference time.

Figure 20. Network Architecture of ShuffleSeg (adapted from [41]).

HarDNet [42] introduces dynamic random-access memory traffic for feature map ac-
cess and proposes a new metric, Convolutional Input/Output. It also features a Harmonic
Dense Block and depthwise separable convolution. HarDNet also states that inference
latency is highly correlated with the DRAM traffic. HarDNet achieves a high accuracy-
over-Convolutional Input/Output and a great computational efficiency by improving
the computational density (MACs (number of multiply-accumulate operations or floating-
point operations) over Convolutional Input/Output). HarDNet’s architecture is shown in
Figure 21.

Appl. Sci. 2021, 11, 8802 14 of 28

Figure 21. Network Architecture of HarDNet (adapted from [42]).

ERFNet [43] is based on the encoder–decoder architecture. Taking a deeper look
at Figure 22, it constitutes of a layer that features residuals connections and factorized
convolutions aiming to sustain efficiency while being accurate enough. To speed up the
processing time, designers chose a small decoder size and deconvolutions to simplify
memory and computational costs.

Figure 22. ERFNet Network Architecture (adapted from [43]).

In the case of channel shuffling, a considerable number of state-of-the-art models
employ this approach to increase efficiency. LEDNet [44] is a novel lightweight net-
work (shown in Figure 23) that focuses on reducing the amount of network parameters.
It follows an asymmetric encoder–decoder architecture and uses channel shuffling for
boosting inference speed. ESSG and ShuffleSeg also use channel shuffling for improving ef-
ficiency. Furthermore, LEDNet’s decoder involves an attention pyramid network to enlarge
the receptive fields, while alleviating the network from extra computational complexity.
Moreover, the asymmetric encoder–decoder architecture indicates the efficiency-oriented
approach of the small decoder’s size to improve performance in terms of speed.

Figure 23. Overall asymmetric architecture of the LEDNet (adapted from [44]).

Appl. Sci. 2021, 11, 8802 15 of 28

In the case of early downsampling, several semantic segmentation models use this
approach to boost efficiency. EDANet [45] follows an asymmetric convolution structure.
Asymmetric convolution decays a standard 2D convolution into two 1D convolutions.
In this fashion, the parameters are reduced without sacrificing accuracy. EDANet uses
early downsampling and dense connectivity to improve efficiency, while keeping low
computational cost. It is important to note that BiSeNet V2 is also included in the net-
works which use early downsampling. Finally, EDANet does not use a classic decoder
module to upsample the feature maps to reduce computational costs. On the contrary,
bilinear interpolation is used to upsample feature maps by a factor of 8 to the size of input
images, as shown in Figure 24 between the block of the Precision Layer and the Output
block. This method is based on the efficiency-oriented approach mentioned in Section 2.
Although this approach reduces accuracy, the trade-off between accuracy and inference
speed is still satisfactory.

Figure 24. EDANet Network Architecture (adapted from [45]).

ENet [8] is an optimized deep neural network designed for fast inference and high accuracy. It
follows a compact encoder–decoder architecture; however, as shown in Table 2, ENet uses a small
size decoder for reducing computation cost and increasing inference speed. Furthermore,
ENet introduces early downsampling to achieve low-latency operation. More specifically,
early downsampling is the process of downsampling the input image at the first layers
of the network. The reason behind this technique is that a downsampled version of the
input image can be much more effective without losing vital information and thus without
sacrificing accuracy. Last but not least, [8] was one of the first semantic image segmentation
models that aimed at real-time performance and a milestone for the following research
attempts.

Table 2. Network architecture of ENet [8] .

Layer Type Output Channel Output Resolution

1 Downsampling block 16 512 × 256

2
3–5
5–7

Downsampling block
3 × Non-bt-1D
2 × Conv-module

64
128
64

256 × 128
128 × 64
256 × 128

8
9
10
11
12
13
14
15
16

Downsampling block
Non-bt-1d (dilated 2)
Non-bt-1d (dilated 4)
Non-bt-1d (dilated 8)
Non-bt-1d (dilated 16)
Conv-module (dilated 2)
Conv-module (dilated 4)
Conv-module (dilated 8)
Conv-module (dilated 16)

128
128
128
128
128
128
128
128
128

128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64
128 × 64

17
18–19

Deconvolution (upsampling)
2 × Non-bt-1D

64
64

256 × 128
256 × 128

20
21–22

Deconvolution (upsampling)
2 × Non-bt-1D

16
16

512 × 256
5125 × 256

23 Deconvolution (upsampling) C 1024 × 512

Appl. Sci. 2021, 11, 8802 16 of 28

The presented state-of-the-art models are listed in Table 3, along with their backbone
and the efficiency-oriented approaches they share in common. The role of Table 3 is to
summarize the ameliorative features that are mostly used in real-time semantic image seg-
mentation, with the intention of clearing the way of designing efficient real-time semantic
image segmentation models. Furthermore, Table 4 presents a collection of links to the
implementation code of the state-of-the-art models.

Table 3. Common efficiency-oriented approaches used in real-time Semantic Segmentation models.

Networks Backbone Efficiency-Oriented Approaches

DDRNet [16] ResNet two-branch network

STDC1-50 [11] STDC feature map size reduction
single branch efficient decoder

U-HarDNet-70 [42] DenseNet depthwise separable convolutions

HyperSeg [46]
EfficientNet-B1 pointwise convolutions

PSPNet depthwise convolutions
ResNet18 small decoder size

SwiftNetRN-18 [47] ResNet-18 small decoder size (lightweight decoder)MobileNet V2

BiSeNet V2 [15]
VGGnet two-branch networkXception fast-downsamplingMobileNet

TD4-BISE18 [48] TDNet Grouped convolutions

ShelfNet18 [33]
ResNet multi-branch networkXception channel reductionDenseNet

BiSeNet [14] Xception39 two-branch networkResNet18

SegBlocks [17] - block-based processing

FasterSeg [27] FasterSeg multi-branch network

ESNet [32] ESNet multi-branch network
pointwise convolutions (factorized

convolutions)

LEDNet [44] ResNet channel shuffling

ICNet [34] image cascade network multi-branch network

SQ [49] SqueezeNet decreased kernel size

ERFNet [43] ERFNet small decoder size

LinkNet [50] ResNet18 bypassing spatial information

SS [23] ResNet18 two-branch network

ContextNet [24] ContextNet
two-branch network

depthwise separable convolutions
pruning

DSNet [51] DSNet channel shuffling

ESPNetv2 [37] ESPNet group pointwise convolutions
depthwise separable convolutions

ESSGG [38] ERFNet depthwise separable convolutions
channel shuffling

Appl. Sci. 2021, 11, 8802 17 of 28

Table 3. Cont.

