friried applied
b sciences

Article

Prototyping IoT-Based Virtual Environments: An App

roach

toward the Sustainable Remote Management of Distributed
Mulsemedia Setups

Telmo Adao 1-2*(9, Tatiana Pinho 3, Luis Padua 34, Luis G. Magalhaes 2, Joaquim J. Sousa ¥

and Emanuel Peres 34

check for

updates
Citation: Adao, T.; Pinho, T.; P4ddua,
L.; Magalhdes, L.G.; J. Sousa, J.; Peres,
E. Prototyping IoT-Based Virtual
Environments: An Approach toward
the Sustainable Remote Management
of Distributed Mulsemedia Setups.
Appl. Sci. 2021, 11, 8854.
https://doi.org/10.3390/app11198854

Academic Editor: KeeHyun Park

Received: 2 September 2021
Accepted: 21 September 2021
Published: 23 September 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

4

Graphic Computation Center (CCG), University of Minho Campus de Azurém, Edificio 14,

4800-058 Guimaraes, Portugal

Centro Algoritmi, Universidade do Minho Campus de Azurém, Av. da Universidade,

4800-058 Guimaraes, Portugal; Imagalhaes@dsi.uminho.pt

3 Centre for Robotics in Industry and Intelligent Systems (CRIIS), INESC Technology and Science (INESC-TEC),
4200-465 Porto, Portugal; tatiana.m.pinho@inesctec.pt (T.P.); luispadua@utad.pt (L.P.); jjsousa@utad.pt (J.].S.);
eperes@utad.pt (E.P)

Engineering Department, School of Science and Technology, University of Tras-os-Montes e Alto Douro,
5000-801 Vila Real, Portugal

* Correspondence: telmoadao@utad.pt; Tel.: +351-253-510-580

Abstract: Business models built upon multimedia/multisensory setups delivering user experiences
within disparate contexts—entertainment, tourism, cultural heritage, etc.—usually comprise the
installation and in-situ management of both equipment and digital contents. Considering each setup
as unique in its purpose, location, layout, equipment and digital contents, monitoring and control
operations may add up to a hefty cost over time. Software and hardware agnosticity may be of value
to lessen complexity and provide more sustainable management processes and tools. Distributed
computing under the Internet of Things (IoT) paradigm may enable management processes capable
of providing both remote control and monitoring of multimedia/multisensory experiences made
available in different venues. A prototyping software to perform IoT multimedia/multisensory
simulations is presented in this paper. It is fully based on virtual environments that enable the remote
design, layout, and configuration of each experience in a transparent way, without regard of software
and hardware. Furthermore, pipelines to deliver contents may be defined, managed, and updated
in a context-aware environment. This software was tested in the laboratory and was proven as a
sustainable approach to manage multimedia/multisensory projects. It is currently being field-tested
by an international multimedia company for further validation.

Keywords: IoT; multimedia; multisensory; mulsemedia; IoT prototyping; virtual environments;
simulation; system planning

1. Introduction

The Internet of Things (IoT) rests on the premise that each and every common object
may be equipped with identification, sensing and communication (networking) mecha-
nisms. It would enable information exchange—without human intervention—between
objects and also with Internet-based services, to achieve a given goal. The evolution of both
the Internet and the World Wide Web, as well as all the development accomplished around
consumer technologies (e.g., tablets, smartphones) ended up by defining IoT as what it
is known for today: a massive network of different types of elements that interchange
data. Among them and besides the usual tablets and smartphones, media players, watches,
bracelets, cars, wearables, sensors, actuators, appliances, surveillance cameras and others
can also be found to be a part of IoT networks [1]. Indeed, the number of applications that
fall under the IoT technological umbrella have been growing so fast—in areas that include

Appl. Sci. 2021, 11, 8854. https:/ /doi.org/10.3390/app11198854

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2727-0014
https://orcid.org/0000-0002-7570-9773
https://orcid.org/0000-0003-4533-930X
https://orcid.org/0000-0001-5669-7976
https://doi.org/10.3390/app11198854
https://doi.org/10.3390/app11198854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198854
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198854?type=check_update&version=2

Appl. Sci. 2021, 11, 8854

2 of 20

precision agriculture (e.g., [2]), security and surveillance (e.g., [3]), smart cities (e.g., [4]),
and multimedia/multisensory environments (e.g., [5,6])—that by 2020, connected elements
are expected to surpass 50 billion [7-9].

A recent survey focusing IoT for multimedia [8] presents a comprehensive review
on the subject, in which some architectures are referred: agent/multi-agent [10,11], ar-
tificial intelligence [12], fog-cloud [13], as well as big data capable approaches [14] and
security-based schemes [15]. In [7], an architecture for IoT multimedia (IocTMM) that
brings together modern cloud services and mobile edge computing (MEC) is proposed,
highlighting the importance of characteristics such as scalability, flexibility, efficiency and
interoperability. [ocTMM device level, ocTMM-to-cloud, [oTMM-to-MEC-to-cloud, or addi-
tional intermediate layers constitute different available options. Application and research
areas are numerous. For example, in [16] traffic flow optimization was addressed resorting
to cameras, ontologies and Bayesian networks. Furthermore, ocular recognition-based
authentication has been reported as a suitable technology for IoT domain [17]. Within smart
industry, wearable devices and Bluetooth were combined to determine visitors” position
inside a museum and present cloud-based artwork information [18]. Regarding E-health,
an IoT-based system to train surgeons with existing data and real-time feedback [19] is just
an example among many other available solutions. Other works focusing on IoT-based
user-centered multisensory approaches can be found in the literature. For example, in [6],
a home entertainment system was the reference to an architecture proposal. It consists
of a four-layer architecture—application, aggregation, virtualization, and physical—that
intends to define templates integrating virtual objects (device properties abstraction) with
Micro-Engines (i.e., tiny sensors that enable connectivity and control in all the “things”).
Concerned with the multiplicity of sensors, actuators, and computation devices that can be
found in multisensory IoT systems, in [20], a design proposal was based on service-oriented
architecture for alleviating heterogeneity issues (interoperability of components, portability,
scalability, etc.). Proof of concept was made with a RGB camera and smart insoles, focus-
ing identity recognition. In the health context, a monitoring system based in blockchain,
multiple sensors and multimedia big data was proposed to monitor physiological and
mental states of cancer patients, with medical real-time decision support capabilities [21].
Also, the “Magic Room” proposed in [22] reports an loT-based multisensory system to
develop therapies for children with neurodevelopmental disorder. It consists in completely
customizable environments that allow stimuli combination through “smart” objects control.
Electrocardiogram devices, wearable sensors, location systems and machine learning have
been associated to IoT to monitor patients” heart-rate while performing distinct physical
activities. Targeting therapeutic interventions, but also novel didactic methods, Magika
was reported as an inclusive system that allows educators to interact with children by
stimulating their tactile, auditory, visual, and olfactory senses, through IoT-based digital
projections and physical smart objects [23]. Other studies that use multisensory interaction
in citizen science stream monitoring training have also been reported [24]. Hotel hosting is
another example of a potential business model that can benefit from multisensory IoT. Both
managers and guests associate IoT-based sensory experiences to an increase in satisfaction
and loyalty levels [25].

