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Abstract: This paper presents an innovative Mechatronic Concurrent Design procedure to address
multidisciplinary issues in Mechatronics systems that can concurrently include traditional and new
aspects. This approach considers multiple criteria and design variables such as mechanical aspects,
control issues, and task-oriented features to formulate a concurrent design optimization problem that
is solved using but not limited to heuristic algorithms. Furthermore, as an innovation, this procedure
address all considered aspects in one step instead of multiple sequential stages. Finally, this work
discusses an example referring to Mechatronic Design to show the procedure performed and the
results show its capability.

Keywords: mechatronics; design criteria; multi-objective optimization

1. Introduction

Mechatronics and Robotics are well-established engineering disciplines that were
conceived as the integration of electronics and computing science with mechanical design.
Currently, these disciplines are required to develop systems capable of dealing with com-
plex tasks while improving system performance. Moreover, given current technological
advances and the growth of system-level concepts, engineering design can consider new
procedures to fulfill integration among all its components [1].

The integration of combined mechanical design and control optimization received
attention from engineers and researchers to investigate and develop novel strategies.
A concurrent design approach that worked on the improvement of the mechanical design
toward reducing the complexity of a controller was proposed in [2], where the objective
function was chosen to reduce the shaking force/moment. An extended version of this
procedure is presented in [3], where the Design for Control (DFC) approach is introduced.
DFC describes the importance of the simultaneous design of a controller and the mechanical
subsystems. Robust design with robust control in [4] investigates the coupling between the
mechanical system and control strategies for an electric DC motor using an optimization
approach. A nested optimization scheme is described in [5] to solve the integrated design
problem of mechanical and control of the motor driving system.

Two of the critical issues that guide the research in considering multiple aspects are
reduction of energy consumption [6] and precision when developing a task [7]. In this
context, a significant number of different approaches have addressed mainly these two
problems by optimizing hardware, software, or a combination of these two. Hardware
solutions involve a mechanical design to develop lightweight systems [8] and balanced
multi-body systems with the aim of facilitating a control design algorithm. Software
solutions deal with operation scheduling [9], operation control based on energy consump-
tion [10] and accuracy [11]. Hardware and Software integration can be described as an
initial step toward a use of dynamic models and suitable controls to include dynamics of a
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system as for example in [12]. Moreover, an example of optimal concurrent formulation
of mechanical characteristics and control strategies is presented in [13] by formulating a
design problem as an optimization problem and solving it with both gradient-based and
heuristic approaches. However, the concurrent consideration of multi-criteria aspects in
the design of a synergistic combination of hardware and software can still be improved.

The research and inclusion of multiple criteria are also topics of interest in mechatronic
design. For example, the Mechatronic Design Quotient (MDQ) is a multi-criteria index
that presents a systematic methodology for mechatronic design [14]. This methodology
considers seven main criteria: meeting the task requirements, component matching, ef-
ficiency, intelligence, reliability, controller friendliness, and cost. However, it performs
the optimization process in two distinct stages to overcome numerical issues and require
expert intervention when switching from these two stages. Concurrent optimization of the
mechanical characteristics, control strategies, and selection of actuators is carried in [15]
for industrial robots considering multiple criteria. Criteria considering workspace volume,
manipulator dexterity, static efficiency, and stiffness are chosen to design the geometrical
parameters of the mechanism for a robotic leg in [16].

As described above with different applications [2–16], there are several examples
in the literature on integrating only traditional aspects in mechatronic design. However,
they address the design problem across multiple stages that require user interaction to
switch from one stage to another. Moreover, examples in the literature do not describe a
procedure of formulating the problem from user requirements. Therefore, an intervention
of a design expert is necessary in more than one stage. Some examples from the literature
also show specific examples of merging those stages. However, they do not present how to
extend that approach to other applications as a general formulation. This paper aims to
introduce a Mechatronic Concurrent Design (MCD) procedure for mechatronic systems
considering multiple criteria from traditional and recent aspects in a concurrent way
to formulate a design problem as a constrained multi-objective optimization problem.
This approach allows combining traditional and new aspects from different fields in one
common representation that can be described as an upper-level interconnection of different
subsystems. MCD is presented as a general formulation considering user requirements
until the obtainment of a solution based on the abstraction of interconnected subsystems.
The novelty of the proposed procedure is in an integration of multiple design stages in
only one step. Furthermore, the main goal is to consider criteria from different areas of
engineering in a concurrent way for a synergistic combination of hardware and software
components. It also considers a heuristic-based approach to solve the formulated problem.
However, different types of solvers can also be applied.

The following sections describe the steps to formulate a design problem using the
MCD procedure. Section 2 describes the interpretation of user needs and expectations to
characteristics and requirements of the procedure. Section 3 presents the traditional and
new aspects that can be considered in the design problem and criteria evaluation. Section
4 presents the formulation of the procedure as a multi-objective optimization problem.
Section 5 describes how to address the optimization problem using a heuristic approach.
Finally, an example is discussed in Section 6 to show the procedure’s capability with the
synergistic integration of a mechatronic system.