Networks Backbone Efficiency-Oriented Approaches

LWRF [52] ResNet decreasing kernel’s(receptive field) size
MobileNetV2 small decoder size

DABNet [39] DABNet depthwise separable convolutions

DFANet [40] Xception depthwise separable convolutions

Fast-SCNN [25] Fast-SCNN two-branch network
depthwise separable convolutions

ShuffleSeg [41] ShuffleNet Grouped convolutions
Channel shuffling

Template-Based-NAS-arch1 [13] MobileNetV2 separable convolutions
decreased kernel size

LiteSeg [53]
MobileNet

depthwise separable convolutionsShuffleNet
DarkNet19

Template-Based-NAS-arch0 [13] MobileNetV2 separable convolutions
decreased kernel size

ENet [8] Enet early downsampling
ResNets small decoder size

ENet + Lovász-Softmax [54] - early downsampling
small decoder size

SegNet [9] VGG16 reuse of max-pooling indices

EDANet [45] EDA early downsampling
factorized convolutions

Table 4. Links to source code of real-time Semantic Segmentation models.

Networks Github Repositories (All Accessed on 2 August 2021) Ownership

DDRNet (ResNet) https://github.com/ydhongHIT/DDRNet Official code
HyperSeg https://github.com/YuvalNirkin/hyperseg Official code
STDC1-50 https://github.com/MichaelFan01/STDC-Seg Official code
SegBlocks https://github.com/thomasverelst/segblocks-Segmentation-pytorch Official code
SQ https://github.com/klickmal/speeding_up_semantic_Segmentation Third-party code
ERFNet https://github.com/Eromera/erfnet Official code
LinkNet https://github.com/e-lab/LinkNet Third-party code
ContextNet https://github.com/klickmal/ContextNet Third-party code
DSNet https://github.com/s7ev3n/DSNet Third-party code
ESPNetv2 https://github.com/sacmehta/ESPNetv2 Official code
LWRF https://github.com/DrSleep/light-weight-refinenet Third-party code
DABNet https://github.com/Reagan1311/DABNet Official code
DFANet https://github.com/huaifeng1993/DFANet Third-party code
Fast-SCNN https://github.com/Tramac/Fast-SCNN-pytorch Third-party code
ShuffleSeg https://github.com/MSiam/TFSegmentation Official code
U-HarDNet-70 https://github.com/PingoLH/Pytorch-HarDNet Official code
SwiftNetRN-18 https://github.com/orsic/swiftnet Official code
TD4-BISE18 https://github.com/feinanshan/TDNet Official code
ShelfNet18 https://github.com/juntang-zhuang/ShelfNet Official code
BiSeNet https://github.com/osmr/imgclsmob Third-party code
BiSeNet V2 https://github.com/CoinCheung/BiSeNet Third-party code
FasterSeg https://github.com/VITA-Group/FasterSeg Official code
ESNet https://github.com/osmr/imgclsmob Third-party code
LEDNet https://github.com/xiaoyufenfei/LEDNet Third-party code
ICNet https://github.com/hszhao/ICNet Official code
Template-Based-NAS-arch1 https://github.com/drsleep/nas-segm-pytorch Official code
LiteSeg https://github.com/tahaemara/LiteSeg Official code
Template-Based-NAS-arch0 https://github.com/drsleep/nas-segm-pytorch Official code
ENet https://github.com/iArunava/ENet-Real-Time-Semantic-Segmentation Third-party code
ENet + Lovász-Softmax https://github.com/bermanmaxim/LovaszSoftmax Official code
SegNet https://github.com/alexgkendall/caffe-segnet Third-party code
EDANet https://github.com/shaoyuanlo/EDANet Official code

https://github.com/ydhongHIT/DDRNet
https://github.com/YuvalNirkin/hyperseg
https://github.com/MichaelFan01/STDC-Seg
https://github.com/thomasverelst/segblocks-Segmentation-pytorch
https://github.com/klickmal/speeding_up_semantic_Segmentation
https://github.com/Eromera/erfnet
https://github.com/e-lab/LinkNet
https://github.com/klickmal/ContextNet
https://github.com/s7ev3n/DSNet
https://github.com/sacmehta/ESPNetv2
https://github.com/DrSleep/light-weight-refinenet
https://github.com/Reagan1311/DABNet
https://github.com/huaifeng1993/DFANet
https://github.com/Tramac/Fast-SCNN-pytorch
https://github.com/MSiam/TFSegmentation
https://github.com/PingoLH/Pytorch-HarDNet
https://github.com/orsic/swiftnet
https://github.com/feinanshan/TDNet
https://github.com/juntang-zhuang/ShelfNet
https://github.com/osmr/imgclsmob
https://github.com/CoinCheung/BiSeNet
https://github.com/VITA-Group/FasterSeg
https://github.com/osmr/imgclsmob
https://github.com/xiaoyufenfei/LEDNet
https://github.com/hszhao/ICNet
https://github.com/drsleep/nas-segm-pytorch
https://github.com/tahaemara/LiteSeg
https://github.com/drsleep/nas-segm-pytorch
https://github.com/iArunava/ENet-Real-Time-Semantic-Segmentation
https://github.com/bermanmaxim/LovaszSoftmax
https://github.com/alexgkendall/caffe-segnet
https://github.com/shaoyuanlo/EDANet

Appl. Sci. 2021, 11, 8802 18 of 28

4. Evaluation Framework
4.1. Datasets

In this Section, we present the most popular datasets used in the field of semantic
segmentation aiming for autonomous driving. The choice of a suitable dataset is of great
importance for the training and the evaluation of the created models. The challenging task
of dataset selection is one of the first major steps in research, especially for a difficult and
demanding scientific field, such as autonomous driving, in which the vehicle exposure
environment can be complex and varied. Each of the following datasets have been used for
training and evaluation of real-time semantic segmentation models. Example images from
the following datasets are shown in Figure 25.