The combination of multimedia and multisensory can be defined as mulsemedia [26].
Alone, these environments have great potential to deliver outstanding experiences to users
based on human senses exploration (usually, more than one), but when combined with
adequate distributed architectures, can unlock very important features, such as sustainable
scalability, full availability in terms of data access, as well as large content flow and
bandwidth management. Notwithstanding this, planning and design are very important
steps to achieve success in any project, and those scoped within IoT mulsemedia are not
an exception. Such steps have the goal to not only guide further development stages,
but also ensure specification adequacy to stakeholders’ requirements, as well as to mitigate
the waste of resources. Whilst purpose and location are certainly decisive in laying out a
mulsemedia setup, they are also key factors when planning and creating each experience.

Appl. Sci. 2021, 11, 8854

30f20

The results are setups that can be composed of different software, hardware and contents
combinations. Moreover, when delivering context-aware interactive experiences—time-,
spatial- or sensor-based—contents may change and be experienced through one or more of
the human senses, which implies being delivered by different types of hardware. All of this
adds up to the complexity of planning, designing, implementing, managing, maintaining
and updating mulsemedia setups.

Planning capacity, what-if hypothesis formulation and analysis/proactive manage-
ment can be explored through IoT simulation environments, as highlighted in [27], which
proposed a design-oriented approach, using as a case-study smart services for smart cities
and decentralized areas. It was pointed out that multi-level simulation techniques provide
means to mimic wide geographical areas, with a multitude of replica-based agents. A signif-
icant variety of reported works followed the same research line. For example, Sensyml [28]
consists of an environment capable of simulating large-scale data during application devel-
opment, in which multiple types of sensors with physical and geographical characteristics
similar to real devices can be hosted, allowing performance to be tested under edge con-
ditions (power consumption, data growth) and to evaluate scale-up potential. Focusing
on IoT big data processing, in [29], a platform IOTSim was designed and implemented
upon known cloud simulation services—such as CloudSim [30]—with the goal of allowing
the analysis of the impact and performance of IoT-based applications before a real system
setup. In [31], a cloud-centric IoT application store was designed and implemented to
host virtual objects of different IoT domains, which can be integrated by technologists to
build IoT applications requiring little or no modification. Relying on the specific Devices
Profile for Web Services (DPWS) standard, DPWSim [32] is a Java-based prototyping tool
designed to speed up the simulation of IoT applications. Admittedly, more work related to
the generation of virtual devices is required for a better acceptance of this simulator by its
target audience, which is Industry. More focused on interaction, in [33], the new generation
of VR technology (head-mounted displays and game engines) was explored in the form of
a prototyping tool to control and monitor a virtual smart home environment.

This paper considers the apparent scarcity of works addressing the specific topic of
IoT-based mulsemedia setups simulation and proposes a prototyping software towards the
suppression of such gap, which is comprised of: (1) a web-based application to manage
virtual IoT setups; (2) “things” side virtual environment; and (3) MQTT connections to
wire everything. This work was developed within the Cooperative Holistic view on
Internet and Content (CHIC) project scope. It is a funded initiative that, among other goals,
aims at the digital innovation of multimedia field at both industrial and entrepreneurial
levels, with the purpose to develop tools capable of providing enhanced multisensory
virtual/augmented /mixed reality experiences based on setups that may be sustainably
remotely managed. The following main aspects were prioritized in this work:

e to settle agnostic specification for IoT simulation—as far as possible independent
from hardware and software—aiming to lessen complexity in providing projects of
sustainable management;

e to provide flexible programming-oriented processes capable of ensuring scalability
for devices and respective functionalities;

e toalign a general IoT simulation solution that, although, can meet mulsemedia setups
specific requirements;

e to outline interfaces and engagement structures envisaging the integration of digital
twin-based approaches.

Rather than covering IoT security issues, this paper limits its focus to IoT simulations
under an architectural/structural /setup perspective, more centered in stimulus delivery
pipeline, either based on event scheduling or though sensor condition triggering. However,
the transposition to real-world deployments must encompass suitable levels of protection
across IoT layers, considering different security aspects, as addressed, for example, in [34].

Appl. Sci. 2021, 11, 8854

4 0f 20

This paper continues by presenting the proposed IoT mulsemedia environments
prototyping software architecture, followed by implementation details. Demonstrations,
conclusions, and future work are drawn at the end of the document.

2. Prototyping Software Architecture

As previously stated, this work was developed within the CHIC project scope. As such,
it is important to briefly present it to provide readers with a more thorough context. CHIC
aimed to develop, test, and demonstrate a set of innovative processes, products, and ser-
vices for both the audiovisual and multimedia sectors. Due to the underlying transversality,
results are expected to have an impact in other important business sectors within culture’s
scope (e.g., cultural heritage, exhibiting arts). An extended set of activities was carried out
toward three essential domains: (i) open platforms for the management and distribution
of digital contents, supported by the cloud; (ii) management of cultural heritage related
contents, based in open-systems for preservation and interaction; and (iii) content creation,
production and consumption focusing quality of service and experience, resorting to very
high-definition immersive environments.

One of the main tasks established within CHIC’s scope was the development of
an independent IoT system as-a-service, qualified to enable the swift configuration of
scalable mulsemedia setups and their remote management. These mulsemedia setups
must support the configuration of groups of wireless mulsemedia equipment—"things”,
such as displays, fans, lights, smell delivery devices, varied types of sensor, etc.—within
a given interior space, i.e., an interactive room. To provide meaningful experiences to
users and induce engagement, involved device sets—mostly, actuators—are expected to
work on-demand, in an orchestrated and time-effective manner, to adequately deliver a
specified stimulus. Considering the requirements laid out, Figure 1 presents the proposed
architecture for the IoT mulsemedia environments prototyping software. It is composed of
a virtual environment of “things” and a remote-control panel, which are connected by a
publishing /subscriber (P/S) messaging protocol.

Virtual Environment

Control Panel

el

Local
Network

‘ ’ PIS
Client

Setup/Device
Discovery
lojeulpioo)

uonoelsqy 8o1neq

@vices. Profilesj

A

Figure 1. Architecture overview of the IoT mulsemedia environments prototyping software. It is composed of a control

server and, at least, one virtual environment of “things”, managed by a virtual coordinator.

The virtual environment can be regarded as an IoT mulsemedia environment vir-
tual representation, providing both a software and hardware agnosticity layer—device
abstraction layer—as well as a virtual representation of each device that is a part of the
different mulsemedia experiences. Moreover, each virtual device representation has an
profile containing its properties and available functions. As for the IoT server, it enables
remote and on-demand control and management capabilities through a context-aware
integrated discovery service (setup/device discovery). Communication between both
elements is assured by a P/S protocol, specifically the ISO/IEC 20922 standard, also known
as message queue telemetry transport (MQTT). The P/S broker is placed in the server side,
as usual.

Appl. Sci. 2021, 11, 8854

50f 20

2.1. IoT Server

The IoT server provides an interface to remotely monitor, control and manage devices
that are a part of a virtual mulsemedia environment. It is composed of two essential
components: (i) a setup discovery service responsible for obtaining information about
connected virtual configurations grouping virtual devices; and (ii) a control panel—through
a graphical interface—with the software’s available operations, namely to obtain virtual
devices’ features, manage control packets, schedule actuators, and define sensor-based
events. A web-browser establishes the applicational layer for this service, allowing direct
access to the control panel graphical interface.

