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Abstract: Characterization of Unintended Conducted Emissions (UCE) from electronic devices is
important when diagnosing electromagnetic interference, performing nonintrusive load monitoring
(NILM) of power systems, and monitoring electronic device health, among other applications.
Prior work has demonstrated that UCE analysis can serve as a diagnostic tool for energy efficiency
investigations and detailed load analysis. While explaining the feature selection of deep networks
with certainty is often not fully comprehensive, or in other applications, quite lacking, additional
tools/methods for further corroboration and confirmation can help further the understanding of the
researcher. This is true especially in the subject application of the study in this paper. Often the focus
of such efforts is the selected features themselves, and there is not as much understanding gained
about the noise in the collected data. If selected feature and noise characteristics are known, it can be
used to further shape the design of the deep network or associated preprocessing. This is additionally
difficult when the available data are limited, as in the case which the authors investigated in this study.
Here, the authors present a novel work (which is a proposed complementary portion of the overall
solution to the deep network classification explainability problem for this application) by applying a
systematic progression of preprocessing and a deep neural network (ResNet architecture) to classify
UCE data obtained via current transformers. By using a methodical application of preprocessing
techniques prior to a deep classifier, hypotheses can be produced concerning what features the deep
network deems important relative to what it perceives as noise. For instance, it is hypothesized in
this particular study as a result of execution of the proposed method and periodic inspection of the
classifier output that the UCE spectral features are relatively close to each other or to the interferers,
as systematically reducing the beta parameter of the Kaiser window produced progressively better
classification performance, but only to a point, as going below the Beta of eight produced decreased
classifier performance, as well as the hypothesis that further spectral feature resolution was not as
important to the classifier as rejection of the leakage from a spectrally distant interference. This can
be very important in unpredictable low-FNR applications, where knowing the difference between
features and noise is difficult. As a side-benefit, much was learned regarding the best preprocessing
to use with the selected deep network for the UCE collected from these low power consumer devices
obtained via current transformers. Baseline rectangular windowed FFT preprocessing provided a 62%
classification increase versus using raw samples. After performing a more optimal preprocessing,
more than 90% classification accuracy was achieved across 18 low-power consumer devices for
scenarios in which the in-band features-to-noise ratio (FNR) was very poor.

Keywords: unintended conducted emissions; nonintrusive load monitoring; neural networks; win-
dowing; fast Fourier transform; classification
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1. Introduction

Electronic devices have always produced emissions, many of which are unintended.
These emissions result from the finite ability to shield and filter the components that
comprise the devices. The emissions from these sources are “processed” in a variety of
intended and unintended ways before leaving the device, which produces identifying
waveforms (herein referred to as features) that can be measured by sensors over-the-air and
over conductors that are connected to the devices. The underlying principles dictating this
behavior are described in detail by Paul [1]. The propagation path for emissions in power
systems is discussed in detail by Nassar et al. [2]. Each device, even of the same type, has
a slightly different signature due to imperfections in the components and manufacturing
processes. Some of these “processing elements” are linear and some are nonlinear in nature.
Vann et al. [3] presented a successful attempt at performing device classification via the
use of dimensionally aligned signal projection and linear discriminant analysis. The data
used in Vann’s work and in this paper were acquired via nonintrusive load monitoring
(NILM) methods. Hart [4] provides a fundamental description of NILM. Vann et al. [5]
showed improvements with a subset of the original data set employing additional novel
preprocessing techniques and a convolutional neural network classification approach. In
this work, the authors show the effect of preprocessing techniques on a deep learning
network using a mixture of the same devices as well as other devices within the data set, as
described by Vann et al. [3], with data augmentation via increased levels of additive white
Gaussian noise (AWGN).

The authors used a deep neural network (ResNet architecture) for classification and
performed experimentation with methodical variations of preprocessing and data degra-
dation to better understand the features of importance to the ResNet and limitations of it
in poor features-to-noise ratio (FNR) scenarios for this application. Although the ResNet
has performed well in a variety of scenarios, it was chosen here as a representative of a
deep network with which to evaluate this paradigm of hypothesis generation regarding
the feature selection of the network and hypothesized view by the network regarding the
characteristics of what the network views as features and noise. It is anticipated that this
technique could be applied with any deep network and this method could be used to help
guide and/or supplement further explainability efforts. There is no expectation that the
ResNet network is optimal in this particular scenario.

