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Abstract: Sequential recommendations have attracted increasing attention from both academia and
industry in recent years. They predict a given user’s next choice of items by mainly modeling the
sequential relations over a sequence of the user’s interactions with the items. However, most of
the existing sequential recommendation algorithms mainly focus on the sequential dependencies
between item IDs within sequences, while ignoring the rich and complex relations embedded in
the auxiliary information, such as items’ image information and textual information. Such complex
relations can help us better understand users’ preferences towards items, and thus benefit from the
recommendations. To bridge this gap, we propose an auxiliary information-enhanced sequential
recommendation algorithm called memory fusion network for recommendation (MFN4Rec) to
incorporate both items’ image and textual information for sequential recommendations. Accordingly,
item IDs, item image information and item textual information are regarded as three modalities.
By comprehensively modelling the sequential relations within modalities and interaction relations
across modalities, MFN4Rec can learn a more informative representation of users’ preferences for
more accurate recommendations. Extensive experiments on two real-world datasets demonstrate the
superiority of MFN4Rec over state-of-the-art sequential recommendation algorithms.

Keywords: recommendations; sequential recommendations; recommender systems; auxiliary
information

1. Introduction

Recommender systems have had an ever-increasingly important role in our daily life
to help users effectively and efficiently find the items of their interest from a large amount
of choices. Sequential recommender systems, as a relatively new type of recommender
system, have attracted much more attention in recent years. A sequential recommender
system (SRS) aims at providing sequential recommendations, namely recommending
the next item to an user by learning the user’s preference from their recent historical
interactions (e.g., clicks, purchases) with items. By effectively modeling the user’s recent
interactions, an SRS is able to capture a user’s latest preference and thus generate accurate
sequential recommendations.

Although effective, existing SRSs still have some drawbacks. One typical case is the ig-
norance of auxiliary information. Specifically, in real-world e-commence cases, in addition
to the explicit or implicit user–item interactions which are mainly indicated by item IDs,
there are other types of information which can also reveal users’ preferences, such as item
attributes, appearance images, and description texts. In practice, item ID information and
the corresponding various types of auxiliary information can be treated as multi-modal
information where each type of information serves as one modality. Some conventional
recommendation algorithms including collaborative filtering and content-based filtering
have utilized this auxiliary information to better characterize items and to complement
the user–item interaction information. As a result, more specific user preferences towards
items can be extracted for improving recommendation performance.
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In the sequential recommendation scenarios, there are more complex relations em-
bedded in the aforementioned multi-modal information. To be specific, there are not only
sequential relations within modalities, e.g., a user’s implicit interactions (clicks) with items
usually being sequentially dependent, but also interaction relations between different modali-
ties, e.g., the correlations between the item description texts and item appearance images.
However, most of the existing SRS algorithms either ignore such auxiliary multi-model
information or simply model a single type of relation embedded within such auxiliary
information. For example, the visual content-enhanced sequential recommender system
(VCSRS) first learns an attentive item visual content representation and then incorporates
it into an LSTM-based recurrent neural network (RNN) for next-item recommendations [1].
However, VCSRS not only ignores the richer textual description information of items (e.g.,
reviews), but also fails to model the sequential dependencies within each modality as
well as the interaction relations across different modalities. The parallel recurrent neural
network (p-RNN) first utilizes multi recurrent neural networks to model the sequential
dependencies over items embedded in user–item interactions, i.e., clicks, item description
texts and item images, separately and then integrate the modeled sequential dependencies
from different modalities together for the downstream recommendations [2]. However,
p-RNN only models the sequential dependencies within each modality while ignoring the
complex interaction relations across different modalities. Multi-view RNN (MV-RNN) also
employs both text and image information for sequential recommendations [3]. In MV-RNN,
an auto-encoder-based multi-modal representation fusion module is designed to generate
a compound representation for each item by integrating the item-related information from
multiple modalities. The compound representation of a given item is then input into a
gated recurrent unit (GRU) of the corresponding time step of an RNN to model the sequen-
tial dependencies among items. Finally, the final hidden state of the RNN is regarded as
the user’s preference for generating recommendations. Although effective, such a method
mainly considers the interaction relations across different modalities, while the sequential
dependencies within each modality are weakened.