2.2. Virtual Environment

The virtual environment has a coordinator that interfaces with incoming messages
and provides appropriate responses. It is supported by a device abstraction layer that
handles queries and matches them with the targeted virtual equipment to retrieve data
(e.g., current feature status) or to prompt state alteration events (e.g., activate artificial
smell device). As for data model support, the virtual environment keeps track of virtual
devices and their relation with profiles, features, states, and data (Figure 2). A virtual
device represents equipment with both an internet protocol (IP) address and a media access
control (MAC) address. Each virtual device is also associated with a profile, i.e., settings
describing the device’s interface. These settings are mapped into a structure called feature
(power, rotation, video content, sensing channel, etc.) that, in turn, can have a set of states
(e.g., on/off, fan rotation level). The data structure keeps a record of timestamped and
device-aware state alterations.

VirtualDevice = DeviceProfile P Profile g Feature

Figure 2. Data model proposed for the IoT mulsemedia prototyping software. It is formed by
many associations involving virtual devices (representing real equipment), profiles (or capabili-
ties descriptors) grouping features and states, and data for handling timestamped action requests
(e.g., turn on a lamp, set display to reproduce a video) to virtual devices.

VirtualDevice has a context-sensitive graphic user interface (GUI) that changes accord-
ing to its state. Moreover, it can be further characterized in one of two types: Sensor or
Actuator. While the former consists in a device that simulates environmental variables
measurement (e.g., temperature, motion), the latter represents equipment capable of de-
livering stimuli (e.g., wind, light, heat, cold). Figure 3 presents the relations between
VirtualDevice’s elements.

VirtualDevice

#

Temperature

Figure 3. VirtualDevice structure and generalization: it is composed of a representational state and it
can be specialized in Sensor or Actuator.

Appl. Sci. 2021, 11, 8854 6 0f 20

Details about communication between the IoT Server and the virtual environment
will be provided in the next subsection.

2.3. IoT Server/Virtual Environment Communication

Resorting to a P/S protocol and following a simple messaging strategy, essential
capabilities for the communication of both IoT server and virtual environment are ensured.
Whenever a new virtual environment is put together, a kick-off acknowledgment message
composed of the coordinator’s MAC address and a verification code is sent to the IoT server.
There, the message is handled by an authenticated user—with management access—that
carries out the virtual environment registration in the system. Once that happens, four
main inter-operations can be launched by the IoT server (Figure 4):

e Devices request: retrieves a list of endpoints and respective capabilities associated to a
given virtual environment coordinator;
Control packet request: orders a condition change in a virtual environment” actuator;
Actuators scheduling: configures a relative time-based event list to chronologically
engage actuators’ capabilities in a virtual environment;

e Sensor-based event triggering: configures an event listener that is looking out to the
virtual environment’ sensors values. When a sensor measures the defined value,
an automatic action is triggered in the virtual environment’s actuators.

:Control Panel :Virtual Environment Coordinator

Access to device Query setup devices()
managing page 1 Connected devices with profiles

Select device 1

Select feature 1

Submit required state Process control packet() 1
Status response (success/insuccess) 1

peYy Manager
Request

packet

o
4
=
c
o
o
°
c
[
2]

» Set experience period 1
% n Set trigger anchors for devices 1
v Run live test I
=3
§ ‘g Submit with startup time Add to chron()
g Status response (success/insuccess) 1 i
| Selectsensor N T TTTTTTTTTTTTTTTTTTTTmmmmmmmImmIIIIIIT [S
8% 4 ,
532 Define value-based triggers 1
»
g§ Submit definition Add to rule to alarmistic triggers set() 1/
g 2 Status response (success/insuccess) 1 _;-’

|] | |

Figure 4. Sequence diagram depicting the four possible interactions between the IoT server (via control panel interface) and
the virtual environment (using the virtual environment coordinator), regarding control and managing activities: (1) devices
request returns a list of usable equipment; (2) send control packet results in a device state switching; (3) in schedule devices, a
time-based rules set (trigger anchors) is defined to establish a limited temporal sequence for device state switching; finally,
(4) set up sensor-based event shows the process to specify triggers for switching the state of a given device as a consequence
of another device behavior—considering that, typically, a sensor can influence an actuator—as long as both belong to the
same setup.

The next section will present an implementation proposal for the IoT mulsemedia
environments prototyping software.

3. IoT Mulsemedia Environments Prototyping Software

A proof-of-concept implementing the architectural elements described in Section 2
is used, so that this section may be more perceptible to the reader. It comprised a web-

Appl. Sci. 2021, 11, 8854

7 of 20

#ATest Room 0

_ID THING_ID NAME TIME ACTION OPERATION
Sehechior bones =

based application manager (IoT Server) and a couple of virtual environments—2D and
3D—wrapping up virtual devices that simulate sensors’/actuators’ capabilities. Whilst the
application manager provides a control panel to remotely manage events in the “things”
side, each virtual environment implements a coordinator that acts as a request dispatcher
engaged with a set of associated virtual devices. Moreover, it also binds a virtual device’
state with a corresponding graphical representation, for visual intuition purposes. A local
MQTT broker needs to be kept alive to enable connectivity between both ends. For this
implementation, Mosquitto 1.5.31 release—compatible with Windows 10—was used.

3.1. MQTT Enhanced Web-Based Application

Figure 5 presents the developed web-based application manager. Its modules—control
panel and dashboard—were developed using modern programming languages and script-
ing tools PHP, JavaScript, resulting in an Internet-based client-server approach to enable
access through common web browsers. Furthermore, it resorts to a Mongo database to store
useful information, mainly for synchronization purposes with the virtual environment side
(e.g., setup registration, virtual devices’ status, event-driven rules). MQTT over WebSocket
ensures connectivity between both sides. Paho-MQTT JavaScript was the library adopted

on the server side.
/@ SMARILAM 7 @ s\ ~ T

Storytelling Event List

JRRIRIE)

|
(b)
SmartFan
SmartFan Data
power rotation ts
SmartLamp
(c) (d)

Figure 5. Web-based application manager: (a) general access panel to a room of test, corresponding to a virtual setup;

(b) event scheduler to configure actuators features activation in a chronological manner; (c) control panel interfacing

endpoints’ features at the virtual setup side; (d) data table regarding the registries associated to the activity of an exemplifying

device (smart lamp).

The web-based application manager enables the registration of new virtual environ-
ments. These are represented by a coordinator (handshake) through both a pseudo-MAC

Appl. Sci. 2021, 11, 8854 8 0f 20

address and a verification code, which may be validated by the user responsible for the
configuration process. After a successful pairing procedure, the application manager gains
access to resources associated to the virtual environment coordinator, specifically virtual
devices, and respective capabilities. Through MQTT requests—that also declare a topic to
which the coordinator answers back—the IoT server side can perform queries concerning
virtual devices for data retrieval purposes, as well as send actuating commands. Table 1
presents the defined message format.

Table 1. IoT server-side publishing topics for communication with subscriptions assigned in the virtual environments
side. Different topics/messages are available: “info” topic can be used to retrieve a whole virtual environment; “out”
topic requests a state alteration in an endpoint at the virtual environment side; “rule” topic specifies an actuator trig-
ger according to a given sensor’ behavior, at the virtual environment side; “query” topic variants can be issued to
retrieve sensors’ readings and actuators’ actions, integrally or confined to a time interval. Note that in each case,
an expiring subscription topic with a timestamp (/response/#timestamp) is specified in the messages, allowing the

coordinator of the targeted virtual environment side to reply.

Topic Message Description
. . Requests coordinator features, as well as associated
/info/{c} /response/#timestamp : : . s
endpoints along with respective capabilities.
#value | /response/#timestamp Requests a state change regarding a given virtual

/out/{e}/{f}/{s}

[optional] coordinator’s endpoint.