2. Characteristics and Requirements

Design requirements are based on non-technical needs and expectations of a user,
and they are often formulated in non-technical terms. Engineers and researchers identify
those requirements in a design process and describe them using mathematical models.
Figure 1 shows a scheme for interpreting and classifying user design requirements into
specific topics that can be modeled mathematically. It also introduces the concept of
strict and soft design requirements according to user description. This classification is not
unique and must be adapted to specific characteristics of design problems by considering
fundamental aspects of engineering, as pointed out in [17].
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Figure 1. A scheme for modeling design requirements.

In an initial design stage, engineers will focus on solving strict design requirements
related to user needs. Therefore, these requirements must be formulated properly so that a
design procedure guarantees that they can be fulfilled. Strict design requirements will be
selected to produce a feasible device that can be manufactured. Once it is feasible to be
built, it also must be capable of doing the task that a user requires. For this reason, the first
classification on the left side of Figure 1 is for obtaining a feasible and working device.

A first approach to formulate strict design requirements is by using inequality con-
straints. This approach can be applied directly to design parameters to bound them within
practical upper and lower limits or indirectly by defining constraint functions in terms of
the design parameters. In some cases, it is crucial to consider strong constraints to describe
well-defined design prescriptions, and they can be formulated as equality constraints. For ex-
ample, some mechanical aspects that are frequently described using equality or inequality
constraints are related to stress, displacement, workspace, and mobility conditions.

On the other hand, soft design requirements in the right side of the scheme presented
in Figure 1, are related to user expectations that are based on the system’s desired behavior
or performance. These requirements can be adjusted not only according to different
applications but also they can change as the development of the design process evolves.
In some cases, different user expectations are dependent of each other, and as a consequence,
they can be described using a single expression. However, in general, these requirements
can compromise with each other. This characteristic means that an improvement of one user
expectation can negatively affect another user expectation. For this reason, a formulation
for soft design requirements must be flexible enough to consider the trade-off among
different user expectations.

Soft design requirements can be formulated using functions in terms of design param-
eters to evaluate desired criteria and constraints. It is possible to calculate a performance
index for each selected criterion and to compare the results from all the computed solu-
tions to select the best one. Some of the soft design requirements can be related to user
expectations as for example reduction of energy consumption, increase of system perfor-
mance, reduction of number of components, increase of safety, reduction of used materials,
simplification of manufacturing process, and improvement of design cost, production,
and operation.

From this context, the herein presented Mechatronic Concurrent Design procedure is
based on a formulation of a design problem as a constrained multi-objective optimization
problem. This approach can consider conveniently multidisciplinary aspects to provide
a synergistic combination of solutions for the involved design requirements. User needs
and expectations must guide a design process in Mechatronics. However, the influence
of the user’s expectations can be limited by a set of constraints coming from a specific
design problem.

The next sections describe in detail the formulation of the herein proposed procedure
in terms of mechatronic criteria and representation of the design problem as a constrained
multi-objective optimization problem.
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3. Design Problem and Criteria Evaluation

In the frame of Mechatronics Design, multiple criteria can be considered from different
fields of engineering. It is essential to consider these criteria concurrently since all the hard-
ware and software components interact in a successful mechatronic operation. Therefore,
software and hardware components must work together in an integrated configuration that
can be identified as a result of the following design procedure. Figure 2 shows a conceptual
scheme that includes but is not limited to the presented topics from different fields for a
general formulation of a design problem in Mechatronics. This figure includes the main
traditional aspects of a mechatronic system and some emerging topics of the last years.

It is well recognized that mechanical aspects, control algorithms, and sensing are
part of a mechatronic system. However, criteria from other fields can be included in the
development of a final product such as finite element analysis (FEA), motion simulations
aided by computers (CAD), ergonomics, manufacturing, energy consumption, and power
supply considerations. Collaboration and communication of different mechatronic systems
demand the inclusion of criteria coming from topics such as Artificial Intelligence (AI),
Internet of Things (IoT), and cognitive sensing.

Figure 2. A scheme for conceptual design problem in Mechatronics.

All the aspects mentioned above in a conceptual design can be composed of several
subtopics to express specific criteria. Table 1 lists some components of four traditional
main aspects in Figure 2, where each one can be formulated using specific approaches.
As an illustration of this situation, the mechanical topology aspect of a system, listed in
Table 1, can be addressed by four different approaches as pointed out in [18], which are
methods based on screw theory, methods based on the algebra structure of Lie group and
the displacement sub-manifold, methods based on the theory of linear transformations and
evolutionary morphology, and methods based on position-oriented-characteristic equations.
These approaches focus on describing and on obtaining a solution of three aspects: number
and type of pairs such as prismatic or revolute joints, number and type of links such as
binary or ternary links, and connection relations between these two components. A specific
research line has been addressing the development of topology applications. For example,
in [19] with a topology synthesis procedure to provide a complete atlas, in [20] with a
description of topology and kinematics of mechanisms to address topology synthesis and
particularization of a solution automatically, and in [21] with simultaneous shape and
topology optimization for planar mechanisms.