To bridge the aforementioned drawbacks of existing works, in this paper, we aim at
developing an accurate sequential recommendation algorithm by effectively extracting
and aggregating useful information from multi-modal auxiliary information, as well as
modeling the complex interaction relations embedded in them. To be specific, we devise
a memory fusion network for recommendation (MFN4Rec) by effectively integrating the
relevant information from three modalities, i.e., item IDs, item images and item description
texts, and modelling the complex relations between and within modalities. MFN4Rec is
built on a typical work in multi-modal sequence representation learning, i.e., a memory
fusion network for multi-view sequential learning [4], for multi-modal representation
learning for sequential recommendations. To be specific, MFN4Rec contains a multi-GRU
layer, a multi-view gated memory network (MGMN), and a prediction module. The
multi-GRU layer contains three GRU-based RNNs, while each RNN models the sequential
dependencies by taking the modal-specific representation of each item as the input of each
step. MGMN is designed to model and extract the interaction relations across different
modalities. The outputs from both the multi-GRU layer and MGMN are combined together
as the input of the prediction module for the next-item prediction. Benefiting from the
information memory and spreading mechanism of the memory network, MFN4Rec is able
to not only effectively handle the relations within and across modalities, but also effectively
model the dynamic sequential dependencies in sequences, and thus make the multi-modal
auxiliary information contribute more to the sequential recommendations.

The contributions of this work are summarized below:

• We propose a memory fusion network for recommendation (MFN4Rec) to effectively
model auxiliary multi-modal information for accurate sequential recommendations.

• A multi-GRU layer is designed to effectively model the sequential dependencies with
each modality.
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• A multi-view gated memory network (MGMN) is particularly devised to effectively
model the complex interaction relations across different modalities.

Extensive experiments have been conducted on two real-world e-commerce transac-
tion datasets. The results have demonstrated the superiority of our proposed SRS algorithm
over the state-of-the-art ones when performing sequential recommendations.

2. Related Work

In this section, we first review the existing work on conventional sequential rec-
ommendations and then review the existing work on auxiliary information-enhanced
sequential recommendations.

2.1. Sequential Recommendation Algorithms

Generally speaking, according to the employed techniques, sequential recommen-
dation algorithms can be roughly divided into traditional sequential recommendation
algorithms and deep-learning-based sequential recommendation algorithms.

Traditional sequential recommendation algorithms are built on traditional data mining
or machine learning techniques, including sequential pattern mining, Markov chain mod-
els, matrix factorization, and neighborhood models. Yap et al. [5] introduced a personalized
sequential pattern mining algorithm to first mine personalized sequential patterns and
then utilize the mined patterns for guiding the downstream recommendations. Pattern
mining-based algorithms are simple and sometimes effective, but they easily lose those
infrequent, but important, items and patterns, and thus reduce the recommendation accu-
racy. Feng et al. [6] proposed a Markov chain-based SRS algorithm called the Personalized
Ranking Metric Embedding (PRME) model for the next POI recommendations. Markov
chain-based algorithms can only model the first-order dependencies while ignoring the
high-order dependencies, and thus reduce the recommendation accuracy. Rendle et al. [7]
proposed a classic matrix factorization model called the Factorized Personalized Markov
Chains (FPMC) model to factorize the transition matrix over items from adjacent baskets
into the latent factors of items. The latent factors are then utilized for next-basket recom-
mendation. However, matrix factorization methods easily suffer from data sparsity issues.