" . s Y . Specifies a rule for a given virtual coordinator that consists
{“expression”: #exp, “trigger”: #trigger]} |

/rule/{e}/{f}/{s} /response/#timestamp in opportunely triggering an endpoiflt action in response to
another’s behavior.
/query/{e}, . Retrieves data (readings/actions) from a given
/query/{e}/{f}, /response/ftimestamp | coordinator/endpoint/feature, optionally framed by a

query/le}/{1/15) #optional_time_range
{c}—Virtual coordinator ID (MAC); {e}—Virtual endpoint ID (MAC); {f}|—Feature ID; {s}—State ID; #timestamp—Unix-based timestamp
taken at runtime; #value—mutable attribution inducing a change in a given endpoint state; #exp—simple mathematical expression defined
to establish a rule for a given feature associated to a virtual coordinator/endpoint device; #trigger—state change repercussion in a feature
of a given virtual coordinator/endpoint device as a response to a verification of an #expression_rule; #optional_time_range—definition of
an hyphen separated time interval (yearl/monthl/day1 hourl:minutel:secondl-year2/month2/day2 hour2:minute2:second?2).

time range.

3.2. Virtual Environment

The prototyping software’s part simulating the “things” side is built upon 2D and 3D
virtual environments composed of entities role-playing coordination, actuation and sensing
devices, thus inducing real object-like behaviors. Virtual devices’ profiles are stored in a
JSON file, along with their respective features and states (summarized in Table 2). This aims
not only to define a general template for profiles management, but also to provide a data
source to smoothly associate virtual devices during code-based programmatic specification.
These associations allow capabilities for virtual devices to be set up, which on the IoT
simulation/application boot are signed up in the midway coordinator as MQTT services,
thus enabling end-to-end bidirectional communication.

Behavioral simulation relies on a hierarchical folder structure concordant with set up
JSON-based profiles, wherein the assets are placed. Representations for 2D environments
are images, while wavefront files (.obj format) storing 3D models’ configurations are
preferred for 3D environments. Folders and files are organized according to the path
format “.Aprofile_id}/{feature_id}/{state_id}”, where state_id must have a set of possible
representational assets, named after the value they stand for, considering the value set
specified in Table 2, for each feature and profile. Whenever a virtual device state changes,
an adjustment in the graphical representation—associated asset—is immediately reflected,
accordingly the type of entity involved. While sensors change their state with a pseudo-
random approach that selects a set of supported values—established by the JSON-based
profiles archive—and considering an interval in seconds, actuators are affected on-demand.
Figure 6 depicts the process associated to virtual devices’ state changing.

Appl. Sci. 2021, 11, 8854 9 0f 20

Table 2. Profiles, features, and states considered for the proposed IoT mulsemedia environments pro-
totyping software proof-of-concept, mapped in a JSON structure: Lamp, Fan, Display, Temperature
and Motion.

Profile Feature State
ID Name ID Name Type ID Name Value Set
110
1 Lamp 1 Power Actuator 1 Switch 0l O?f
010Off
) 11Low
2 Fan 1 Rotation Actuator 1 Level 2 | Medium
31 High
. 110n
5 Display 1 Power Actuator 1 Switch 010ff
Comics DC
2 Video Actuator 1 Content M
arvel
13
18
4 Temperature 1 Value Sensor 1 Degrees o5
32
. . 0linactive
5 Motion 1 Value Sensor 1 Condition .
1 lactive
_________________________ ~
Data model-concordant ¥
Profile Temperature structural organization |
and 1
matching folder hierarchy I
1
1
Feature 1
1
1
1
]
State I
1
(
'- R jEn & = . - ----_-_--_---_--_-- --------------- — -
I Assets
I 3DModel,...) :
L Multimedia assets matching value sets inside a folder structure complying with the data model.)

Figure 6. A pair of virtual devices associated to different profiles—an actuator and a sensor—exemplifying things’ state
changing process: lamps show a representation of a turned on or off bulb according to a given power state transition,
while temperature sensors toggle between different levels of heat, considering a pseudo-random value selected from the
respective profile’s predefined set, for instance 13, 18, 25, and 32 (in °C).

Two-dimensional environment implementation was carried out in Python (v. 3.7),
installed in a Linux Ubuntu virtual machine. A coordinator object was set up as an MQTT-
based (Paho-mqtt 1.5.1. Available in https://pypi.org/project/paho-mqtt/, accessed on 1
December 2020) dispatcher that replies to queries and redirects control requests to associ-
ated virtual devices (please revisit Table 1). These operate as follows: actuators subscribe
MQTT topics for each profile-based assigned feature; sensors are pseudorandom-based
agents that select values out of a profile-defined range, publishing them to a proper co-

https://pypi.org/project/paho-mqtt/

Appl. Sci. 2021, 11, 8854

10 of 20

ordinator’s MQTT topic. The part regarding the graphical representation reflecting the
state of each virtual device is implemented over Python’s Tkinter library (Tkinter. Avail-
able in https:/ /docs.python.org/3/library/tkinter.html, accessed on 1 December 2020).
To run a simulation within the software, one must simply execute, asynchronously:
(1) the server file, holding an instance of the coordinator; (2) a script with basic instances of
the required virtual devices. The instantiation of these prebuilt objects is done by simply
code writing Server(), Fan(), Motion(), etc. in the aforementioned Python scripting files.
A Mongo database keeps track of the data exchange within the environment of virtual
devices. Figure 7 depicts virtual device examples working on the prototyping software.

Simulator: ThingGu! [enabled] x Simulator: ThingGuUI [enabled) x Simulator: ThingGUi [enabled] x Simulator: ThingGUI [enabled) c @

L]

(“power": “False"}
power{True) power{Faise]

Z

{"power*: “False*, “active”: *False"} {"power": “True", “rotation”: *Medium"}

power{True] power(Faise] rotation{0) rotation(1)

{"power": “True®, “value*: *18°}

power{True] | power{False] active(True] active{False) power{True] power{False] valuef{13]

value{2s]

value{18)

rotation(2] value{32]

Figure 7. Two-dimensional environment virtual devices with associated profiles. From left to right: a lamp that can be

turned on and off, a passive infrared (PIR) sensor that randomly changes its state at 30 s intervals from idle to activated and

vice versa, a fan with three levels of rotation and a temperature sensor with four heat levels that randomly toggles each 60 s.

Three-dimensional environment implementation was addressed resorting to Unity
3D (Unity 3D. Available in https://unity.com/, accessed on 1 December 2020)-2018.x
version—, following a similar approach as the proposed in the 2D environment. A coordi-
nator manages querying and controls messages. It is wired by a MQTT library (M2Mqtt.
Available in https://github.com/eclipse/paho.mqtt.m2mgqtt, accessed on 1 December
2020), which is the protocol that also suits the associated virtual devices that subscribe
topics for state manipulation—in case of actuation profile—or publish state messages
to the main broker as sensors. For each prebuilt device set for instantiation—by sim-
ply code writing new Lamp(), new Display(), and so on in the Unity’s MonoBehavior class
responsible for graphically managing environment actions and events—representations
are assumed that rely on 3D models (wavefront files) loaded from locally stored fold-
ers structures that respect the relation between profile, feature, and state, as described
above. In fact, the possible 3D models regarding a given virtual device profile are im-
ported into the environment as an object group organized according to the structure
“{device_id}/{profile_id}/{feature_id}/{state_id}” when the application boots up, facilitating
the efficient representational switching. Import operations are ensured by ObjReader
plugin (Unity Asset Store—The Best Assets for Game Making | ObjReader. Available
in https:/ /assetstore.unity.com/packages/tools/input-management/objreader-152, ac-
cessed on 1 December 2020), which allows 3D models to be integrated from local storage,
in execution time. Due to the powerful abstractions for handling complex computer graph-
ics transformations provided by Unity, classes providing devices’ visual representations
can be quick and easily scripted for simple animations (e.g., fan rotation). For the particular
case of displays, a folder acting as a video repository also needs to be specified. Figure 8
depicts a fully functional IoT virtual environment.

https://docs.python.org/3/library/tkinter.html
https://unity.com/
https://github.com/eclipse/paho.mqtt.m2mqtt
https://assetstore.unity.com/packages/tools/input-management/objreader-152

Appl. Sci. 2021, 11, 8854

11 0f 20

Figure 8. A 3D virtual environment composed of a coordinator and profiled virtual devices. A display, a pair of lamps,

and a fan can be identified.