Control issues in Table 1 is another example of the variety of criteria formulation
used in different methods for mechatronic systems control. Recent research in control
theory focuses on the use of modern algorithms to compensate for the non-linearity of
controlled system and robustness to deal with uncertainties as in [22], or the combination
of different approaches to improve its performance such as in [23] with the use of passivity-
based control formulation and PID controllers to strengthen the energy shaping function
of mechanical systems. The main issue associated with the use of an independent PID
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controller design is the tuning of proper parameters where it becomes a difficult task
if the plant to be controlled exhibits nonlinear behavior as described in [24]. However,
the implementation of PID controllers is still used extensively.

Sensing and task-oriented features in Table 1, as well as other topics, pointed out in
Figure 2 can be included in a mechatronic design using a specific formulation for those
criteria. However, these criteria are usually considered independently without taking into
account the interaction with the other aspects. One way to consider all possible impli-
cations among different criteria of mechatronic design is to formulate a design problem
as a constrained multi-objective optimization problem. Figure 3 shows a scheme of the
elements that can be taken into account to formulate a design problem as an optimization
problem. There are two main aspects to be considered in a problem modeling procedure,
which are design requirements, as illustrated in Figure 1 and design criteria as showed
in Figure 2. These two aspects are considered to formulate the constraints, design vari-
ables, and objective functions, which are the components of a constrained multi-objective
optimization problem.

Table 1. Main topics for mechatronic systems in Figure 2.

Area Mechanical Aspects Control Issues Sensing Task Oriented Features

Type/Topology Error dynamics Force Grasping

Kinematics Controller performance Position Robot–Robot cooperation

Dynamics Energy consumption Current Human–Robot cooperation

Actuator sizing Parameter calibration Voltage Path planning

Topic

FEA analysis State estimation Temperature Velocity tracking

Design variables in Figure 3 are the system parameters to be obtained as a result of
the design procedure application. These parameters affect the behavior of a mechatronic
system, so they are selected to ensure system response with the desired behavior. Most of
them can only be modified in the design process, while some others can be adjusted when
the system performs a desired task. For example, parameters for the sizing of a system
vary while the design procedure takes place, but they are fixed when a solution is obtained.
In contrast, design variables such as control algorithm parameters can be modified after
the design procedure has finished making a fine-tune for the operation of a task.

Figure 3. A scheme of aspects for a multi-criteria design formulation.

It is essential to identify the strict design requirements presented in Figure 1 so that
they are formulated in the problem modeling stage of Figure 3 mainly as constraints of the
optimization problem to guarantee that they can be fulfilled. Therefore, strict design re-
quirements are mainly part of variable bounds and constraint functions. On the other hand,
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the problem modeling of objective functions is done by considering mainly the soft design
requirements and design criteria. This classification of design requirements contributes
to facilitating the modeling process to formulate a specific constrained multi-objective
optimization problem that adequately represents a design problem in mechatronics. For ex-
ample, two different approaches to classify and to formulate the energy consumption
criterion listed in Table 1 are the consideration of an unlimited power supply or a limited
one. In the first case, it is required to develop a repetitive task accurately. However, the user
requires to reduce energy consumption since this task is carried out for long periods. In this
example, energy consumption is considered a soft design requirement, while the error
criterion is a strict design requirement. In the second case, a user may require that the
system fulfill a minimum autonomous time of functionality. In contrast to the first example,
the energy consumption criterion is formulated as a strict design requirement. Neverthe-
less, the Mechatronic Concurrent Design procedure guarantees to obtain solutions with
different compromises, among other criteria. All of them are feasible solutions that satisfy
the strict design requirements to develop a required task, and to select one solution that
fulfills user expectations.

The computation strategy of the proposed Mechatronic Concurrent Design procedure
is represented in the scheme of Figure 4. This procedure starts with the establishment of
specifications of strict and soft design requirements, as shown in Figure 1. Then, a formula-
tion of the design problem is carried out as described in Figure 3 to consider criteria from
traditional and recent aspects presented in Figure 2.

Figure 4. A scheme for a Mechatronic Concurrent Design procedure using concepts in Figures 1–3.
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The next stage in Figure 4 is the application of a solver to a constrained multi-objective
optimization problem. The implemented numerical solver is independent of the problem
formulation. Nevertheless, it is also an essential element of the Mechatronic Concurrent
Design procedure since its functional operation is closely related to the formulated op-
timization problem’s characteristics. The next step in Figure 4 is the application of a
decision-maker to finally point out a specific solution that satisfies user expectations. This
decision-maker can be configured before the execution of the solver to identify an optimal
solution automatically. However, exploring different trade-offs among objective functions
in a design problem leads to identify a proper configuration of the decision-maker. Once
the solver finishes, the result is a set of optimal solutions that represent the best trade-off
among all the formulated objective functions where all of them satisfy the problem con-
straints associated with the modeling of strict design requirements. After the execution
of a solver, the decision-maker helps the user to identify a compromise among objective
functions associated with soft design requirements by searching into the set of solutions
already obtained.