In recent years, deep learning models including RNN and CNN have shown great po-
tential to capture the complex relations in sequence, and thus have been widely employed
into sequential recommendations. Due to its powerful capability to model sequence data,
RNN is the prominent deep model for sequential recommendations. Hidasi et al. [8] pro-
posed an Gated Recurrent Units (GRU)-equipped RNN-based model called GRU4Rec for
the next-item prediction. GRU4Rec was further improved by introducing a novel and tai-
lored ranking loss function [9]. Some other similar works include Long Short Term Memory
(LSTM)-based SRS algorithms [10]. Later, hierarchical RNN was employed in sequential
recommendations to model both intra-sequence dependencies and inter-sequence depen-
dencies for next-item recommendations [11]. However, the rigid order assumption over any
two adjacent interactions employed in RNN may lead to generating false sequential depen-
dencies [12]. In addition to RNN, CNN are also applied into sequential recommendations
to build CNN-based SRS algorithms. Tang et al. [13] developed a convolutional sequence
embedding recommendation model called Caser. Caser employs horizontal and vertical
convolutional filters to learn the item-level and feature-level dependencies, respectively,
for sequential recommendations. Further, a 3D CNN model was developed for jointly
modeling the sequential relations and item content features for next-item recommenda-
tions [14]. However, CNN-based SRSs may not be able to effectively capture the long-range
dependencies due to the limited perceptive fieldof CNN. Most recently, graph neural
networks (GNN), as an advanced deep architecture, have been applied into sequential
recommendations. Typical GNN-based sequential recommendation algorithms include
memory augmented graph neural networks (MA-GNN) [15] and RetaGNN [16]. Some
other researchers employed an attention mechanism into sequential recommendations for
improving the recommendation performance. Wang et al. [12] utilized the attention model
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to learn attentive item and session representations for next-item recommendations. Later, a
self-attention mechanism was introduced to better capture those heterogeneous relations
embedded in a sequence of interactions for accurate sequential recommendations [17–19].
Although these deep models have shown great potential in achieving good recommenda-
tion performance, they usually ignore the rich auxiliary information. This limits the further
improvement of the recommendation performance.

2.2. Auxiliary Information-Enhanced Sequential Recommendations

In the real-world scenarios, in addition to the commonly used item ID information,
there is rich auxiliary information related to items, users and interactions. Such auxiliary
information can provide more contextual information for an in-depth understanding of
users’ sequential behaviors, and thus can benefit the subsequent sequential recommen-
dations. For instance, Wang et al. [20] take both the item ID and the corresponding item
attributes in a session as the input of a shallow neural networks to learn a compound
embedding for each item for the downstream next-item recommendations. A 3D con-
volutional neural network was proposed by Tuan et al. [14] to learn informative item
representations from both item IDs and content features of items for next-item prediction.
With the introduction of a neighborhood model, Garg et al. [21] incorporated the readily
available position information of items within sequences for more accurate sequential
recommendations. The occurrenceof timestamps of users’ interactions in sequences was
explored by Li et al. [22] and Ye et al. [23] for next-item recommendations. These works
have taken a step forward to incorporate more auxiliary information to enhance sequen-
tial recommendations, but they ignore the important and representative item image and
textual information.

Only quite limited works on sequential recommendations have taken item image
and/or textual information into account. An RNN-based sequential recommendation
model called VCSRS was proposed by Qu et al. [1]. VCSRS first utilizes an attention-based
visual feature representation learning component to learn a task-specific item visual repre-
sentation and then effectively incorporate it into a single LSTM-based RNN to complement
the item ID information for next-item recommendations. Although effective, on one hand,
VCSRS ignores another important piece of auxiliary information, i.e., item textual informa-
tion; on the other hand, VCSRS does not model different types of information as different
modalities, and thus it fails to effectively capture the sequential dependencies within each
type of information, namely each modality, (e.g., item ID and visual feature), respectively,
and the interactions between different types of information, namely different modalities.
Therefore, VCSRS are different from this work in terms of the input data, the solution and
the model architecture. A parallel RNN-based model called p-RNN was developed by
Hidasi et al. [2] to take item IDs, item images and item textual features as the input to learn
informative item representations for sequential recommendations. In the parallel RNN
model, three RNNs are utilized to model the aforementioned three parts of information,
respectively, and the outputs of all RNNs are combined together for the prediction task.
Although p-RNN can improve the recommendation performance to some degree, it ignores
the interaction relations between different modalities and thus cannot fully model the
complex relations embedded in users’ interaction sequence data. Another similar work
is multi-view RNN (MV-RNN), which also employs both text and image information for
sequential recommendations [3]. In MV-RNN, an auto-encoder-based multi-modal repre-
sentation fusion module is developed to generate a compound representation for each item
by integrating both the item image and textual information. The compound representation
is then input to a GRU-based RNN for predicting the next item. Although effective, such
a method mainly considers the relations across different modalities, while the sequential
dependencies within each modality are weakened.