For both virtual environments—2D and 3D—the inclusion of new devices is relatively
easy to achieve. It takes two steps: (i) specialization from base classes actuator or sensor;
and (ii) ID association to a profile lying in the already mentioned JSON-based list. New
profiles can also be added to the existing set, along with the desired representational assets
properly placed, following the previously suggested folder organization.

The next section will present the results regarding both the 2D and 3D IoT virtual
environments, built with the proposed prototyping software.

4. Results

A set of 2D and 3D testing scenarios was established to demonstrate both event
and schedule-oriented behavior modelling. On the one hand, event-oriented operations
specify trigger-based dependencies between virtual devices, i.e., an influence chain among
simulation virtual devices. On the other hand, schedule-oriented execution relies in
defining associations between actuators’ capabilities to time-based key-points. To provide a
better interpretation of the possible behaviors that can be assumed by the involved virtual
entities, contextual symbology was defined and adopted along this section, according
to Table 3. Such entities are of three types: coordinator (central manager/dispatcher),
sensor (temperature and motion), and actuator (lamp, fan, and display). This section ends
with performance tests providing an overview of time consumption associated with local

Appl. Sci. 2021, 11, 8854

12 of 20

MQTT connections, with a few variations in the number of publishing requests and target
subscription topics.

Table 3. Demonstration symbology regarding the 2D and 3D virtual environments established by
using the proposed prototyping software.

Representation Environment Designation Type Possible States

{IE:]} 2D/3D Coordinator Manager /Dispatcher N/A

@ 2D/3D Lamp Actuator @ @
2D/3D Fan Actuator

D 3D Display Actuator -
*g 2D Temperature Sensor *g % g
(((.))) 2D Motion Sensor (((0))) (())

4.1. Testing Scenario 1: 2D Virtual Environment Schedule-Oriented Behavior Modelling

The 2D virtual environment is composed of a coordinator, two lamps, two fans,
a temperature sensor, and a motion detector. Each is identified with a unique random MAC
address. Table 4 presents the details of the virtual devices associated with this scenario.

Table 4. Two-dimensional virtual environment devices. Lamp, fan, temperature, and motion
detection profiles were used to set up this virtual environment.

Representation Name Identifier
{é} Test Room 2D 56-DB-F6-6E-84-37
@ A Lamp A A8-DD-A4-75-FF-EE
@ B Lamp B AE-85-48-8D-A8-F3

A Fan A E3-8D-9E-C2-6E-2D
B Fan B 9B-F7-F4-42-16-1E

*@ Temperature 6E-A4-07-13-FE-CD

(@) Motion 7B-03-4D-95-AB-SE

To test the event-oriented control through the definition of activation rules that trigger
actuators’ state changing, a scenario was specified accordingly to Table 5. While a set of
rules regarding the temperature sensor was set up to induce different levels of rotation
in Fan A, variations in the motion sensor were considered as triggers for Lamp A. Indeed,
a temperature control rules set was intentionally established: the occurrence of the two
highest levels of temperature triggers the fan to a medium rotation level, while the lowest
temperature events lead the fan to be turned off. Following the exact same process,

Appl. Sci. 2021, 11, 8854 13 of 20

a motion monitoring rules set was defined to induce the lamp to be turned off or turned
on, according to the motion sensor state.

Table 5. Two-dimensional virtual environment devices: event-oriented control testing scenario.

Description Request JSON Events Trigger
/rule/6E-A4-07-13-FE- {“exp”:">18", “trigger”: @ @
Temperature Control CD/1/1 “/out/E3-8D-9E-C2-6E-2D/1/1 Medium”} or A
/rule/6E-A4-07-13-FE- {“exp”:“<=18", “trigger”: *Ll Q
CD/1/1 “/out/E3-8D-9E-C2-6E-2D/1/1 Oft”} or A
/rule/7B-03-4D-95-AB- {“exp”:“=1", “trigger”: (()) @
Motion Monitoring 8E/1/1 “/out/A8-DD-A4-75-FF-EE/1/1 On"} A
/rule/7B-03-4D-95-AB- {“exp”:“=0", “trigger”: (((‘))) @
8E/1/1 “/out/A8-DD-A4-75-FF-EE/1/1 Off”} A

The configuration of a virtual scenario exemplifying actuators scheduling can be
observed in Table 6. A lamp (Lamp B) and a fan (Fan B) were the virtual devices in this
mulsemedia experience simulation, which was configured to last 30 s. Initially, both virtual
devices were set up to be turned off. Some time-based key-points were defined to show their
possible variation of states, which end up being turned off when the simulation finishes.

Table 6. Two-dimensional virtual environment devices: schedule-oriented control testing scenario.

Description Time (s) Request Output

Initialization 0 /out/AE-85-48-8D-A8-F3/1/1 Off @ B
Initialization 0 /out/9B-F7-F4-42-16-1E/1/1 Off B
Turn on lamp B 5 /out/AE-85-48-8D-A8-F3/1/1 On @ B
Set fan B rotation to 1 10 /out/9B-F7-F4-42-16-1E/1/1 Low B
Set fan B rotation to 2 20 /out/9B-F7-F4-42-16-1E/1/1 Medium B
Set fan B rotation to 3 25 /out/9B-F7-F4-42-16-1E/1/1 High B
Turn off lamp B 30 /out/AE-85-48-8D-A8-F3/1/1 Off @ B
Turn off fan B 30 /out/9B-F7-F4-42-16-1E/1/1 Off B

Figure 9 depicts the set of devices used in the 2D environment testing scenario, wherein
the variation of states can be observed for both lamps and fans, as well as for temperature
and motion sensors.

The next subsection will also address actuators scheduling but focusing on the 3D
virtual environment.

4.2. Testing Scenario 2: 3D Things’ Virtual Environment

The 3D environment being presented is composed of a coordinator, two lamps, a fan,
and a display. Each one of these virtual devices has an attributed random MAC address,
as presented in Table 7.