Other attempts have been made to use deep architectures, as in research from He
and Chai [6]. However, that effort focused on a different architecture without any attempt
at preprocessing. He and Chai presented raw time-domain samples to a long short-term
memory architecture. Successful attempts have been made to convert the one-dimensional
time series unintended conducted emissions (UCE) data into images, such as in research
from Cooke et al. [7] for image recognition techniques to be applied.

In this work, the authors analyzed the performance differentials of methodical varia-
tions of preprocessing techniques while their data set transitioned from good to poor via
the addition of AWGN prior to the preprocessing and deep learning neural network device
classification based on the UCE data. The authors demonstrate the value of preprocessing
in the classification process, the trade-offs involved in the preprocessing choices, and a
novel method for using preprocessing to assist in the explainability of deep networks used
in the classification of time-series UCE data obtained via NILM.

This paper is divided into three main sections. First, a discussion of the procedure is
provided, including the source of the data used in the investigation and the classification
and preprocessing techniques used. Next, the classification results are presented and
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discussed. Finally, conclusions drawn from this work and the future work that could be
pursued are given.

2. Materials and Methods
2.1. Description of Data Used
2.1.1. Original Data Set

The acquisition methods for the unaugmented base data set used in our investigation
is described by Vann et al. [3], who collected data containing UCE from 18 commercial
off-the-shelf (COTS) electronic devices. Details of their experimental parameters used in the
collection are given there. A subset of nine of these devices were used by Vann et al. [5]. Data
recorded from 18 COTS devices were used in our investigation. To make the classification of
each device more difficult and to determine the relative value of the preprocessing techniques
outlined in this work, variant data sets were created with increasing levels of noise.

Table 1 lists the 18 devices. The collection took place in a radio frequency shield
room with a current transformer placed around the power cord of each device and used
as the sensor for the collection system. For each device, two 10 min collections were
performed with a sample rate of 2 MHz to capture higher harmonics that have improved
resolution for device classification. Each device was given a prescribed duration of time to
enter into a “steady-state” operational mode before collection took place. The two 10 min
collections for each device were not collected sequentially, which allowed for more variation
in background signals within the collections. To represent a data-sparse environment, a
smaller subset of the available data for each device was used. A total of about 3.7 s of data
for each of the 18 devices was used for training across the 18 devices. The same amount of
data was also used for validation purposes. Approximately 12 s of data per device were
used for testing after training epochs were completed. The validation and testing data sets
were taken from the second round of collections, whereas the training data set was taken
from the first round.

Table 1. COTS devices collected and classified via conducted UCE.

Device Type Device Name

corded phone cortelcophone
VoIP (voice over internet protocol) phone polycomvoip

Uninterruptible Power Supply cyberpowerups
single board computer raspberrypi

monitor dellmonitor
media streaming device roku2xs

desktop computer delloptiplex
software defined radio usrpe310

desktop computer dellxps
monitor viewsonicmonitor

light fluorescents
BluRay player viziobluray
phone charger lgphone

electronic learning system vtechvsmile
router linksysrouter

gaming system wiiu
single board computer odroidxu4

gaming system xboxone

2.1.2. Data Set Augmentation

The authors added AWGN to the data set at various levels and at various points in
the experiment because AWGN is well-characterized and can be easily and accurately
generated and measured. Therefore, the choice of AWGN allows this effort to focus on
preprocessing methods for classification of UCE signals.

For data acquisition at the end of a channel through an uncontrolled power system,
the authors received instantiations of a random process (features of interest and noise),
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and the mechanisms (time-varying linear and nonlinear) that produce this data are a
part of the random process. Obtaining a statistically significant variety, and number
of instantiations, is important to properly train the ResNet classifier. The anticipated
stationarity and ergodicity of the random process is something to consider in this collection
process and should influence the number of instantiations collected, as well as the collection
interval, as noted in Section 3. Waiting for steady-state operation of the tested equipment
before collection, controlling the environment during the collection [3], and adding noise
generated by a statistically stationary process were all used to increase the ergodicity of
the data set. In this work, the standard deviation of the AWGN added to the signals is a
function of the standard deviation of first collections for of the components, as shown in
Equation (1).

σG = Mσd (1)

, where M in the case of “15× noise” is 15 and the σd is the standard deviation of all of
the first-round collections for all devices. σd is used as a reference point for the remain-
der of the experiments and across all noise instantiations that are generated. σG is the
resulting standard deviation of the white Gaussian noise, which is applied as described by
Equation (2).

x̃(n) = x(n) + G(n) (2)

, where G(n) is a white Gaussian noise sample with a mean of zero and standard deviation
of σG, x(n) is the original data sample, x̃(n) is the resulting noise-degraded sample, and n
is the sample number. The summation was performed over a segment length of N, which
was also the window length of the fast Fourier transform (FFT) computations that were
performed in this experimentation.