In summary, although some works have tried to integrate multi-modal auxiliary
information into sequential recommendations, they either ignore the interaction relations
across different modalities or weaken the sequential dependencies within modalities.



Appl. Sci. 2021, 11, 8830 5 of 12

This has limited the further improvement of the recommendation performance. A more
effective and reliable algorithm which can effectively incorporate different types of auxiliary
information for sequential recommendations is in need, which motivates our work in
this paper.

3. The Proposed SRS Algorithm

As shown in Figure 1, our proposed memory fusion network for recommendation
(MFN4Rec) mainly contains three stages. (1) First, it extracts the feature embedding from
each modality, i.e., item IDs, item images, and item description texts, and then imports
these extracted feature embeddings into the multi-GRU layer including three GRU-based
RNNs. The feature embedding from each modality is imported into the corresponding
modal-specific GRU-based RNN for modelling the sequential dependencies within the
modality. (2) Second, the output from each RNN is then imported into the multi-view gated
memory network (MGMN) to learn the interaction relations across modalities. (3) Finally,
the output from both the multi-GRU layer and MGMN are taken as the input of the
prediction layer for the next-item prediction. Next, we introduce each stage of MFN4Rec
algorithm, respectively.
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Figure 1. The framework of the proposed MFN4Rec algorithm.

3.1. Multi-GRU Layer

Given a sequence of items interacted by a user, s = v1, v2, . . . , v|s|, we first extract
the multi-modal features for each item in s. Particularly, for vt ∈ s, we extract its ID
embedding mt ∈ Rdm , its image feature embedding ft ∈ Rd f and text feature embedding
gt ∈ Rdg . Item ID embedding is obtained from a learnable ID-embedding matrix. Item
image embedding is extracted via a 16-layer convolutional neural network (CNN) named
VGGNet (shortened to VGG-16) [24] that was pre-trained on ImageNet [25]. The text
feature embedding is obtained via the commonly used word-embedding algorithm called
GloVe [26]. We first use the pre-trained GloVe to obtain the word-embedding vector of
each word in the item description texts, and then we introduce the commonly used TF-
IDF algorithm to calculate a weight for each word in the item’s text. The final item text
embedding with a dimension of 100 is calculated as a weighted sum of the embeddings
of words in the text. The dimensions of item ID embedding and image embedding are 25
and 1000, respectively. After the embeddings in three modalities are ready for each item
in a sequence, they are imported into the modal-specific GRU-based RNN to model the
sequential dependencies within each modality.

Given a sequence s, the embedding vectors from each modality of all the items can
form a modal-specific embedding sequence. For the tth item vt in s, its ID embedding mt,
image feature embedding ft and text feature embedding gt are taken as the input of the
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GRU of the tth step in the corresponding GRU-based RNN to output the corresponding
hidden state. Accordingly, the multi-GRU layer conducts the following operations in the
tth step:

ht
m = GRUm(mt, ht−1

m ) (1)

ht
f = GRU f (f

t, ht−1
f ) (2)

ht
g = GRUg(gt, ht−1

g ) (3)

where GRU indicates the operations in a normal GRU cell [27]. GRUm, GRU f and GRUg

are the corresponding modal-specific GRU cells. ht
m, ht

f and ht
g are the corresponding

hidden state of the current step and they keep the modal-specific sequential information in
the sequence s. The dimension of the hidden state in each modal is equal to the dimension
of the corresponding input in the same modality.

3.2. Differentiated Attention Layer

The differentiated attention layer is designed to extract the cross-modal interaction
relations from the three different modal-specific hidden states at each step. Specifically,
at the tth step, we want to extract the interactions over ht

m, ht
f and ht

g. Since the different
subspace in the hidden state may have different cross-modal interaction strength with
the hidden states from other modalities, we need to differentiate the importance of the
dimensions of the hidden state when extracting cross-modal interaction relations. For each
hidden state, we devised an attention mechanism to emphasize the dimensions which
have more interactions with other modalities. The hidden state of multi-GRU at the tth
step can be represented as ht = [ht

m, ht
f , ht

g], where [, ] indicates the concatenated operation
of vectors.