4. Formulation of Multi-Objective Design Problem

The conceptual scheme in Figure 4 represents a general structure for a formulation of
a constrained multi-objective optimization problem within the framework of Mechatronic
Concurrent Design that can be expressed in the form

min
p∈Rq Φ(x, P, t) = [Φ1, Φ2, . . . , Φm]

T (1)

with

Φi =
∫ t f

t0

Fi(x, P, t) dt, i = 1, 2, . . . , m (2)

x = [x1, x2, . . . , xn]
T x ∈ Rn (3)

P = [p1, p2, . . . , pq]
T P ∈ Rq (4)

subject to

G(x, P, t) ≤ 0 G ∈ Rr (5)

H(x, P, t) = 0 H ∈ Rs (s < q) (6)

pL
j ≤ pj ≤ pU

j j = 1, 2, . . . , q (7)

and by the system characteristics

ẋ = f (x(u, P, t), u(P, t), P, t) (8)

x(t0) = x0 (9)

where Φ is the objective function vector and its components; Φm is the mth objective
function of a selected criterion; t is the time variable; t0 is the initial time and t f is the final
time of the operation range to be considered for a system evaluation; Fi is a function of a
performance criterion in terms of equations of motion, parameters and time variable; x is
the state-space vector of a dynamic model of a mechatronic system under design with n
state variables; P is the design vector with q design parameters; G is the vector of inequality
constraints with r elements; H is the vector of equality constraints with s elements; pL

j

and pU
j are the lower and upper bounds of the jth design parameter; ẋ is the gradient

state-space vector; x0 is the initial condition vector of the dynamic model; and u is the
signal control vector.

Figure 5 illustrates a representation of the mathematical formulation with Equations
(1)–(9) for those cases that can be represented graphically. In general, there are two main
spaces for the formulation of an optimization problem, the decision or parameter space,
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and the search space, also called as the objective space. A design vector P contains all
the design parameters such as dimensions, masses, control parameters, and operation
measurements. The parameter space, labeled as A in Figure 5 is defined by the bounds of
design variables in Equation (7).

Multi-objective

Single-objective

Pareto
front

Φ1

Φ2

Φ1

Φ2

Φ3

pi

B
A

C

C

C

Best point

B ⊆ A

P = {p1, . . . , pq}

Φ(1)

Figure 5. A scheme for a graphical representation of the optimization problem in terms of: (A) pa-
rameters space in Equation (7); (B) feasible space in Equations (5)–(9); and (C) objective space in
Equation (1).

The feasible space labeled as B in Figure 5, corresponds to all P candidate vectors that
satisfy constraints described in Equations (5)–(9), which represent strict design require-
ments. Inequality constraints G in Equation (5) delimits larger regions in the feasible space,
and some examples of this type of constraints in a mechatronic design are associated with
kinematic characteristics, working operation regions, and limiting conditions. Equality
constraints H in Equation (6) describe strict requirements and can represent for example
mobility conditions in a design problem. The system’s characteristics are described with
a dynamic model in Equation (8) and its initial conditions in Equation (9) which also
constrains the optimization problem. The state variables of this dynamic model represent,
for example, position, velocity, acceleration, electrical current, or voltage characteristics.
The dynamic model is affected by design parameters and inputs for actuators where the
signal control vector u is a function in terms of design parameters. In this case, those
parameters represent the gains of a selected control algorithm. Elements of the subset B are
solutions that fulfill the strict design requirements formulated as in Figure 3.

The objective function space, labeled as C in Figure 5, corresponds to Φ1 : P ∈ Rq →
R1, . . . , Φm : P ∈ Rq → R1 which maps a decision space P in Rm. It is convenient to
formulate Φi as a convex function by using a square form of Fi before integrating this value
within a numerical procedure. This step does not imply necessarily that the optimization
problem will be convex after considering the constraints as pointed in [25]. The mapping
evaluation from a decision space to an objective space only takes place when a candidate
solution fulfills all the constraints in Equations (5)–(9).

There are several approaches to order the elements of the search space but the concept
of Pareto dominance is of fundamental importance for multi-objective optimization, as it
allows us to compare two solutions without adding any additional information as described
in [26]. Then, solutions in the search space are ordered using the Pareto approach where
given two vectors in the objective space, that is Φ(1) ∈ Rm and Φ(2) ∈ Rm, then the point
Φ(1) is said to Pareto dominate the point Φ(2) if and only if ∀j ∈ {1, . . . , m} : Φ

(1)
j ≤ Φ

(2)
j
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and ∃k ∈ {1, . . . , m} : Φ
(1)
k ≤ Φ

(2)
k . This means that one objective function value can not

be improved without degrading the value of another objective function. Figure 5 shows
a Pareto dominance region of the vector Φ(1) as represented in a 2D search space using a
darker color. Therefore, the best trade-off among different criteria corresponds to solutions
that are part of the Pareto front.