4.1.1. Cityscapes

Cityscapes [55] is one of the most popular datasets in the field of semantic segmen-
tation and autonomous driving. At first, it was recorded as a video, thus the images are
especially selected frames captured from 50 different cities The selection was based upon
the need for a great number of objects, variety of scenes and variety of backgrounds. To-
tally, 30 individual classes are provided grouped into 8 categories. The Cityscapes dataset
contains around 5000 images of fine annotation and 20,000 images of coarse annotation.
The contained urban street scenes were captured over several months of spring, summer
and fall during daytime with good weather conditions.

4.1.2. CamVid

CamVid [56] is an image dataset containing road scenes. At first, it was recorded
as a video of five sequences. The resolution of the images that CamVid is consisted of is
960 × 720. The dataset provides in total 32 classes. Some of the most important ones for
road-scene understanding are: car, pedestrian, motorcycle, traffic light, traffic cone, lane
markings, sign, road, truck/bus and child.

4.1.3. MS COCO—Common Objects in Context

COCO [57] is an extensive dataset suitable for tasks such as object detection and
semantic image segmentation. It contains 328,000 images. From the total amount of images,
more than 82,873 are specified for training, around 41,000 for validation and over 80,000
for testing.

4.1.4. KITTI

KITTI [58] is a hallmark dataset in the field of autonomous driving. It consists of a
large-scale amount of traffic scenes. The data were collected with a diverse set of different
sensors such as RGB and grayscale cameras and a 3D laser scanner..

4.1.5. KITTI-360

KITTI-360 [59] is a wide-reaching dataset consisting of well-crafted annotations and
great scene information. Data were captured from various suburbs of Karlsruhe, Germany.
In total, it contains more than 320,000 images and 100,000 laser scans in a driving distance
of 73.7 km. Designers annotated both static and dynamic 3D scene elements with rough
bounding primitives. The definition of the labels is consistent with the Cityscapes dataset.
Finally, it employs 19 classes for evaluation.

4.1.6. SYNTHIA

SYNTHIA dataset [60] contains 9400 road scenes captured from a simulation of a city
environment. It employs 13 classes. The resolution of the images is 1280 × 960.

Appl. Sci. 2021, 11, 8802 19 of 28

(a)

(b)

(c)

(d)

(e)

Figure 25. Examples of the original image and the corresponding ground truth image for the datasets:
(a) Cityscapes (b) CamVid (c) Mapillary Vistas (d) SYNTHIA (e) RaidaR.

4.1.7. Mapillary Vistas

Mapillary Vistas Dataset [61] is an exhaustive dataset of road scenes with human-
crafted pixel-wise annotations. It is designed for road-scene understanding from images

Appl. Sci. 2021, 11, 8802 20 of 28

captured globally. It features 25,000 high-resolution images, 124 semantic object categories,
100 instance-specifically annotated categories. It covers scenes from 6 continents, and it
provides a diversity of weather, season, time of day, camera, and viewpoint.

4.1.8. ApolloScape

ApolloScape [62] is a large dataset consisting of over 140,000 video frames (73 street
scene videos) from various locations in China under varying weather conditions.

4.1.9. RaidaR

RaidaR [63] is a large-scale dataset of rainy road scenes, specifically designed for
autonomous driving. RaidaR comprises 58,542 images of rainy weather. From this amount,
a subset of 5000 is annotated with semantic segmentation. Moreover, 4085 sunny images
were also annotated with semantic segmentations. Thus, RaidaR is one of the extensive
datasets. Finally, it is one of the most promising ones due to the challenges it presents
because of the rainy weather conditions.

4.2. Metrics

In this Section, we summarize some of the most popular metrics used for evaluating
the performance of semantic segmentation models. The evaluation of these models and
especially, those who are designed for real-time semantic segmentation depends on two
key factors: effectiveness and efficiency.

4.2.1. Metrics Related to Effectiveness

For k + 1 classes (+1 class corresponds to background) and pij the number of pixels of
class i predicted/presumed as belonging to class j we define the following metrics [64]:

• Pixel Accuracy: is defined as the ratio of correctly classified pixels divided by their
total number.

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(1)

• Mean Pixel Accuracy: is an extension of Pixel Accuracy, which calculates the ratio of
correct pixels in a per-class basis and then averaged over the total number of classes.

MPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(2)

• Intersection over Union (IoU): is a very popular metric used in the field of semantic
image segmentation. IoU is defined the intersection of the predicted segmentation
map and the ground truth, divided by the area of union between the predicted
segmentation map and the ground truth.

IoU =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij + ∑k
i=0 ∑k

j=0 pji − ∑k
i=0 pii

(3)

• mean Intersection over Union (mIoU): is the most widely used metric for semantic
segmentation. It is defined as the average IoU over all classes.

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji−pii
(4)

4.2.2. Metrics Related to Efficiency

To evaluate the efficiency of a semantic image segmentation model is vital to use
metrics that define the processing time of the models and their computational and mem-
ory burden.