Appl. Sci. 2021, 11, 8854 14 of 20

LAMP A <A8-DD-A4-75-FF-EE> [enabled] c ® LAMP A <A8-DD-A4-75-FF-EE> [enabled] c @ LAMP B <AE-85-48-8D-A8-F3> [enabled] o @ LAMP B <AE-85-48-8D-A8-F3> [enabled] o @

1] LJ)]|

-—
{"power": “True*} {"power": “False} {"power=: *True*} {"power": “False"}
power{True] power{False] power{True] power{False] power{True] powerfFalse] power(True] power{False]

FAN A <E3-8D-9E-C2-6€-20> [enabled] c @ FAN A <E3-8D-9E-C2-6E-2D> [enabled] * FAN B <98-F7-F4-42-16-1E> [enabled] * FAN B <9B-F7-F4-42-16-1E> [enabled] x

ik ik ik

(@)

{*power": *False", “rotation": *-*} {*power": “True", “rotation": “Low"} {"power": “True*, *rotation": "Medium*} {"power": “True*, “rotation": *High"}
power(True] | powerfFalse] | rotation{o] | rotation{1] power{True] | powerfFalse] | rotation{0] | rotation(1] power{True] | powerfFalse] | rotation{0] | rotation{1] power{True] = powerFalse] | rotation{0] | rotation{1]
rotation(2] rotation(2] rotation{2] rotation(2]

TEMP SENSOR <6E-A4-07-13-FE-CD>fe... - © & TEMP SENSOR <6E-A4-07-13-FE-CD>fe... - 0 & MOTION SENSOR <78-03-4D-95-AB-8E... - 0 & MOTION SENSOR <78-03-4D-95-AB-8E... - 0 &

) (9' f Kg)
(=) l) Q%

{"power": "True”, *value™: *13°} {"power": "True®, *value": *32°} {"power": “True*, “active*: “True"} {"power": “True*, “active®: *False"}
power(True] | powerfFalse] | value(13] | valuel18) power(True] | powerFalse] | value(13] | valve[18] power(True] | powerfFalse] | active{True] {Faise] [| powerTrue] ' powerfFalse] | active{True] | activelFalse]
value{25] value{32] value(25] value{32]

Figure 9. Two-dimensional actuators and sensors in action: (a,b) with regard to Lamp A and B, respectively, turned on
and turned off; (c,d) represent the pair of fans (Fan A and Fan B) simulating different rotation intensities, from stopped to
highest level; (e) depicts the temperature sensor with the lower and the higher reading; and, finally, (f) shows the motion
sensor, performing in idle and active state.

Table 7. Three-dimensional environment virtual devices, composed of two lamps, a fan,

and a display.
Representation Name Identifier
{@} Test Room 3D 6C-D5-1C-76-E3-85
@ A Lamp A D6-BB-99-92-99-3A
@ B Lamp B E1-8C-83-02-28-DD
Fan 1C-B2-89-0F-20-01
J Display A9-94-43-C9-EB-8C

Appl. Sci. 2021, 11, 8854

15 of 20

The schedule-driven scenario entailed (manual) synchronization of video content
with both the virtual fan and the lamp, aiming the simulation of air-flow increase in
(observationally perceived) windy scenes, as well as to impact visual perception with
induced illumination wobbling. As shown in Table 8, this scenario lasted for 60 s and
starts by turning off the fan, display and both lamps. After displaying a DC Comics video,
some effects with the Lamp A and virtual fan were coherently set up to match the scenes
characterized by an apparently reduced air-flow, as well as to cope with higher or poorer
illumination frame sets. After swapping the display content to a Marvel video, the fan
was set up for maximum rotation and Lamp A switched state with Lamp B. In the end
(second 60), all the virtual devices were shutdown.

Table 8. Three-dimensional environment virtual devices: schedule-oriented control testing scenario.

Action Time (s) Request Output
Initialization 0 /out/D6-BB-99-92-99-3A/1/1 Off @ A
Initialization 0 /out/E1-8C-83-02-28-DD/1/1 Off @ B
Initialization 0 /out/1C-B2-89-0F-20-01/1/1 Off
Initialization 0 /out/A9-94-43-C9-EB-8C/1/1 Off -

Turn on display 1 /out/A9-94-43-C9-EB-8C/1/1 On D
Play DC video 1 /out/A9-94-43-C9-EB-8C/2/1 DC]
Turn on lamp A 1 /out/D6-BB-99-92-99-3A/1/1 On @ A
Set fan rotation to 1 1 /out/1C-B2-89-0F-20-01/1/1 Low
Play Marvel Video 30 /out/A9-94-43-C9-EB-8C/2/1 Marvel Fq
Set fan rotation to 3 38 /out/1C-B2-89-0F-20-01/1/1 Medium
Turn off lamp A 45 /out/D6-BB-99-92-99-3A/1/1 Off @ A
Turn on lamp B 45 /out/E1-8C-83-02-28-DD/1/1 On @ B
Turn off lamp B 60 /out/E1-8C-83-02-28-DD/1/1 Off @ B
Turn off fan 60 /out/1C-B2-89-0F-20-01/1/1 Off
Turn off display 60 /out/A9-94-43-C9-EB-8C/1/1 Off -

The different devices and respective variation states used in the 3D environment
testing scenario are depicted in Figure 10.

In both 2D and 3D approaches, important real-time visual insights were provided
after each event-based or schedule-driven state change associated to a given device,
which allowed us to confirm the proper functioning and usefulness of the proposed
prototyping software.

Additional tests were made to assess the system’s performance, in a computer charac-
terized by the following relevant specifications:

Processor: 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30 GHz 2.30 GHz;

Random Access Memory (RAM): 32 GB @ 2933 MHz SODIMM;

Graphic Card: NVIDIA GeForce RTX 3080, 16.0 GB GDDR6 RAM (Laptop edition);
Storage: 1 TB, 3500 MB/R, 3300 MB/W;

Operative System: Windows 10 Home 64 Bit.

Appl. Sci. 2021, 11, 8854 16 of 20

Figure 10. Three-dimensional actuators and sensors in action: the pair of lamps varying from turned off to on are represented
by (a,b) regards to the fan, in idle state and during rotation; finally, in (c), lies the display reproducing different content.

Regarding delays impacting in communications and considering that simulations run
within a local host environment, MQTT publishing to subscribed topics is instantaneous
(equal to or less than 1 ms). Moreover, substantial information on decentralized loT-related
protocols performance, several other studies—such as that found in [35]—are available.
Therefore, performance tests focusing both the system’s database and graphical component
were carried out. Firstly, timestamp-based monitorization for registrations and updates
of virtual devices states in a local Mongo database allowed to measure delays between
17-35 ms. Afterwards, graphical component tests were conducted, starting with the 2D
environment, in which a set of timers were implemented to measure delays in between
virtual devices state transitions. Figure 11 depicts the results, from which can be denoted a
correlation between the number of states that each device may assume, and the average
time required by it to consolidate a state switching.

2D environment performance data

300 5
3
250 4 E
"
200 o
«» 3 =
:
; 150 o
b~ 2%
100 g
S
. L =
=

0 0

Lamp Fan Temp. Sensor Motion Sensor
m Image size (KB)
wn Device state switching latency (ms)

== Number of possible device states

Figure 11. Two-dimensional environment performance results for each implemented virtual endpoint
(lamp, fan, as well as temperature and motion sensors). Bars represent both image sizes (KB)
and state switching latency (ms) per device, and the implicated axis is the left one. The line regards
to the number of possible states that each device may assume, with scale in the right-hand axis.

Appl. Sci. 2021, 11, 8854

17 of 20

Time (ms)
[N w sy w [~
o o o o o o o

o

The 3D environment was also assessed in terms of performance, as shown by Figure 12,
considering a couple of perspectives: (1) latency of a device while changing its state; and (2)
impact of diverse displays playing content at the same time, in terms of frames per second
(FPS). The left plot of Figure 12 shows the time required by the 3D endpoints to switch
their state, more specifically, for lamp and fan turning representations according to their
condition (power and rotation level) and for displays loading video content. Table 9 data
seem to point out that video transmission features influence the computational burden
during content loading, i.e., the higher the transmission rates are, the more time is needed
to load a video. At the right plot of Figure 12, which intends to show 1 vs. 10 displays’
performance impact, a slight performance increase can be noticed when the computational
burden is intensified (with the displays number extension). Such an observation may be
corroborated by the exceptional specifications of the graphic card in use that was clearly
above the demands, leaving space for a frame rate step up.