In summary, a design problem in the frame of Mechatronics can be formulated as a
constrained multi-objective optimization problem using the proposed Mechatronic Con-
current Design procedure in terms of Equations (1)–(9). This approach provides a feasible
way to consider strict and soft design requirements of a system under design as functions
of optimality criteria, likewise referring to the general concepts in Figures 1–4, considering
not only traditional mechatronic aspects.

5. Issues for Numerical Solutions

In general, numerical solving techniques are independent of the formulation of an
optimization problem. However, a proper solver to address an optimization problem can
be closely related to its characteristics in such a way that the structure of an optimization
problem can suggest convenient solving algorithms.

Deterministic approaches that are based on gradient calculations impose rigorous
conditions over a mathematical formulation structure, so the original problem might
be reformulated for a convenient representation to apply a specific numerical solving
technique as described in [27]. The main advantage of a deterministic solver is that once all
algorithm requirements are fulfilled, it is possible to guarantee a locally optimal solution.
Another option is the use of a heuristic technique that does not require any reformulation
and can be applied directly to the formulated problem [28].

There are multiple options to select a solver algorithm that can fit an optimization
problem structure. The development of new algorithms is still a topic of interest, as pointed
out in [28]. This work uses the Differential Evolution (DE) algorithm proposed in [29]
along with the feasibility rules by Deb as a constraint manager [30], and the use of Pareto-
dominance approach for solving the presented optimization problem. This research se-
lected DE as a first option because it is a popular heuristic algorithm extensively treated
in the literature and is an excellent alternative to solve optimization problems formulated
from real-world design problems described in [31]. However, other heuristic algorithms
or any combination with gradient-based algorithms can be used to solve the optimization
problem. Among other advantages, DE has a a few parameters compared to other heuristic
algorithms and its implementation is fairly simple.

DE heuristic algorithm is a continuous stochastic search method that is based on
evolution strategies [29]. The implementation of this heuristic method is represented with a
scheme in Figure 6 and a detailed computation routine is shown in Algorithm 1. An initial
population is generated using a uniform random distribution within the bounds that are
described in Equation (7) or within the parameter space A as in Figure 5, where the elements
of the generated candidates correspond to the design variables. The external memory data
base (EMdb) corresponds to a variable that stores all the feasible non-dominated solutions,
which this data base is initialized with an empty value. The next step is to evaluate all the
initial population candidates in the objective functions, inequality, and equality constraints
of Equations (1)–(7).

The crowding distance of an arbitrary point in the search space’s domain corresponds
to an estimation of the distance from the nearest neighbors along each of the objectives
to measure the population’s density. The higher the crowding distance, the higher is
its isolation. Therefore, when the crowding criterion in Figure 6 is active, the algorithm
prioritize the search around isolated solutions to raise the number of candidates, as pointed
out in [28]. A crowding criterion selects the percentage of the total number of iterations
computed using individuals from the current population or EMdb. Therefore, a crowding
parameter (DECRW) tunes the algorithm’s behavior to explore the search space or to exploit
the search near to a found candidate that remains distant from other found solutions.
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DE algorithm is based on the use of two operators, which are the mutation and
crossover. These two operators are used to search in the parameter space, and they are
applied for every design variable. The Crossover operator in Figure 6 determines the
probability of selecting a value that can be computed using the mutation operator or the
value from a previous iteration as in line 15 of the pseudo-code in Algorithm 1. In particular,
a crossover value close to 1 indicates a higher probability of considering the value from a
mutation process, and a value close to zero indicates a higher probability of using values
from the previous iteration. A crossover parameter is compared against a value from a
continuous random distribution between one and zero. Additionally, a discrete uniform
distribution can be used to guarantee that at least one component is different from the
previous vector. The mutation operator in Figure 6 is used after selecting three different
candidates from a population in line 16 of Algorithm 1, which defines a search direction
and a step size to move in that direction. DE operators are controlled by the crossover
parameter as (DECR ∈ [0, 1]) and the mutation parameter as (DEF ∈ [0, 1]). A crossover
parameter can be selected at the beginning of execution and remains constant while the
mutation factor is selected randomly for every design variable.

Initialize
population and

EMdb

Mutation

Crossover

Itmax

End

y

n

Evaluate
Φ, G y H
using xi

Evaluate
Φ, G y H
using viCrowding

criterion

yn

Select from
population
Select from
population

Select from
EMdb

Verify Pareto
dominance

Figure 6. A flowchart of a DE implemented algorithm.
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Algorithm 1: Pseudo code of a multi-objective DE implementation.