Appl. Sci. 2021, 11, 8802 21 of 28

• Frames per second: A standard metric for evaluating the time needed for a deep-learning
model to process a series of image frames of a video is “Frames per second”. Especially
in real-time semantic segmentation applications, such as autonomous driving, it is
crucial to know the exact number of frames a model can process below the time of a
second. It is a very popular metric, and it can be really helpful for comparing different
segmentation methods and architectures.

• Inference time: is another standard metric for evaluating the speed of semantic segmen-
tation. It is the inverse of FPS (Frame Rate), and it measures the execution time for
a frame.

• Memory usage: it is also a significant parameter to be taken into consideration when
comparing deep-learning models in terms of speed and efficiency. Memory usage can
be measured in different ways. Some researchers use the number of parameters of
the network. Another way is to define the memory size to represent the network and
lastly, a metric used frequently is to measure the number of floating-point operations
(FLOPs) required for the execution.

5. Discussion

In this Section, we present our findings and key insights after considering the com-
prehensive analysis of the state-of-the-art networks presented in Section 3. It constitutes
a fruitful discussion that comprises the emergence of a common operational pipeline
and a comparative performance analysis enriched by a discussion of the dependencies
on the used hardware along with the limitations and influence addressed by the current
benchmarking datasets.

5.1. Common Operational Pipeline

The description of the state-of-the-art models for real-time semantic segmentation,
which has been presented in Section 3, has shown sound evidence that most models share
a common operational pipeline.

In particular, the first type of semantic segmentation networks which achieved real-
time performance is based upon the encoder–decoder architecture. Representative example
is ENet [8]. The encoder module uses convolutional and pooling layers to perform fea-
ture extraction. On the other hand, the decoder module recovers the spatial details from
the sub-resolution features, while predicts the object labels (i.e., the semantic segmenta-
tion) [25]. A standard choice for the encoder module is a lightweight CNN backbone, such
as GoogLeNet [5] or a revised version of it, namely Inception-v3 [10]. The design of the
decoder module usually consists of upsampling layers based on bipolar interpolations or
transposed convolutions.

In the effort to design efficient and at the same time accurate models, two-branch and
multi-branch networks have been proposed. Instead of a single branch encoder, a two-
branch network uses a deep branch to encode high-level semantic context information and
a shallow branch to encode substantial/rich spatial details of higher resolution. Under the
same concept, multi-branch architectures integrate branches handling different resolutions
of the input image (high, low and medium). However, the features extracted from the
different branches must be merged to proceed to the segmentation map. To this end,
two-branch networks introduce a fusion module to combine the output of the encoding
branches. The fusion module can be a Feature Fusion module in which the output features
are joined by concatenation or addition, an Aggregation Layer (BiSeNet V2), a Bilateral
Fusion module (DDRNet), or a Cascade Feature Fusion Unit (ICNet).

In a nutshell, there are three types of modules used in the operational pipeline of
real-time semantic segmentation: an encoding, a decoding and a fusion module. There are
several configurations where the fusion module is part of the decoder. Figure 26 shows the
three modules and the corresponding standard yet dominant, design choices.

Appl. Sci. 2021, 11, 8802 22 of 28

Figure 26. Basic modules of efficient Semantic Segmentation.

5.2. Comparative Performance Analysis

At Table 5, a detailed listing of the performance of state-of-the-art-models in terms of
effectiveness (expressed by the mIoU metric) and efficiency (expressed by the FPS metric)
for both “Cityscapes” and “CamVid” datasets. Concerning the results of the “Cityscapes”
dataset, STDC1-50 presents the best result in terms of inference speed with 250.4 FPS and
71.9% mIoU in terms of accuracy. Moreover, FasterSeg achieves 163.9 FPS in terms of
inference speed and 71.5% mIoU in terms of accuracy. Finally, BiSeNet V2 and Fast-SCNN
achieve 156 FPS and 123.5 FPS with 72.6% and 68% mIoU, respectively. The results of
these models are exceptional and really promising about the future of real-time semantic
segmentation. As far as the results on the “CamVid” dataset are concerned, FasterSeg
presents the outstanding results of 398.1 FPS in terms of inference speed and 71.1% mIoU
in terms of accuracy. Moreover, DDRNet-23-slim achieve 230 FPS and 78% mIoU, while
STDC1-Seg achieved 197.6 FPS and 73% mIoU.

After the aforementioned objective evaluation, we examined the presented models
by taking into account the trade-off between speed and accuracy which can be shown in
Figure 27a,b. In particular, in Figure 27a, where experimental results for the “Cityscapes”
dataset are considered, we can observe that STDC1-50 [11] presents a satisfactory trade-off
between mIoU and FPS, compared to the other models. Although other models such as
U-HardNet70, BiSeNet v2 Large, SwiftNetRN-18 and ShelfNet18 achieve better perfor-
mance in terms of accuracy, they lag behind in terms of frame rate. Moreover, in Figure 27b,
where experimental results for the “CamVid” dataset are considered, it is shown that
FasterSeg [27] can be considered to be an appealing choice for real-time semantic image seg-
mentation, by taking into account the trade-off between accuracy and efficiency compared
to all other models.

5.2.1. Dataset-Oriented Performance

Another issue concerning the finding of the best suited model for a problem at hand
is the dataset selection for training. This is a critical issue in the field of deep learning in
particular, as the data used to train a model is one of the most influential factors for the
performance of the neural network. Therefore, in autonomous driving where the models
work in real time, they should be trained in an earlier stage with the most suitable data.
Moreover, the comparison of the semantic segmentation models should be made for the
same dataset. Thus, research papers use the same dataset to compare different models.
Nonetheless, in the area of real-time semantic segmentation, most of the models are being
compared in the “Cityscapes” and “CamVid” datasets. Although this fact simplifies the
searching for the fastest, yet most accurate, segmentation model it may not provide the
most objective decision for the choice of the most suitable method. In particular, in the
area of autonomous driving where every mistake may cause irreversible consequences,
there is a practical necessity for training and testing the deep-learning models used in a

Appl. Sci. 2021, 11, 8802 23 of 28

wide variety of situations of the external environment (day, light, traffic, etc.). For example,
“Cityscapes” and “CamVid” which are one of the most popular and most used datasets for
benchmark tests, lack some vital features, regarding their diversity. In detail, they contain
images with good/medium weather conditions on daytime. However, an efficient and
safe autonomous driving system must have the ability to function under adverse weather
conditions, such as snowfall and of course at night-time, especially in the case of emergency.
To this end, one could adopt transfer learning techniques as will be discussed in Section 6
to remedy this limitation raised by currently available datasets.