The differentiated attention layer takes the hidden states from any two adjacent
steps as the input to extract the cross-modal relations. At the tth step, the input is the
concatenation of ht−1 and ht, denoted as h[t−1,t] ∈ R6∗dh . Such input is imported into a full-
connected (FC) layer with softmax as the activation function to output the attention weights:

a[t−1,t] = FCa(h[t−1,t]) (4)

a[t−1,t] ∈ R6∗dh is the element-wise weight vector with the same dimension as h[t−1,t]. Then,
a[t−1,t] performs an element-wise multiplication with h[t−1,t] to emphasize those important
dimensions in the hidden states.

ĥ[t−1,t] = a[t−1,t] � h[t−1,t] (5)

The obtained ĥ[t−1,t] can be seen as the latent representation of the cross-modal rela-
tions at the current tth step.

In Equation (4), by comparing the information embedded in two adjacent hidden
states, the attention mechanism can assign the weights accordingly when the hidden state
changes from step t− 1 to step t.

The differentiated attention layer takes the hidden state as the input, which usually
contains information from the past steps. Therefore, it can capture the interaction relations
of different modalities across multiple time steps. This can help our model discover the
complex relations embedded in the sequence data.

3.3. Gated Multi-Modal Memory Network

Once the cross-modal interaction relations are extracted at each time step, we utilize
a memory network to handle such relations recurrently along with the time steps to
achieve the final multi-modal compound memory representation u∈Rdme. Specifically,
the candidate memory in the current step t is obtained by:

ût = FCu(ĥ[t−1,t]) (6)
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where FCu is a fully connected layer. Then, in the memory network, we use the gate
mechanism to control the remains and update the candidate memory. Particularly, two
gates, i.e., a remaining gate g1 and update gate g2 are introduced as below:

gt
1 = FCg1(ĥ

[t−1,t]) (7)

gt
2 = FCg2(ĥ

[t−1,t]) (8)

g1 and g2 determine how much information in the candidate memory should remain and
be updated, respectively. The final memory is obtained as below:

ut = gt
1 � ut−1 + gt

2 � tanh(ût) (9)

3.4. Prediction and Optimization

The final multi-modal representation of the sequence s of length T is calculated based
on the outputs of the multi-GRU layer, i.e., hT

m, hT
f , hT

g , and the output of the gated multi-

modal memory network, i.e., uT . Specifically,

hout = FCout([hT
m, hT

f , hT
g , uT ]) (10)

where FCout is a fully connected layer.
In the prediction layer, a softmax layer is used to map the hout into the probability

distribution over all the candidate items. Then the candidate items will be ranked based on
their probability and the top-ranked ones will form the recommendation list. To be specific,
the probability is computed as:

pT =
exp(Whout)

∑(exp(Whout)
(11)

The cross-entropy loss is used as the loss function during the training of the model.

L = −∑(plog(pT)) (12)

where pT is the predicted probability distribution and p is the one-hot vector of the ground-
truth item to be predicted.

In the model training, Adam optimizer and batch gradient descent are used to opti-
mize the model parameters. Dropout strategy is used to avoid the overfitting of model
parameters. We utilize grid-search and cross-validation to adjust the hyper parameters of
the algorithm and the used hyper parameters are listed in Table 1.

Table 1. The hyper parameters of fully connected layers in the model.