1 It = 0
2 Initialize the external memory ItEMdb = ∅
3 create a random initial population Itxi ∀i = 1, ...NI
4 evaluate objective functions ItΦ = Φ(Itxi)

5 evaluate constraints ItG = G(Itxi)
6 evaluate non-dominated rules in search of feasible-non-dominated solutions to add to the

EMdb
7 for It := 1 to Itmax do
8 for i := 1 to NI do
9 if DECRW Itmax > It & ItEMdb ≥ 3 then

10 select from ItEMdb the three individuals with higher crowding value
{r1 6= r2 6= r3}

11 else
12 select randomly {r1 6= r2 6= r3} from current population
13 end
14 for j := 1 to NV do
15 if U(0, 1) < DECR ‖ j = U{0, NI} then
16 It+1vij =

It xr1 j + DEF(
Itxr2 j −It xr3 j)

17 else
18 It+1vij =

It−1 xij

19 end
20 end
21 evaluate objective functions ItΦ = Φ(Itvi)

22 evaluate constraints ItG = G(Itvi)
23 evaluate non-dominated rules in search of feasible-non-dominated solutions to add

to the EMdb
24 end
25 verify non-dominance among existing feasible-non-dominated solutions and recent

added candidates in the EMdb
26 end

Once the candidates of a population are generated according to the DE algorithm
approach, all the candidates are evaluated using objective functions, inequality, and equality
constraints of Equations (1)–(7). The last computations in Figure 6 are executed to verify
the Pareto dominance of the candidates versus the current population in order to update
the EMdb and to verify the same rules for all that stored in the EMdb. The stop criterion is
a maximum number of iterations that can be fixed as an additional algorithm parameter,
and this procedure is executed until that value is reached.

Algorithm 1 list the computations that are programmed in a routine to solve the
formulated multi-objective optimization problem of Equations (1)–(9) using the above
mentioned steps as summarized in the flowchart of Figure 6.

6. An Illustrative Example

The feasibility and characteristics of the proposed multi-criteria design procedure
are discussed in this section. It is combined with a solving algorithm from heuristic
techniques to illustrate the implementation and results of an example using a four-bar
linkage design problem.

The dynamics of a closed-loop linkage is usually highly nonlinear due to the asym-
metry of the geometrical structure. Thus, it represents a challenge to consider traditional
design requirements and even more with the inclusion of other criteria. The four-bar mech-
anism has a significant number of applications in many different engineering solutions [32],
and researchers keep studying it as, for example, in [33] with a review of some mechanical
applications. However, currently user needs require that this mechanism accomplish more
challenging tasks and fulfill user expectations in a better way.
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A design solution of a four-bar mechanism is reported as an example, considering
design requirements as illustrated in Figure 1 to formulate a multi-objective optimization
problem as in Figures 3 and 4. A scheme of a four-bar linkage with design parameters is
shown in Figure 7. Table 2 summarizes the specific expressions for the design problem
with Equations (1)–(9) that are formulated for the reported example. The parameters
Li, lci, θi, ϕi, mi, Ji represent dimension of links, position of mass center, angle respect the
framework xoy, deviation angle for mass center, link masses, and inertia moments, respec-
tively; tr is the rise-time; tp is the time at which the peak value occurs; ˙θ2d is the target
velocity; u is the driving torque generated by a PID control algorithm; kp, ki, kd are propor-
tional, integral and derivative gains, respectively; and state variables of the dynamic model
are x1 = θ2 angular position and x2 = θ̇2 angular velocity of the input link. From this
context, the different nature of all the parameters included in the parameter vector can be
seen. Therefore, it shows the capability of the proposed procedure to concurrently address
in one stage the interconnection of multiple subsystems that are usually taken into account
in multiple stages using a sequential approach.

y

x

g

m2 J2

m3 J3

m4 J4

lc3

lc2

lc4
L2

L3

L4

L1
ϕ2

ϕ3

ϕ4

θ2

θ1

θ3

θ4

r′3

u

Figure 7. A scheme with parameters for a case of study in designing a four-bar linkage.

Strict design requirements are modeled as described in Figure 3 as constraints of
the optimization problem. In this example those requirements are modeled as inequality
constraints (G) and parameter bounds as listed in Table 2. As a design requirement,
a kinematic configuration of the four-bar linkage must satisfy that the input link can rotate
continuously, and the rocker must be located in the fourth link. These strict requirements
are formulated as constraints g1 to g4 in Table 2, which represent the Grashof condition.
Other user needs are a rise-time of 0.1 seconds and a maximum torque value of 300 Nm.
Therefore, constraints g5 and g6 guarantee the fulfillment of those strict design requirements.
The last three constraints, g7 to g9, ensure that the position of the mass center stays within
a position between the link-joints to prevent complex shapes for the links.
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Table 2. Summary of data for the optimization problem formulation for the case of study in Figure 7.