2.2. Device Classification Techniques

As mentioned previously, the ResNet neural network architecture was used for clas-
sification. A diagram of this approach is shown in Figure 1. ResNet is a deep learning
architecture that uses residual connections in a cascaded network to allow for efficient train-
ing of large, deep convolutional networks [8]. Additional fundamentals of deep learning
can be found in research from LeCun et al. [9]. Various layers in the ResNet architecture
give a variety of benefits to this application. For instance, the convolutional layers provide
a translational invariance to the classification process, which allows the features of interest
to drift in the domain in which they are processed without classification performance de-
grading. The translational invariance is valuable for UCE data obtained via NILM because
many of the devices (especially COTS devices) are stable in their operation only to within
some commercially acceptable tolerance and are likely to drift in their characteristics over
time (this is especially evident for UCE characteristics in the frequency domain position,
which became of particular interest in this investigation).
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Figure 1. ResNet architecture for UCE device classification.

In these deep learning architectures, features are not chosen by the programmer. The
features are learned by the neural network based upon the nature of the input and the
structure of its architecture. Certain aspects of a feature may be seen by examining the input
and output of each layer of the network. Some tools and methods allow a certain level of
explainability; development of these methods has mainly focused on imaging applications
such as image classification. Examples of the types of methods include DeepLIFT [10] and
Integrated Gradients [11], which assume differentiability of the model and propagate the
prediction to features using gradients. Perturbation-based methods, such as LIME [12],
are also available. LIME is applied to a subset of the devices in this dataset in [13] via
formation of a spectrogram with FFT and subsequent analysis. The methods utilized in [13]
are validated for this application by human inspection of the very clean and undisturbed
data set that was collected. The methods described in this paper could be loosely grouped
into the perturbation-based methods approach for explainability.

Understanding the details of the features important to the ResNet model when using
a complicated and obscured data set described in the prior section is challenging. Certain
levels of understanding can be drawn regarding the features of most value and the effects
of noise on the classification performance of the ResNet model by using a methodical
process of data augmentation and experimentation to infer something about what the
model is doing.

A few variations in the training process and validation sets were used, and these are
described in detail in Section 3.1.

2.3. UCE Preprocessing Techniques

Variations of preprocessing methods investigated in this work include “no prepro-
cessing”, FFTs, variations in the length of the FFT, and variations in the window function
applied to the raw time-domain data samples prior to applying an FFT.

2.3.1. No Preprocessing

“No preprocessing” involves passing the raw time series data directly into the ResNet
classification network. If features were more easily seen in the time domain, the no-
preprocessing technique would yield superior results. This technique was applied with
some success by He and Chai [6]. Here, the authors include the case of using the ResNet
to classify the raw time domain samples, which establishes a baseline performance with
which to compare the various preprocessing techniques.
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2.3.2. Fourier Transform

“FFT”, if not otherwise specified in this paper, refers to the magnitude calculation of
a basic Fourier transform operation performed with a rectangular/uniform windowing
function w(n) applied, where w(n) is described by Equation (3),

w(n) = 1, 0 ≤ n ≤ N (3)

where N is the length of the FFT computation.

2.3.3. Magnitude vs. Complex FFT

When computing the FFT, the previous efforts for classification of equipment with
UCE mentioned in Section 2.1 used the magnitude FFT computation. One question is
whether including phase will improve the classification. If phase is an important feature of
the data, either complex FFT data or time domain data are required. In the NILM-acquired
UCE classification applications, the value of the phase of the data are yet unknown. In
research from O’Shea et al. [14], some experiments were conducted with classification
of communications signals, for which phase information is a feature of high value. In
research from Virtue et al. [15], neural networks with complex activation functions have
been used in magnetic resonance imaging fingerprinting. In some cases, the real and
imaginary components are sent into the deep network as two-dimensional floating point
values, as in research from Wang et al. [16]. Here, the authors performed a test with this
approach of inputting the real and imaginary components separately into the ResNet with
no modification to the ResNet to perform complex math. Results were poor and are not
included in Section 3. Efforts are planned to incorporate complex math into the network.