Table 5. Performance of real-time Semantic Segmentation models in “Cityscapes” and “CamVid” datasets.

Networks (Backbone) Cityscapes CamVid
mIoU (%) FPS Hardware mIoU (%) FPS Hardware

SQ (SqueezeNet) 84.3 16.7 Jetson TX1 - - -
DDRNet-23 79.4 38.5 GTX 2080Ti 79.9 94 GTX 2080Ti

HyperSeg-S (EfficientNet-B1) 78.1 16.1 GTX 1080TI 78.4 38.0 GTX 1080TI
DDRNet-23-slim 77.4 108.8 GTX 2080Ti 78.0 230 GTX 2080Ti

LinkNet (ResNet18) 76.4 18.7 Titan X - - -
U-HarDNet-70 (DenseNet) 75.9 53 GTX 1080Ti 67.7 149.3 Titan V

HyperSeg-M (EfficientNet-B1) 75.8 36.9 GTX 1080Ti - - -
SwiftNetRN-18 (ResNet-18,

MobileNet V2) 75.5 39.9 GTX 1080Ti 73.86 43.3 GTX 1080Ti

TD4-BISE18 (TDNet) 74.9 47.6 Titan Xp 74.8 59.2 Titan Xp
ShelfNet18 (ResNet, Xception,

DenseNet) 74.8 59.2 GTX 1080Ti - - -

BiSeNet (ResNet18) 74.7 65.5 Titan Xp 68.7 - Titan Xp
SegBlocks-RN18 (t = 0.4) 73.8 48.6 GTX 1080Ti - - -

SS (ResNet18) 72.9 14.7 GTX 980 - - -
BiSeNet V2 (VGGnet, Xception,

MobileNet, ShuffleNet) 72.6 156 GTX 1080 Ti 72.4 124.5 GTX 1080 Ti

STDC1-50 (STDC) 71.9 250.4 GTX 1080 Ti - - -
FasterSeg (FasterSeg) 71.5 163.9 GTX 1080Ti 71.1 398.1 GTX 1080Ti
DFANet (Xception) 71.3 100 Titan X 64.7 120 Titan X

ESNet (ESNet) 70.7 63 GTX 1080Ti - - -
ICNet (image cascade network) 70.6 30.3 Titan X 67.1 27.8 Titan X

LEDNet (ResNet) 70.6 71 GTX 1080Ti - - -
STDC1-Seg (STDC) - - - 73.0 197.6 GTX 1080Ti
ERFNet (ERFNet) 69.7 41.6 Titan X - - -

DSNet (DSNet) 69.3 36.5 GTX 1080Ti - - -
DABNet (DABNet) 69.1 104.2 GTX 1080Ti - - -

BiSeNet (Xception39) 68.4 105.8 Titan Xp 68.7 - Titan Xp
ESSGG (ERFNet) 68 - - - - -

Fast-SCNN (Fast-SCNN) 68 123.5 Nvidia Titan Xp - - -
Template-Based-NAS-arch1

(MobileNetV2) 67.8 10 GTX 1080Ti 63.2 - GTX 1080Ti

LiteSeg (MobileNetV2) 67.8 22 GTX 1080Ti - - -
Template-Based-NAS-arch0

(MobileNetV2) 67.7 19 GTX 1080Ti 63.9 - GTX 1080Ti

EDANet (EDA) 67.3 81.3 Titan X 66.4 - GTX 1080Ti
ESPNetv2 (ESPNet) 66.2 5.55 GTX 1080 Ti - - -

ContextNet (ContextNet) 66.1 23.86 Titan X - - -
ENet + Lovász-Softmax 63.1 76.9 - - -
ShuffleSeg (ShuffleNet) 58.3 15.7 Jetson TX2 - - -

ENet (Enet, ResNets) 58.3 46.8 Titan X 51.3 - -
LWRF (ResNet, MobileNetV2) 45.8 - GTX 1080Ti - - -

5.2.2. The Influence of Hardware

For a concise comparative study, it is crucial that the experiments should be performed
under the same conditions. In particular, the inference time is measured for a particular
hardware configuration. As a result, the comparisons between the different architectures
should be taken under deep examination, as the specific GPU model, the ram and other
parameters play an important role in the efficiency which the models present. For this
reason, the vast majority of the examined research papers provide information about the
hardware specifications and the experiment conditions under which their proposed models

Appl. Sci. 2021, 11, 8802 24 of 28

are being evaluated. To this end, at Table 5 the performance of each model is coupled with
the GPU used during the experimental work.

Beyond modern GPUs, fast inference could be achieved with other powerful computer
devices. In fact, on the subject of the hardware choice [65] provide a thorough and concise
list of the commercially available edge devices. Edge TPU of Google, Neural Compute
22 of Intel, Jetson Nano, TX1, AGX Xavier of NVidia, AI Edge of Xilinx and Atlas 200 DK
of Huawei are some of the modern commercially available edge computing devices for
mobile and aerial robots deep-learning inference.