Fully Connected Layer Input Dimension Hidden State Dimension Output Dimension Dropout Rate

FCa 6 ∗ 20 no 6 ∗ 20 0.3
FCu 6 ∗ 20 50 20 0.3
FCg1 6 ∗ 20 50 20 0.3
FCg2 6 ∗ 20 50 20 0.3
FCout 4 ∗ 20 no 20 0.3

4. Experiments
4.1. Data Preparation and Experiment Set Up

The two subsets of “Clothing, Shoes and Jewelry” and the subset “Phone” in the
Amazon dataset https://jmcauley.ucsd.edu/data/amazon/ (accessed on 16 July 2021) are
used for our experiments, denoted as the Amazon Clothing dataset and Amazon Phone
dataset, respectively, in this work. Intuitively, for these two categories of items, the item
images may play a more important role in users’ choices of items. Both datasets contain

https://jmcauley.ucsd.edu/data/amazon/
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users’ reviews from Amazon.com with timestamps. Following existing works [2,3], we
regard each user’s review of an item as their interaction with the item. The reviewed items
by each user are sorted in chronological order to build the user’s sequence of interactions
with items. In addition to such interactions, each item has a corresponding image describing
the item appearance and review texts from users [28]. We removed sequences whose length
is larger than 100 to avoid the lengths of the sequences to be too varying. To avoid the
dataset being too sparse, we only keep the interactions which happened in the last two
years. The statistics of the dataset are shown in Table 2.

Table 2. The statistics of experimental datasets.

Dataset # Items # Users # Interactions # Items per User on Average

Amazon Clothing 38,840 22,586 272,949 12.08
Amazon Phone 27,879 10,429 175,645 16.84

For each sequence, we take the last item as the target item to be predicted and use all
the other items as the corresponding given context to predict the target item. For each user–
item interaction sequence, we first rank them according to the occurrence time. Then, we
take the first 60% of interacted items as the training data, the following 20% as the validation
data and the last 20% as the test data. Similar to [29,30], we tune the hyperparameters
according to the performance on the validation set to obtain the optimal hyperparameters.
Then, we use the whole training set to re-train the model. Finally, we test the model on
the test set. The dimensions of the hidden state dh and dmem are 20; the batch size is 64.
The initial learning rate is 0.01.

4.2. Performance Comparison with Baselines

In the experiments, the representative and state-of-the-art sequential recommendation
algorithms are selected as the baselines. We compare our proposed algorithm with these
baseline algorithms to evaluate the performance of our algorithm. Specifically, the baseline
algorithms include two representative sequential recommendation algorithms, BPR [31]
and LSTM [32], and four representative and/or state-of-the-art sequential recommendation
algorithms which also incorporate auxiliary information such as item images, namely
VBPR [33], p-RNN [2], MV-RNN [3] and VCSRS [1]. Within the same setting of this work,
p-RNN, MV-RNN and VCSRS incorporate multi-modal auxiliary information, i.e., item
images and text, to improve sequential recommendations. VCSRS is adapted to incorporate
both item images and text information by concatenating image representation vectors and
text representation vectors to form a unified item auxiliary information representation as
the input of the feature-level attention module (FAM). All the baseline algorithms and our
proposed algorithm are tested on the aforementioned experimental datasets for recommen-
dation performance comparison. Two representative ranking-based measures, recall and
mean average precision (MAP), are used as the evaluation metrics. They are commonly
used to evaluate the performance of sequential recommendations. The experimental results
are shown in Tables 3 and 4, where the values are percentages and the best ones are marked
in bold.

According to Tables 3 and 4, it is clear that our proposed algorithm MFN4Rec achieved
the best performance w.r.t all the evaluation metrics, which demonstrate the effectiveness
of our proposed algorithm. BPR and LSTM only take the item ID as the input to model
the single-modal sequential dependencies among user–item interactions, and they thus
perform the worst. Based on BPR, VBPR adds the item image information as auxiliary
information. Based on LSTM, p-RNN adds both the item image and text information for
sequential recommendation. The performance improvement of both VBPR and p-RNN is
limited; this is because they only model the sequential relations within modalities while
ignoring the interaction relations across different modalities. Due to the effective learning
of item visual content representation and the careful incorporation of it into the LSTM-
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based RNN dominated by item ID information, VCSRS can improve the recommendation
performance. However, it fails to model the unique sequential dependencies within each
modality and the interaction relations between modalities, e.g., item ID and item visual
content. The reason is that only one RNN is utilized to model the sequential dependencies
over items without a particularly designed component to model the interactions between
different modalities. Therefore, the aforementioned sequential dependencies within dif-
ferent modalities are mixed together, and also the interaction relations between different
modalities cannot be modelled effectively. Out of all the baseline algorithms, MV-RNN per-
forms the best, demonstrating that the utilization of an auto-encoder can effectively capture
the multi-modal information, especially the cross-modal interaction relations. However, it
still fails to consider the sequential relations within modalities.