Φi | i = 1 . . . 3 x ∈ R2 P ∈ R20 G ∈ R10 Parameter Bounds

x1 = θ2 p1,2,3,4 = L1,2,3,4 g1 = p2 ≤ p4 0.1 ≤ p1,2,3,4 ≤ 1 [m]

p5,6,7 = lc2,3,4 g2 = p4 ≤ p1 0 ≤ p5,6,7 ≤ 1 [m]
x2 = θ̇2

p8,9,10,11 = θ1, ϕ2,3,4 g3 = p1 ≤ p3 −π ≤ p8,9,10,11 ≤ π [rad]

p12,13,14 = m2,3,4 g4 = p3 + p2 ≤ p4 + p1 0.5 ≤ p12,13,14 ≤ 2 [kg]

Φ1 =

t f∫
t0

e2dt

with: e = ˙θ2d − θ̇2

p15,16,17 = J2,3,4 g5 = tr − 0.1 ≤ 0 0.01 ≤ p15,16,17 ≤ 1 [kgm2]

p18,19,20 = kp, ki, kd g6 = umax − 300 ≤ 0 0 ≤ p18,19,20 ≤ 15 [–]

g7 = p5 ≤ p2

g8 = p6 ≤ p3 Control algorithm
Φ2 =

t f∫
t0

(uθ̇2)
2dt

g9 = p7 ≤ p4

Φ3 = θ̇2(tp)− ˙θ2d

H ∈ R0

u = kpe + ki

t f∫
t0

edt + kd ė

Design variables, as illustrated in Figure 3 are those parameters obtained as a result of
solving the formulated optimization problem. Table 2 lists design parameters (P) and its
bounds referring to the design problem for the four-bar linkage in Figure 7. Table 3 lists the
obtained values of a selected solution and classifies them. There are four parameters for a
kinematic synthesis of the four-bar linkage, twelve parameters that tune its dynamic
behavior, and three parameters that tune a control algorithm. These three synthesis
processes are carried out concurrently in order to fulfill strict and soft design requirements.

Table 3. Numerical values of design parameters for an optimal solution for the case of study in
Figure 7 and Table 2.

pi p1 p2 p3 p4 p8 p5 p6 p7 p12 p13

Design variable L1 L2 L3 L4 θ1 lc2 lc3 lc4 m2 m3

Variable type Kinematics Dynamics

Optimal 0.6497 0.1000 1.0000 0.6497 −2.8679 0.0010 0.8464 0.0018 2 0.5

Units m m m m rad m m m kg kg

pi p14 p15 p16 p17 p9 p10 p11 p18 p19 p20

Design variable m4 J2 J3 J4 ϕ2 ϕ3 ϕ4 kp ki kd

Variable type Dynamics Control Gains

Optimal 2 0.0100 0.0100 0.0100 1.8099 −0.9406 2.3051 15 15 10

Units kg kgm2 kgm2 kgm2 rad rad rad – – –

Soft design requirements and selected criteria, as illustrated in Figure 3 are formulated
into three objective functions that are listed in Table 2. The first objective function (Φ1)
corresponds to a system performance criterion when doing a task. It measures the accumu-
lated error generated by the system, and the target is a constant angular velocity of 30 rad/s.
User expectation referring to a reduction of energy consumption is formulated using the
second objective function (Φ2) in Table 2. This criterion measures the accumulated power
required by multiplying the driving torque and the angular velocity of the input link for
the four-bar linkage in Figure 7. Another user expectation considered in this example is
the reduction of overshoot when doing the selected task of reaching a constant angular
velocity. The third objective function (Φ3) formulates the reduction of overshoot as a soft
design requirement in Table 2. The evaluation of these three criteria and constraints are
computed after solving the dynamic model in Equation (10) as referring to Equations (8)
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and (9) for a four-bar mechanism. The motion equations are computed for an evaluation
period of two seconds considering values in Table 2.

A(θ2)θ̈2 + B(θ2, θ̇2)θ̇2 + C(θ2)g = u(P) (10)

The solving process of the constrained multi-objective optimization process is car-
ried out as illustrated in Figure 4 using the algorithm described in Figure 6 and Algo-
rithm 1. The parameters of the implemented heuristic algorithm are a crossover range of
DECR ∈ [0.7, 0.9], a mutation range of DEF ∈ [0.1, 0.8], a crowding factor of DECRW = 0.6,
a population of DENI = 1000 individuals, and a maximum number of iterations of
DEITmax = 1000. The algorithm was executed 10 independent times. The results are
illustrated in Figure 8, with the Pareto front after filtering the 10 executions. This figure
illustrates the distribution of the obtained solutions and one solution is selected as the
illustrative example to be analyzed in this section.

Figure 8. Pareto front in terms of the three objective functions for a feasible solution for the example
in Figure 7.

In the initial stage of the algorithm execution, a random population is generated,
as described in Algorithm 1 within the parameter space illustrated in Figure 5. At this
point, the heuristic algorithm focuses on moving all the individuals in the population to
the feasible space illustrated in Figure 5. This process is mainly related to finding feasible
solutions that fulfill strict design requirements by using the constraint manager of the
implemented heuristic algorithm. Figure 9 illustrates how the Grashof condition and the
center of mass position ( g4 and g7) are not fulfilled for the first iterations, and these values
change from one unfeasible value to another every iteration. Once the heuristic algorithm
finds feasible solutions that fulfill the constraints (gi ≤ 0), the frequency change of these
values decreases dramatically, and they do not go back to non-feasible values.