2.3.4. FFT Window Length

A thorough description of the FFT and the concept of windowing time-domain signals
can be found in a book by Schafer and Oppenheim [17]. An example equation of window
application is shown in Equation (4).

y(n) = x(n)w(n), 0 ≤ n ≤ (N − 1) (4)

, where x(n) represents the time-domain samples being windowed and w(n) represents
the windowing coefficients being applied. This window application is performed over a
finite interval length N. Since increasing N results in higher resolution in the frequency
domain, one set of experiments varying N was performed to determine the effects of the
additional spectral resolution. Increasing spectral resolution should improve classification
results until the resolution exceeds the spectral width of the features determined by the
classifier. The noise floor also drops about 3 dB for each doubling of the value of N. On the
down side, larger values of N results in lower resolution in the time-domain. Therefore, an
important assumption in this trade-space evaluation and feature hypothesis generation
(limited explainability attempt for the ResNet classifier) is the assumption that N will not
be chosen to exceed the short-term stationarity of the features and noise being used for
classification of the devices. A rectangular uniform window was used for the window
length experiment. The amount of data used for training, validation and testing was the
same regardless of the window length used (smaller window lengths produced more
machine learning samples).

2.3.5. FFT Window Type

Nonuniform windows are used to compensate for the facts that N is not infinite and
the window is not an integral number of cycles of each of the frequency components in a
given segment of data. The question of which window type to apply can be determined a
priori if both spectral characteristics of the noise and features used for classification are
known. However, this is always difficult or impossible to know in NILM-obtained UCE
data collections. In many applications, a Hanning window or other similar window can be
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used to strike a balance in the spectral resolution and spectral leakage trade space. The
authors have introduced a method of determining important features of the signal and
noise by sweeping the window type and looking at the classification success. Additional
background information to help in understanding the interpretation of the results of this
work can be found in [17].

In this application, the authors control the noise generated and can partially anticipate
the effect that it might have on the classification. Therefore, because the window type is
swept across a continuum of characteristics and noise levels and can monitor the classi-
fication accuracy for each trial, the authors can better hypothesize what features of the
data set (of a subset of features) are most important. In addition, this allows the authors to
hypothesize concerning the effectiveness of the system, given the addition of other types
of noise to the data set being studied.

The five window types used in this comparison are rectangular/uniform and Kaiser
β = 4, 8, 12, 16. The FFT of each of the window functions is given in Figure 2.

Windows

0 1 2 3 4 5 6 7 8
Normalized Frequency  (  rad/sample) 10-4

-100

-50

0

50

100

Ma
gn

itu
de

 (d
B)

FFT of Window Functions
Kaiser Beta = 16
Kaiser Beta = 12
Kaiser Beta = 8
Kaiser Beta = 4
Rectangular

Figure 2. Zoomed-in frequency domain comparison of windows used (of length 131,072 samples).

Because multiplication in the time domain is equivalent to convolution in the fre-
quency domain, the spectral domain plots of the windows provide a view of what is
happening to the signal in the frequency domain as it is windowed. Windows with more
spectrally narrow main lobes will have better spectral resolution and those with the lowest
sidebands will have the best spectral leakage suppression. These key characteristics of the
five window types are described in Table 2.
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Table 2. Listing of key window function characteristics.

Window Sidelobe Attenuation (dB) Mainlobe Width (−3 dB)

Kaiser β = 16 −122.4 3.2325 × 10−5

Kaiser β = 12 −90 2.861 × 10−5

Kaiser β = 8 −58.7 2.2888 × 10−5

Kaiser β = 4 −30 1.7166 × 10−5

Rectangular −13.3 1.3351 × 10−5

As the main lobe of the window spectrum is widened, the sidelobe attenuation
increases and leakage factor decreases. As the mainlobe width is narrowed, the window
achieves a higher level of spectral resolution. This is the main basic trade-off in window
selection. The goal in the authors’ selection of these window types was to relatively
evenly space the windows in the trade space and observe the differential in classification
performance, which would make it easier to draw inferences regarding features used by
the ResNet.

2.3.6. Other Modern Spectral Estimation Techniques

One last notable set of methods of preprocessing is that of other spectral estimation
techniques, such as autoregressive, moving average, or autoregressive moving average
techniques. These techniques are described by Kay [18] and would apply in cases with
short data segments. The authors validated that the segments were long enough such
that this was not a limitation for the FFT preprocessing spectral estimator. Therefore, no
additional investigation of other spectral estimation methods was pursued or planned.

3. Results

In this section, results are presented comparing Time and Frequency domain for
classification, evaluating the impact of window length on classification, and studying the
impact of window type on classification.