3D environment performance data 3D environment performance data
latency per state switching 1 display vs. 10 displays

Lamp/fan state
commutation

Display loading Marvel Display loading DC

70
69
68
67

66

65
) .
63

video video 1 Display 10 Displays

Number of FPS

Figure 12. Three-dimensional environment performance assessment: the left plot shows the time required for 3D endpoints

(lamp, fan and display) state switching, while in the one placed at the right, the performance impact (in FPS) of having a

single display running a video vs. 10 more of them in the same conditions is presented.

Table 9. Specifications of the videos used in the proposed IoT simulation tool.

Video Size (px) Data Transmission Rate Total Transmission Speed (bits) FPS
Marvel. mp4 1280 x 720 1208 kbps 1334 kbps 30
DC.mp4 1280 x 720 1942 kbps 2069 kbps 24

Overall, content switching seems to be faster in the 3D environment, in spite of the
higher complexity associated with this context. Such an observation can be explained by
the performances that characterize each adopted development technology. On the one
hand, as an interpreted programming language, Python (2D environment)—along with
Tkinter graphical user interface library—is a widely used cross-platform tool that, however,
suffers from known performance issues. On the other hand, Unity (3D environment)
works over .NET platform, which is natively interfaced by Windows (10) operative system,
and deploys target-oriented compiled solutions with, usually, better execution times than
similar applications resulting from interpreted programming languages.

The next section draws the main conclusions and makes a few recommendations for
continuing this work in the near future.

5. Conclusions and Future Work

Mulsemedia setups can be considered as a unique combination of hardware, software
and contents made available in given geographic and social contexts with the purpose to

Appl. Sci. 2021, 11, 8854 18 of 20

deliver sensory-aware experiences. Each can also be regarded as a work in progress as they
should evolve and interact differently through time, to retain visitors’ engagement.

However, to design, maintain and modify mulsemedia setups requires a team effort
and is usually done by specialized companies. Often, scheduled and emergency main-
tenance operations must be made in loco. These costs can be significant and represent a
deterrent for mulsemedia setups owners to keep their experiences in perfect working order,
but mainly to change them and update contents.

This paper proposes a prototyping software to enable IoT mulsemedia environments
simulation, based on virtual environments that enable the design, configuration, mainte-
nance and update of experiences regardless of software and hardware used. Two virtual
environments were created and tested, demonstrating success. The prototyping software is
currently being used by a multimedia company that manages several mulsemedia setups
both nationally and internationally. It is noteworthy that rather than competing with exist-
ing solutions developed with similar purposes (e.g., [28,32]), the proposed system intends
to provide an alternative agnostic approach to simulate IoT environments before their
deployment, privileging quick planning strategies for arranging mulsemedia setups, being
more flexible to programmers, and capable of being extended with digital twin features for
the management of actual infrastructures, supported by more intuitive interfaces.

Future work will, thus, address the extension of this solution to real environments,
exploring concepts of digital twinning for remote control and supervision of IoT setups
with enhanced levels of interaction engagement, as well as cost-effective maintenance,
pursuing a multi-context platform for a wide variety of applications, ranging from business-
to-business (to-customer) commercial transaction models to Industry 5.0-related challenges.

Author Contributions: Conceptualization, T.A. and E.P; data curation, T.A. and T.P,; formal analysis,
L.GM.,, E.P. and]].S.; funding acquisition, E.P,; investigation, T.A., T.P. and L.P.; methodology, T.A,
T.P. and E.P; project administration, E.P,; resources, T.A. and E.P,; software, T.A. and T.P,; supervision,
E.P. and L.G.M,; validation, T.P,, E.P. and L.G.M,; visualization, T.A., T.P. and L.P.; writing—original
draft, T A., T.P. and E.P.,; writing—review and editing, E.P., L.G.M., L.P. and].].S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was financed by project “CHIC—Cooperative Holistic View on Internet and Con-
tent” (N° 24498), financed the European Regional Development Fund (ERDF) through COMPETE2020
—the Operational Programme for Competitiveness and Internationalisation (OPCI).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Coelho, P. Internet Das Coisas-Introdugao Pratica, 1st ed.; FCA-Editora de Informatica: Lisboa, Portugal, 2017; ISBN 978-972-722-849-2.

2. Morais, R;; Silva, N.; Mendes, J.; Adao, T.; Padua, L.; Lopez-Riquelme, J.A.; Pavon-Pulido, N.; Sousa,].J.; Peres, E. mySense:
A comprehensive data management environment to improve precision agriculture practices. Comput. Electron. Agric. 2019, 162,
882-894. [CrossRef]

3. Muhammad, K,; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, S.W. Secure Surveillance Framework for IoT Systems Using
Probabilistic Image Encryption. IEEE Trans. Ind. Inform. 2018, 14, 3679-3689. [CrossRef]

4. Mehmood, Y.; Ahmad, F; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances
and Challenges. IEEE Commun. Mag. 2017, 55, 16-24. [CrossRef]

5. Nauman, A.; Qadri, Y.A.; Amjad, M.; Bin Zikria, Y.; Afzal, M.K.; Kim, S.W. Multimedia Internet of Things: A Comprehensive
Survey. IEEE Access 2020, 8, 8202-8250. [CrossRef]

6. Jalal, L.; Popescu, V.; Murroni, M. IoT Architecture for Multisensorial Media. In Proceedings of the 2017 IEEE URUCON,
Montevideo, Uruguay, 23-25 October 2017; pp. 1-4.

7. Almajali, S.; Abou-Tair, D.E.D.L; Salameh, H.B.; Ayyash, M.; Elgala, H. A distributed multi-layer MEC-cloud architecture for
processing large scale IoT-based multimedia applications. Multimed. Tools Appl. 2019, 78, 24617-24638. [CrossRef]

8. Salameh, H.A.B.; Almajali, S.; Ayyash, M.; Elgala, H. Spectrum Assignment in Cognitive Radio Networks for Internet-of-Things
Delay-Sensitive Applications Under Jamming Attacks. IEEE Internet Things]. 2018, 5, 1904-1913. [CrossRef]

9. Nordrum, A. The internet of fewer things [News]. IEEE Spectr. 2016, 53, 12-13. [CrossRef]

http://doi.org/10.1016/j.compag.2019.05.028
http://doi.org/10.1109/TII.2018.2791944
http://doi.org/10.1109/MCOM.2017.1600514
http://doi.org/10.1109/ACCESS.2020.2964280
http://doi.org/10.1007/s11042-018-7049-3
http://doi.org/10.1109/JIOT.2018.2817339
http://doi.org/10.1109/MSPEC.2016.7572524

Appl. Sci. 2021, 11, 8854 19 of 20

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Alvi, S.A.; Afzal, B.; Shah, G.A.; Atzori, L.; Mahmood, W. Internet of multimedia things: Vision and challenges. Ad Hoc Netw.
2015, 33, 87-111. [CrossRef]

Kaeri, Y.; Moulin, C.; Sugawara, K.; Manabe, Y. Agent-Based System Architecture Supporting Remote Collaboration via an
Internet of Multimedia Things Approach. IEEE Access 2018, 6, 17067-17079. [CrossRef]

Rego, A.; Canovas, A.; Jimenez,].M.; Lloret,]. An Intelligent System for Video Surveillance in IoT Environments. IEEE Access
2018, 6, 31580-31598. [CrossRef]

Rahman, M.A.; Hossain, M.S.; Hassanain, E.; Muhammad, G. Semantic Multimedia Fog Computing and IoT Environment:
Sustainability Perspective. IEEE Commun. Mag. 2018, 56, 80-87. [CrossRef]

Seng, K.P.; Ang, L. A Big Data Layered Architecture and Functional Units for the Multimedia Internet of Things. IEEE Trans.
Multi-Scale Comput. Syst. 2018, 4, 500-512. [CrossRef]

Zhou, L.; Chao, H. Multimedia traffic security architecture for the internet of things. IEEE Netw. 2011, 25, 35-40. [CrossRef]
Goel, D.; Pahal, N.; Jain, P.; Chaudhury, S. An Ontology-Driven Context Aware Framework for Smart Traffic Monitoring.
In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14-16 July 2017; pp. 1-5.