Table 3. The performance comparison with baseline algorithms on the Amazon Clothing dataset.

Algorithm Recall@20 MAP@20 Recall@30 MAP@30

BPR 0.641 0.168 0.812 0.176
VBPR 0.700 0.181 0.922 0.190
LSTM 1.443 0.283 1.982 0.301

p-RNN 1.484 0.301 1.939 0.320
MV-RNN(Con) 2.113 0.522 2.827 0.554
MV-RNN(Fus) 2.157 0.508 2.867 0.538

MV-RNN(3mDAE) 2.243 0.541 2.995 0.570
VCSRS 2.238 0.537 2.992 0.574

MFN4Rec(ours) 2.384 0.572 3.111 0.609

Table 4. The performance comparison with baseline algorithms on the Amazon Phone dataset.

Algorithm Recall@20 MAP@20 Recall@30 MAP@30

BPR 4.6398 1.5384 7.6127 1.7624
VBPR 4.6410 1.5438 7.6136 1.7723
LSTM 6.7616 1.7227 8.9707 1.8208

p-RNN 6.8645 1.9688 8.8463 1.8347
MV-RNN(Con) 6.5580 1.7509 8.0625 1.8739
MV-RNN(Fus) 6.8783 1.8133 8.2881 1.8764

MV-RNN(3mDAE) 6.1330 1.4085 8.0270 1.8469
VCSRS 6.8742 1.9904 9.0214 1.8726

MFN4Rec(ours) 7.6629 2.2697 9.7815 2.3709

In comparison, our proposed MFN4Rec is able to effectively capture the sequential
dependencies embedded in multi-modal sequence data by simultaneously capturing both
the sequential dependencies within modalities and interaction relations across modalities.
As a result, our algorithm can achieve the best performance.

4.3. Ablation Analysis

To verify the effectiveness of each module in our proposed MFN4Rec algorithm, we
conduct ablation analysis to measure the contributions of each module to the performance
improvement. To be specific, three simplified versions of MFN4Rec are designed to: (1) only
keep the multi-GRU layer and combine the final hidden states of all GRU-based RNNs
as the input for next-item prediction, denoted as MFN4Rec-g; (2) only keep the gated
multi-modal memory network and take its output as the input for prediction, denoted
as MFN4Rec-m; (3) remove the gated multi-modal memory network and add the final
hidden states of all modalities as the multi-modal memory representation ut, while others
remain the same as MFN4Rec, denoted as MFN4Rec-add. We compare the performance of
these three simplified versions with that of MFN4Rec under the same experimental setting.
The results are shown in Figure 2.
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The experimental results show that MFN4Rec-m performs the worst; it only considers
the interaction relations across modalities while ignoring the sequential dependencies
within modalities. Particularly, the lack of item ID information significantly reduces the
recommendation performance. MFN4Rec-g and MFN4Rec-add consider the sequential
dependencies with modalities, while not fully capturing the complex interaction relations
across modalities, and thus they cannot perform very well. In summary, such observations
demonstrate the significance of effectively capturing both sequential dependencies within
modalities and interaction relations across modalities.

Figure 2. MAP and Recall of MFN4Rec and its variants.

5. Conclusions

Most of the existing sequential recommendation algorithms are not able to effectively
utilize the multi-modal auxiliary information to capture the complex dependencies and
interaction relations embedded in users’ sequential behaviours. Aiming at this problem,
we proposed a novel multi-modal sequential recommendation algorithm called MFN4Rec
to effectively incorporate the item’s images and text description information. Thanks to the
particular design, MFN4Rec can effectively model both sequential dependencies within
modalities and the interaction relations across modalities for more accurate sequential
recommendations. The experiments on real-world e-commerce datasets demonstrate the
effectiveness of MFN4Rec and the significance of modeling both sequential dependencies
within modalities and interaction relations across modalities.
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