3.1. Time vs. Frequency Domain Preprocessing

With knowledge that electrical equipment produces features in the frequency domain
and the prior successful application of frequency-based signal processing techniques with
the linear discriminant analysis classifier given by Vann et al. ([3,5]), the first experiment
performed was a comparison of classification in the frequency domain versus the time
domain. Results from this comparison verified that the ResNet-based classifier trained and
tested with frequency domain data trained quicker and provided higher accuracy than the
time domain.

To determine a baseline on the frequency domain classification attempt, the authors
performed a simple rectangular windowing prior to the FFT. One way to view the difference
in training time and classification performance is shown in Figure 3, which shows the
validation classification accuracy as a fraction vs. the training epoch. It demonstrates faster
convergence during the training process, as well as a higher performance level in the end
(75% accuracy for frequency domain and 11% accuracy for time domain).
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Figure 3. Classification accuracy vs. training epoch with 15× noise added.

As mentioned earlier, each device in the data set used in this effort were measured
for two 10 minute periods separated in time. During this effort, the authors observed a
significant drop in accuracy that when testing on one of these two collections and training
on the other. This drop is a result of the devices or background noise changing between the
two collection period. Their features of interest to the classifier were stationary during a
single collect period but not between the collection periods. This drop can be most easily
seen in Figure 4. This figure shows about 30% worse classification performance for the case
in which the training and validation sets were split across time.
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Figure 4. Stationarity experimentation using FFT with a 10× noise augmentation and switching
training set from the second collection to the first one at epoch 200.

At epoch 200, the authors began training the ResNet classifier with a very small set
of data from the second collection period, which substantially helped the performance
of the validation and test of the classifier as measured by the classification accuracy. The
amount of data used in the training was only approximately 1 out of 30 of the available
data segments from the second collection for each device.

This experiment implies two principles for this application:

• Training data must fully represent the variability over time in the UCE signals. Other-
wise, a good representation of the breadth of characteristics for each device will not
be learned by the ResNet classifier.

• Retraining can improve performance. This example showed the potential to improve
classification with continued training on small amounts of additional data in time.

Additionally, more complex data augmentation methods may be useful in diverting the
classifier from focusing on time-dependent features.

3.2. FFT Window Length

Another preprocessing parameter that was evaluated is the length of the computation
of the FFT window. Increasing the length of the FFT results in a resolution increase in
the frequency domain. The authors found that increased spectral resolution had a posi-
tive effect on classification performance, but the return diminished as spectral resolution
increased as shown in Figure 5. The gain of the enhancement of the spectral resolution,
which is calculated as given in Equation (5) given the main lobe width of 0.1 × 10−4 rad
and sample rate of 2 × 106 Hz, ceased to be of as much value relative to the loss in time
resolution. Assuming the window length to be within the stationary period of the aug-
mented data, which is likely given prior testing and results, the combination of Figure 5
and Equation (5) indicates that the features of interest to our deep classifier are not any
closer than 3 Hz to one another, and not much narrower than 3 Hz in bandwidth.
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(0.1 × 10−4 rad)(2 × 106 Hz)
2π rad

= 3 Hz (5)
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32k Rectangular
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128k Rectangular

Figure 5. Classification accuracy vs. training epoch for various FFT window lengths with 15×
noise added.

An alternative and possibly complimentary explanation is that the increasing of the
window length, which has the additional effect of lowering the noise floor, reaches a point
at which it has uncovered all the easy-to-uncover spectral attributes from the noise floor
and the remainder of distinguishable features are buried further down into the noise floor.
In future work we plan to determine with more specificity to what degree each of the
two factors (spectral resolution increase explanation vs. noise floor decrease explanation)
was to credit for the diminishing improvements by running additional experiments with
additional levels of noise augmentation. This would then inform us more specifically
regarding the features used by the deep classifier.

3.3. FFT Window Type

Another experiment performed was a variation of the window type. The differences in
the frequency domain of the windows used in this investigation were discussed in Section
2.3.5 and are shown in Figure 2.

Figure 6 shows classification results as a function of training epochs for five different
FFT window types. Knowing the attributes of the tested window types and the perfor-
mances recorded in Figure 6, provide additional understanding of features of the data set
are most important to the ResNet classifier.
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Figure 6. Classification accuracy vs. training epoch for various FFT window types with 10×
noise added.