U-HarDNet-70

SwiftNetRN-18

BiSeNet V2-Large

TD4-BISE18
ShelfNet18

BiseNet

BiSeNet

BiSeNet V2

FRRN

FasterSeg

ESNet

LEDNet
ICNet

BiSeNet (Xception39)

Template-Based-NAS-arch1

Template-Based-NAS-arch0
Dilation10

FCN

ENet + Lovász-Softmax
DeepLab

CRF-RNN

ENet

SegNet

Fast-SCNN

STDC1-50

DDRNet-23-slim

DABNet

EDANet

55,5

60,5

65,5

70,5

75,5

80,5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

m
Io

U

FPS

Cityscapes FPS (mIoU)

(a)

BiSeNet V2-Large

(Cityscapes-Pretrained)

BiSeNet V2- (Cityscapes-

Pretrained)
TD2-PSP50

BiSeNet V2-Large

TD4-BISE18

BiSeNet V2

HyperSeg-S

ICNet DFANet

SwiftNetRN-18

SegNet

DDRNet-23 DDRNet-23-slim

U-HarDNet-70
FasterSeg

STDC1-Seg

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

m
Io

U

FPS

CamVid FPS (mIoU)

(b)

Figure 27. Performance in terms of FPS in relation to mIoU for the state-of-the-art models in (a)
“Cityscapes” dataset and (b) “CamVid” dataset.

6. Future Research Trends

In this Section, we present some promising techniques towards improving the perfor-
mance of semantic image segmentation that can be adopted in future research efforts.

• Transfer learning: Transfer learning transfers the knowledge (i.e., weights) from the
source domain to the target domain, leading to a great positive effect on many domains
that are difficult to improve because of insufficient training data [66]. By the same
token, transfer learning can be useful in real-time semantic segmentation by reducing
the amount of the needed training data, therefore the time required. Moreover, as [47]
proposes, transfer learning offers a greater regularization to the parameters of a
pre-trained model. In [67,68], the use of transfer learning improved the semantic
segmentation performance in terms of accuracy.

Appl. Sci. 2021, 11, 8802 25 of 28

• Domain adaptation: Domain adaptation is a subset of transfer learning. Domain
adaptation’s goal is to ameliorate the model’s effectiveness on a target domain using
the knowledge learned in a different, yet coherent source domain [69]. In [70] the
use of domain adaptation, achieved a satisfactory increase in mIoU on unseen data,
without the adding extra computational burden, which is one of the great goals of real-
time semantic segmentation. Thus, domain adaptation might be a valuable solution
for the future of autonomous driving, by giving accurate results on unseen domains
while functioning in low latency.

• Self-supervised learning: Human-crafting large-scale data has a high cost, is time-
consuming and sometimes is an almost impracticable process. Especially in the field
of autonomous driving, where millions of data are required due to the complexity of
the street scenes, many hurdles arise in the annotation of the data. Self-supervised
learning is a subcategory of unsupervised learning introduced to learn representations
from extensive datasets without providing manually labeled data. Thus, any human
actions (and involvements) are avoided, reducing the operational costs [71].

• Weakly supervised learning: Weakly supervised learning is related to learning meth-
ods which are characterized by coarse-grained labels or inaccurate labels. As reported
in [71], the cost of obtaining weak supervision labels is generally much cheaper than
fine-grained labels for supervised methods. In [72], a superior performance compared
to other methods has been achieved in terms of accuracy, for a benchmark that uses the
“Cityscapes” and “CamVid” datasets. Additionally, ref. [73] with the use of classifier
heatmaps and a two-stream network shows greater performance in comparison to the
other state-of-the-art models that use additional supervision.

• Transformers: ref. [74] allows the modeling of a global context already at the first layer
and throughout the network, contrary to the ordinary convolutional-based methods.
Segmenter approach reaches a mean IoU of 50.77% on ADE20K [75], surpassing all pre-
vious state-of-the-art convolutional approaches by a gap of 4.6%. Thus, transformers
appear to be promising methods for the future of semantic segmentation.

7. Conclusions

In this paper, we present an overview of the best methods and architectures for real-
time semantic segmentation. The collection of the possible methods used for real-time
segmentation aims at helping researchers find the most suitable techniques for boosting
speed of deep-learning models while preserving their accuracy. Furthermore, tables listing
the most accurate and efficient state-of-the-art real-time models are provided. The selection
of the chosen models is based on experiments made using “Cityscapes” and “CamVid”
datasets, depending on their mIoU, FPS and inference time they achieved. For studying
purposes, a list of extensively used datasets and metrics of real-time semantic segmentation
was described. Finally, this survey discusses current issues, thus showing areas of improve-
ment in real-time semantic segmentation regarding the needs of autonomous driving and
other high-end technological fields.

Author Contributions: Supervision, A.A. and I.P. (Ioannis Pratikakis); Writing—original draft, I.P.
(Ilias Papadeas) and L.T.; Writing—review and editing, I.P. (Ilias Papadeas) and L.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH-CREATE-INNOVATE (project code:T2EDK-02743).

Acknowledgments: This research has been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, un-
der the call RESEARCH-CREATE-INNOVATE (project code:T2EDK-02743). We would also like
to thank NVIDIA Corporation, which kindly donated the Titan X GPU, that has been used for
this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 8802 26 of 28

References
1. Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art.

Found. Trends Comput. Graph. Vis. 2020, 12, 85. [CrossRef]
2. Wang, M.; Liu, B.; Foroosh, H. Factorized Convolutional Neural Networks. In Proceedings of the 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 545–553. [CrossRef]
3. Guo, Y.; Li, Y.; Feris, R.; Wang, L.; Simunic, T. Depthwise Convolution Is All You Need for Learning Multiple Visual Domains; AAAI:

Honolulu, HI, USA, 2019.
4. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.
5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

6. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:abs/1704.04861.

7. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.
arXiv 2017, arXiv:cs.CV/1707.01083.

8. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic
Segmentation. arXiv 2016, arXiv:abs/1606.02147.

9. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

10. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. [CrossRef]

11. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking BiSeNet For Real-time Semantic Segmentation. arXiv 2021,
arXiv:cs.CV/2104.13188.

12. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
13. Nekrasov, V.; Shen, C.; Reid, I. Template-Based Automatic Search of Compact Semantic Segmentation Architectures. In 2020

IEEE Winter Conference on Applications of Computer Vision (WACV); IEEE: Los Alamitos, CA, USA, 2020.
14. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation;

Computer Vision–ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham,
Switzerland, 2018; pp. 334–349.

15. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time
Semantic Segmentation. arXiv 2020, arXiv:abs/2004.02147.

16. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road
Scenes. arXiv 2021, arXiv:abs/2101.06085.

17. Verelst, T.; Tuytelaars, T. SegBlocks: Block-Based Dynamic Resolution Networks for Real-Time Segmentation. arXiv 2020,
arXiv:abs/2011.12025.

18. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both Weights and Connections for Efficient Neural Network. arXiv 2015,
arXiv:abs/1506.02626.

19. Han, S.; Mao, H.; Dally, W. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. arXiv 2016, arXiv:1510.00149.

20. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2017, arXiv:cs.CV/1608.08710.
21. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1398–1406.
22. Takos, G. A Survey on Deep Learning Methods for Semantic Image Segmentation in Real-Time. arXiv 2020, arXiv:abs/2009.12942.
23. Wu, Z.; Shen, C.; van den Hengel, A. Real-time Semantic Image Segmentation via Spatial Sparsity. arXiv 2017,

arXiv:cs.CV/1712.00213.
24. Poudel, R.P.K.; Bonde, U.D.; Liwicki, S.; Zach, C. ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-Time;

BMVC: Newcastle, UK, 2018.
25. Poudel, R.P.K.; Liwicki, S.; Cipolla, R. Fast-SCNN: Fast Semantic Segmentation Network. arXiv 2019, arXiv:cs.CV/1902.04502.
26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

27. Chen, W.; Gong, X.; Liu, X.; Zhang, Q.; Li, Y.; Wang, Z. FasterSeg: Searching for Faster Real-time Semantic Segmentation. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 30 April 2020.

28. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019, 20, 1–21.
29. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search. In Automated Machine Learning: Methods, Systems, Challenges;

Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 63–77.

http://doi.org/10.1561/0600000079
http://dx.doi.org/10.1109/ICCVW.2017.71
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2018.00474

Appl. Sci. 2021, 11, 8802 27 of 28

30. Liu, C.; Chen, L.C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.; Li, F.-F. Auto-DeepLab: Hierarchical Neural Architecture Search for
Semantic Image Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 82–92.

31. Gou, J.; Yu, B.; Maybank, S.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
32. Wang, Y.; Zhou, Q.; Wu, X. ESNet: An Efficient Symmetric Network for Real-Time Semantic Segmentation; PRCV: Xi’an, China, 2019.
33. Zhuang, J.; Yang, J.; Gu, L.; Dvornek, N. ShelfNet for Fast Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF

International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 847–856.
34. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images. In Computer

Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 418–434.

35. Bergman, A.W.; Lindell, D.B. Factorized Convolution Kernels in Image Processing; Stanford University: Stanford, CA, USA, 2019.
36. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for

Semantic Segmentation. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer
International Publishing: Cham, Switerland, 2018; pp. 561–580.

37. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. ESPNetv2: A Light-Weight, Power Efficient, and General Purpose Convolu-
tional Neural Network. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 9182–9192. [CrossRef]

38. Vallurupalli, N.; Annamaneni, S.; Varma, G.; Jawahar, C.V.; Mathew, M.; Nagori, S. Efficient Semantic Segmentation Using
Gradual Grouping. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 711–7118.

39. Li, G.; Yun, I.; Kim, J.; Kim, J. DABNet: Depth-Wise Asymmetric Bottleneck for Real-Time Semantic Segmentation; BMVC: Cardiff, UK,
2019.

40. Li, H.; Xiong, P.; Fan, H.; Sun, J. DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 9514–9523.

41. Gamal, M.; Siam, M.; Abdel-Razek, M. ShuffleSeg: Real-time Semantic Segmentation Network. arXiv 2018, arXiv:cs.CV/1803.03816.
42. Chao, P.; Kao, C.; Ruan, Y.; Huang, C.; Lin, Y. HarDNet: A Low Memory Traffic Network. In Proceedings of the 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 3551–3560. [CrossRef]
43. Romera, E.; Álvarez, J.M.; Bergasa, L.M.; Arroyo, R. ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic

Segmentation. IEEE Trans. Intell. Transp. Syst. 2018, 19, 263–272. [CrossRef]
44. Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L. Lednet: A Lightweight Encoder-Decoder Network for Real-Time

Semantic Segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan,
22–25 September 2019; pp. 1860–1864.

45. Lo, S.Y.; Hang, H.; Chan, S.; Lin, J.J. Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation.
In Proceedings of the ACM Multimedia Asia, Beijing, China, 15–18 December 2019.

46. Nirkin, Y.; Wolf, L.; Hassner, T. HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation. arXiv 2020,
arXiv:abs/2012.11582.

47. Oršic, M.; Krešo, I.; Bevandic, P.; Šegvic, S. In Defense of Pre-Trained ImageNet Architectures for Real-Time Semantic Segmentation
of Road-Driving Images. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 12599–12608. [CrossRef]

48. Hu, P.; Caba, F.; Wang, O.; Lin, Z.; Sclaroff, S.; Perazzi, F. Temporally Distributed Networks for Fast Video Semantic Segmentation.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 8815–8824. [CrossRef]

49. Treml, M.; Arjona-Medina, J.; Unterthiner, T.; Durgesh, R.; Friedmann, F.; Schuberth, P.; Mayr, A.; Heusel, M.; Hofmarcher, M.;
Widrich, M.; et al. Speeding up Semantic Segmentation for Autonomous Driving. In Proceedings of the 2016 Machine Learning
for Intelligent Transportation Systems (MLITS) in Conjunction with the Thirtieth Conference on Neural Information Processing
Systems (NIPS), Barcelona, Spain, 5–10 December 2016.

50. Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of
the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4.
[CrossRef]

51. DSNet for Real-Time Driving Scene Semantic Segmentation. arXiv 2018, arXiv:abs/1812.07049.
52. Nekrasov, V.; Shen, C.; Reid, I.D. Light-Weight RefineNet for Real-Time Semantic Segmentation. arXiv 2018, arXiv:abs/1810.03272.
53. Emara, T.; Munim, H.E.A.E.; Abbas, H.M. LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation. In Proceedings

of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, 2–4 December 2019; pp. 1–7.
[CrossRef]

54. Berman, M.; Triki, A.; Blaschko, M.B. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-
Over-Union Measure in Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4413–4421.

http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1109/CVPR.2019.00941
http://dx.doi.org/10.1109/ICCV.2019.00365
http://dx.doi.org/10.1109/TITS.2017.2750080
http://dx.doi.org/10.1109/CVPR.2019.01289
http://dx.doi.org/10.1109/CVPR42600.2020.00884
http://dx.doi.org/10.1109/VCIP.2017.8305148
http://dx.doi.org/10.1109/DICTA47822.2019.8945975

Appl. Sci. 2021, 11, 8802 28 of 28

55. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

56. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognit.
Lett. 2009, 30, 88–97. [CrossRef]

57. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2014; pp. 740–755.

58. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

59. Xie, J.; Kiefel, M.; Sun, M.T.; Geiger, A. Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

60. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243. [CrossRef]

61. Neuhold, G.; Ollmann, T.; Bulò, S.R.; Kontschieder, P. The Mapillary Vistas Dataset for Semantic Understanding of Street
Scenes. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 5000–5009. [CrossRef]

62. Wang, P.; Huang, X.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The ApolloScape Open Dataset for Autonomous Driving and Its
Application. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2702–2719. [CrossRef] [PubMed]

63. Jin, J.; Fatemi, A.; Lira, W.P.; Yu, F.; Leng, B.; Ma, R.; Mahdavi-Amiri, A.; Zhang, H.R. RaidaR: A Rich Annotated Image Dataset of
Rainy Street Scenes. arXiv 2021, arXiv:abs/2104.04606.

64. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on
deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. J. 2018, 70, 41–65. [CrossRef]

65. Faniadis, E.; Amanatiadis, A. Deep Learning Inference at the Edge for Mobile and Aerial Robotics. In Proceedings of the 2020
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Abu Dhabi, United Arab Emerites, 4–6 November
2020; pp. 334–340. [CrossRef]

66. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Artificial Neural Networks
and Machine Learning—ICANN 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 270–279.

67. Ye, J.; Lu, C.; Xiong, J.; Wang, H. Semantic Segmentation Algorithm Based on Attention Mechanism and Transfer Learning. Math.
Probl. Eng. 2020, 2020, 1–11.

68. Sharma, S.; Ball, J.E.; Tang, B.; Carruth, D.W.; Doude, M.; Islam, M.A. Semantic Segmentation with Transfer Learning for Off-Road
Autonomous Driving. Sensors 2019, 19, 2577. [CrossRef]

69. Csurka, G. Deep Visual Domain Adaptation. In Proceedings of the 2020 22nd International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 1–4 September 2020; pp. 1–8. [CrossRef]

70. Sankaranarayanan, S.; Balaji, Y.; Jain, A.; Lim, S.N.; Chellappa, R. Learning from Synthetic Data: Addressing Domain Shift for
Semantic Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–23 June 2018; pp. 3752–3761.

71. Jing, L.; Tian, Y. Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach.
Intell. 2020. [CrossRef] [PubMed]

72. Wang, X.; Ma, H.; You, S. Deep clustering for weakly-supervised semantic segmentation in autonomous driving scenes.
Neurocomputing 2020, 381, 20–28. [CrossRef]

73. Saleh, F.S.; Aliakbarian, M.S.; Salzmann, M.; Petersson, L.; Alvarez, J.M. Bringing Background into the Foreground: Making All
Classes Equal in Weakly-Supervised Video Semantic Segmentation. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2125–2135. [CrossRef]

74. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation. arXiv 2021, arXiv:cs.CV/2105.05633.
75. Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130.
[CrossRef]

http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/CVPR.2016.352
http://dx.doi.org/10.1109/ICCV.2017.534
http://dx.doi.org/10.1109/TPAMI.2019.2926463
http://www.ncbi.nlm.nih.gov/pubmed/31283496
http://dx.doi.org/10.1016/j.asoc.2018.05.018
http://dx.doi.org/10.1109/SSRR50563.2020.9292575
http://dx.doi.org/10.3390/s19112577
http://dx.doi.org/10.1109/SYNASC51798.2020.00013
http://dx.doi.org/10.1109/TPAMI.2020.2992393
http://www.ncbi.nlm.nih.gov/pubmed/32386141
http://dx.doi.org/10.1016/j.neucom.2019.11.019
http://dx.doi.org/10.1109/ICCV.2017.232
http://dx.doi.org/10.1109/CVPR.2017.544

	Introduction
	Approaches for Inference Time Reduction
	Convolution Factorization—Depthwise Separable Convolutions
	Channel Shuffling
	Early Downsampling
	The Use of Small Size Decoders
	Efficient Reduction of the Feature Maps' Grid Size
	Increasing Network Depth While Decreasing Kernel Size
	Two-Branch Networks
	Block-Based Processing with Convolutional Neural Networks
	Pruning
	Quantization

	State-of-the-Art Deep-Learning Models
	Evaluation Framework
	Datasets
	Cityscapes
	CamVid
	MS COCO—Common Objects in Context
	KITTI
	KITTI-360
	SYNTHIA
	Mapillary Vistas
	ApolloScape
	RaidaR

	Metrics
	Metrics Related to Effectiveness
	Metrics Related to Efficiency

	Discussion
	Common Operational Pipeline
	Comparative Performance Analysis
	Dataset-Oriented Performance
	The Influence of Hardware

	Future Research Trends
	Conclusions
	References