Figure 10 shows the convergence of the solving process in terms of the number of
candidates that fulfill all the strict design requirements formulated as inequality constraints
in Equation (5) with data in Table 2. At the start of the heuristic algorithm execution, all
individuals in the population are un-feasible. However, in about 100 iterations, all the
candidate solutions fulfill the constraints. This characteristic means that all the individuals
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in the population now satisfy the strict design requirements that ensure that the solutions
can be built and develop the requested task.

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

Figure 9. Computed convergence of the solving process in terms of the Grashof constraint and mass center position (g4 and
g7 in Table 2).
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Figure 10. Computed convergence of the solving process in terms of the number of candidate solutions that fulfill strict-
design requirements for the first 200 algorithm iterations (G ≤ 0 in Table 2).

Once the heuristic algorithm has found feasible solutions, the solvers focus on finding
solutions that improve the objective function values but at the same time ensures that
the constraints are fulfilled. This task means that to find solutions that improve soft
design requirements associated with user expectations. Figure 11 shows the computed
convergence of the solving process for the criteria associated with the task performance and
overshoot criterion in Table 2. At the beginning of the algorithm execution, the objective
function’s values are not registered since those values can be higher or lower for non-
feasible solutions. The algorithm function manager starts making decisions only after
the individuals in the population are feasible. Therefore, the decreasing behavior of the
objective functions corresponds to the feasible solutions presented in Figure 10. This figure
illustrates that once feasible individuals in the population appear, it is possible to find
configurations that improve overshoot criterion with fewer iterations than the first objective
function. Figure 12 shows the convergence of the objective function associated with energy
consumption. This figure shows that the search space is huge for this criterion since its
evaluation can produce high values compared to the last registered values at the end of
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the algorithm execution. It might represent an issue for the numerical solver that can
be improved.
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Figure 11. Computed convergence of the solving process in terms of Φ1 (task performance) and Φ3 (overshoot), similar to
Figure 10.
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Figure 12. Computed convergence of the solving process in terms of Φ2 (energy consumption), similar to Figure 10.

Another essential aspect that can be analyzed is the convergence of the design pa-
rameters as the solving process takes place. Figure 13 shows the computed convergence
in terms of the input link size parameter and its mass, similar to Figure 10. The value of
this parameter changes rapidly from one iteration to another while there are no feasible
individuals. However, when feasible individuals appear in the population, the frequency
change of this value is reduced. This figure illustrates how the algorithm explores the
parameter space in search of feasible configurations and the improvement of objective
functions in those different stages.

Figure 14 shows the obtained behavior of the selected solution to be analyzed using
the computed dynamic model. This figure shows the behavior of the input link angular
velocity x2 = θ̇2 where it can be seen the performance of the system. There are still notable
variations in comparison with the target velocity, and this characteristic also shows the
high non-linearity of the study case. Nevertheless, the obtained response satisfy strict
design requirements and an optimal trade-off with soft design requirements for the selected
solution. Finally, Figure 15 shows the behavior of the driving control generated by the
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PID control algorithm, where it can be seen that the amplitude of the input torque is small
enough to keep the power consumption within low levels.
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Figure 13. Computed convergence of the solving process in terms of the input link size parameter and its mass, L2 and m2

in Table 2 for example in Figure 7.
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Figure 14. Computed dynamic model for the optimal solution for the case in Figure 7 in terms of angular velocity.
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Figure 15. Computed driving torque generated by the tuned control algorithm for the case of Figure 7.
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A direct comparison with results in the literature is not the aim for this paper. However,
one comparison is discussed with the MCD obtained solution that improves the presented
solution in [2] by 53% in terms of the objective function to evaluate performance of a
solution (Φ1) in Table 3. That solution in the literature corresponds to the application of
mass redistribution according to complete shaking force balancing and partial shaking
moment balancing. This result means that performance can be improved when considering
more design aspects and concurrently solving the design problem.

7. Conclusions

This paper presents the Mechatronic Concurrent Design procedure to address tradi-
tional and new aspects of mechatronic design. This approach considers different criteria
and design requirements concurrently by formulating a design problem as a constrained
multi-objective optimization problem with multidisciplinary criteria more than from mecha-
tronics. The innovation of the proposed procedure is the integration of multiple design
stages in only one step. The MCD procedure is formulated to address high non-linear
systems whose design solution requires a convenient use of heuristic techniques. It also
contributes to facilitating the application of this procedure to non-continuous design pa-
rameters or the use of non-analytically modeling of a mechatronic system. An illustrative
example shows the feasibility and capability of this approach’s concepts and numerical char-
acteristics to validate the presented procedure and clarify its application for mechatronic
designs. The example shows how to include different criteria aspects such as performance
task, energy consumption, and overshoot reduction in a synergistic combination to address
soft design requirements. It also considers strict design requirements such as a possible
kinematic configuration, rise time, maximum torque, and preferable mass location. Future
work includes applying this procedure with different design examples that also consider
criteria from other fields to make MCD a practical approach in formulating mechatronic
design problems. Since the solution is related to both design problems and solvers, it is
also essential to implement different solvers.
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