Parizi, R.M.; Dehghantanha, A.; Choo, K.R. Towards Better Ocular Recognition for Secure Real-World Applications. In Proceedings
of the 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1-3 August 2018;
pp. 277-282.

Sornalatha, K.; Kavitha, V.R. IoT Based Smart Museum Using Bluetooth Low Energy. In Proceedings of the 2017 Third International
Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India,
27-28 February 2017; pp. 520-523.

De La Borbolla, I.R.; Chicoskie, M.; Tinnell, T. Applying the Internet of Things (IoT) to biomedical development for surgical
research and healthcare professional training. In Proceedings of the 2017 IEEE Technology & Engineering Management Conference
(TEMSCON), Santa Clara, CA, USA, 8-10 June 2017; pp. 335-341.

Poluan, S.E.R; Chen, Y.-A. A Framework for a Multisensory IoT System Based on Service-Oriented Architecture. In Proceedings
of the 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS), Daegu, Korea, 22-25 September
2020; pp. 369-372.

Rahman, M.A; Rashid, M.; Barnes, S.; Hossain, M.S.; Hassanain, E.; Guizani, M. An IoT and Blockchain-Based Multi-Sensory
In-Home Quality of Life Framework for Cancer Patients. In Proceedings of the 2019 15th International Wireless Communications
Mobile Computing Conference IWCMC), Tangier, Morocco, 24-28 June 2019; pp. 2116-2121.

Garzotto, F; Gelsomini, M.; Gianotti, M.; Riccardi, F. Engaging Children with Neurodevelopmental Disorder through Multisensory
Interactive Experiences in a Smart Space. In Social Internet of Things; Soro, A., Brereton, M., Roe, P., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 167-184. ISBN 978-3-319-94659-7.

Gelsomini, M.; Cosentino, G.; Spitale, M.; Gianotti, M.; Fisicaro, D.; Leonardi, G.; Riccardi, F; Piselli, A.; Beccaluva, E,;
Bonadies, B.; et al. Magika, a Multisensory Environment for Play, Education and Inclusion. In Proceedings of the Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4-9 May 2019; ACM:
New York, NY, USA; pp. 1-6.

Striner, A. Can Multisensory Cues in VR Help Train Pattern Recognition to Citizen Scientists? arXiv 2018, arXiv:1804.00229.
Pelet, J.-E.; Lick, E.; Taieb, B. Internet of Things and Artificial Intelligence in the Hotel Industry: Which Opportunities and
Threats for Sensory Marketing? In Proceedings of the International Conference on Research on National Brand and Private Label
Marketing, Granada, Spain, 1 May 2019.

Covaci, A.; Zou, L,; Tal, I.; Muntean, G.-M.; Ghinea, G. Is Multimedia Multisensorial? A Review of Mulsemedia Systems. ACM
Comput. Surv. 2019, 51, 1-35. [CrossRef]

D’Angelo, G.; Ferretti, S.; Ghini, V. Simulation of the Internet of Things. In Proceedings of the 2016 International Conference on
High Performance Computing Simulation (HPCS), Innsbruck, Austria, 18-22 July 2016; pp. 1-8.

Haris, I.; Bisanovic, V.; Wally, B.; Rausch, T.; Ratasich, D.; Dustdar, S.; Kappel, G.; Grosu, R. Sensyml: Simulation Environment
for Large-Scale IoT Applications. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics
Society, Lisbon, Portugal, 14-17 October 2019; Volume 1, pp. 3024-3030.

Zeng, X.; Garg, S.K; Strazdins, P.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for analysing IoT
applications. J. Syst. Arch. 2017, 72, 93-107. [CrossRef]

Calheiros, R.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F,; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23-50. [CrossRef]
Ahmad, S.; Mehmood, F; Mehmood, A.; Kim, D. Design and Implementation of Decoupled IoT Application Store: A Novel
Prototype for Virtual Objects Sharing and Discovery. Electronics 2019, 8, 285. [CrossRef]

Han, S.N.; Lee, G.M.; Crespi, N.; Van Luong, N.; Heo, K.; Brut, M.; Gatellier, P. DPWSim: A Devices Profile for Web Services
(DPWS) Simulator. IEEE Internet Things]. 2015, 2, 221-229. [CrossRef]

Alce, G.; Ternblad, E.-M.; Wallergard, M. Design and Evaluation of Three Interaction Models for Manipulating Internet of
Things (IoT) Devices in Virtual Reality. In Human-Computer Interaction—INTERACT 2019, Proceedings of the Human-Computer
Interaction—INTERACT 2019, Paphos, Cyprus, 2—6 September 2019; Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M.,
Zaphiris, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 267-286.

http://doi.org/10.1016/j.adhoc.2015.04.006
http://doi.org/10.1109/ACCESS.2018.2796307
http://doi.org/10.1109/ACCESS.2018.2842034
http://doi.org/10.1109/MCOM.2018.1700907
http://doi.org/10.1109/TMSCS.2018.2886843
http://doi.org/10.1109/MNET.2011.5772059
http://doi.org/10.1145/3233774
http://doi.org/10.1016/j.sysarc.2016.06.008
http://doi.org/10.1002/spe.995
http://doi.org/10.3390/electronics8030285
http://doi.org/10.1109/JIOT.2014.2388131

Appl. Sci. 2021, 11, 8854 20 0f 20

34. Hassija, V.; Chamola, V,; Saxena, V.; Jain, D.; Goyal, P,; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures. IEEE Access 2019, 7, 82721-82743. [CrossRef]

35. Mishra, B. Performance Evaluation of MQTT Broker Servers. In Computational Science and Its Applications—ICCSA 2018, Proceedings
of the Computational Science and Its Applications—ICCSA 2018, Melbourne, VIC, Australia, 2-5 July 2018; Gervasi, O., Murgante, B.,
Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International
Publishing: Cham, Switzerland, 2018; pp. 599-609.

http://doi.org/10.1109/ACCESS.2019.2924045

	Introduction
	Prototyping Software Architecture
	IoT Server
	Virtual Environment
	IoT Server/Virtual Environment Communication

	IoT Mulsemedia Environments Prototyping Software
	MQTT Enhanced Web-Based Application
	Virtual Environment

	Results
	Testing Scenario 1: 2D Virtual Environment Schedule-Oriented Behavior Modelling
	Testing Scenario 2: 3D Things’ Virtual Environment

	Conclusions and Future Work
	References