Resolving features of a particular collection that are close in frequency necessitates a
smoothing window with a maximally narrow main lobe in the frequency characteristic.
The authors saw the rectangular window perform poorly, as shown in Figure 6. However,
they also saw that the other extreme in the trade space (Kaiser β = 16) was approximately
equally poor in performance. The optimal window type for this window family of shapes
would be somewhere between Kaiser β = 8 and Kaiser β = 12 but closer to the β = 8 case
because of its 6.6% better performance. The 95% confidence intervals for the percentages
given in Figure 6 are given in Table 3.

Table 3. Listing of Key Window Function Characteristics.

Window Classification Accuracy % Confidence Interval %

Kaiser β = 16 58.8 ±1.67
Kaiser β = 12 61.3 ±1.65
Kaiser β = 8 67.9 ±1.57
Kaiser β = 4 57.3 ±1.67
Rectangular 56.5 ±1.67

The ability to resolve spectral components (either to isolate a feature from noise or
separate between two features of two devices) appears to be valuable within some level but
must be balanced with the need to reject noise far from the features of interest and prevent
the spectral leakage that occurs in the finite-length FFT calculation. It also must be balanced
with the possible need to preserve the associated spectral amplitude accuracy. The window
function application provides a certain amount of processing gain for certain features.
Although the window-type experimental results follow an understandable pattern, they
do not point to a specific window that would be optimal but instead to certain window
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characteristics that are more favorable and then inherently to the types of features being
favored by the deep ResNet classifier.

4. Discussion

For the particular data set studied, these results show that a ResNet classifier works
best in the frequency domain with a 128K wide Kaiser β = 8 window. However, these
results are highly dependent on the characteristics of the signals being classified, noise
characteristics present in the collections, the quality and amount of data for training, and
the type of deep network. One school of thought is that there is no need to preprocess
data for a deep network as it will learn the features of interest. A deep neural network
could learn an FFT or specific preprocessing technique given enough data, however, the
time versus frequency analysis in this effort shows that FFT preprocessing led to a higher
accuracy for the amount of data provided for training. If there are limits in the data
collection to short time periods or if the signals being classified change in time such that
higher time resolution is required, then a shorter window may be needed. If the spectral
bandwidth of UCE features from items to be classified varies significantly from the items
in this data set, the optimal window type varies.

The results presented in this paper show the value that signal processing techniques
provide to preprocessed data for classificaton using a deep neural network. A great
difference exists between helpful preprocessing and optimal preprocessing.

This research has many possible directions of future work to improve classification
performance, as can be seen in the window type and window length test results. A longer
FFT analysis window would have likely produced a better result. However, we understand
the trend of diminishing returns and know that we lose time-domain resolution as we
increase the FFT window length. Therefore, we simply noted the improvements and trend.
Additionally, the best of the window types (Kaiser β = 8) were not exactly in the optimal
place, as can be seen from the other results (Kaiser β = 4 and β = 12). The different levels
of improvement made for the various chosen techniques were relatively large.

Tests showed that the deep learning architecture of the ResNet accurately classified
the set of 18 relatively low-power devices, based upon the UCE even in low FNR situations.
Even though complete explainability of reasons for results is currently relatively limited
in such deep networks, the authors demonstrated that methodical data augmentation
techniques can be used with a spectrum of preprocessing techniques to hypothesize what
features and noise are of most significance to the deep learning network. This ability to
hypothesize features used by the deep classifier can provide some measure of predictability
of performance in a variety of untested scenarios via extrapolation of results and expert-
based analysis.

The results here demonstrated that the spectral content was of most importance to the
ResNet and that a transformation to the frequency domain combined with good window
choices resulted in improved performance in the presence of strong AWGN. The application
of a window acted as a filter and provided a certain amount of processing gain and increase
of the FNR. The amount of processing gain varied from window to window and was
seen directly in a proportional manner as the window properties changed in the ResNet
classification results. Training time decreased when better preprocessing was performed.

Additionally, based on results, the authors conclude that the preprocessing gains
produced diminishing returns (measured in terms of the ResNet classification accuracy) as
the FFT window size increased. The authors’ conclusion regarding this effect is as follows:

1. The bin size started becoming as narrow as the features being used by the ResNet,
and more narrow than is necessary to distinguish any of the spectral features when
compared from device to device.

2. The FFT processing gain lowered the noise floor beyond all of the features easier to
find near the floor.

Future investigations may include using the complex output of spectral transforms
via complex neural networks and an investigation of the classification importance of phase
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in NILM-obtained UCE data. More potential future work is to use a genetic algorithm
or other such algorithm for selecting alternative parameters for preprocessing. Another
couple of interesting investigations are the inclusion of noise augmentation methods and
consideration of time-varying electronic signatures instead of steady-state.
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