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Abstract: In the current study, we present a novel intuitive graphical method for the simulation of
nonlinear effects on stretched pulses, characterized by a large time-bandwidth product. By way
of example, this method allows precise determination of effects occurring in CPA (chirped pulse
amplification) laser chains, such as the pre-pulse generation by the nonlinear Kerr effect. This method
is not limited to first-order dispersion and can handle all resulting distortions of the generated
pre-pulse.

Keywords: ultra-short laser pulses; laser pulse contrast; high-power laser

1. Introduction

Ultra-intense laser systems are used for a variety of applications in the fields of high-
energy-density physics and relativistic laser plasma physics [1]. Achievable contrast ratios
are in the range of 10−12 on temporal scales between ns and a few 10 ps prior to the main
pulse. Amplification of stretched pulses (i.e., chirped pulse amplification, CPA [2]) is
conventionally performed in regenerative and multipass amplifiers. Despite its capacity to
lower nonlinearities in the amplifiers, the CPA technique, when used for an extremely high-
power system (PW range), still accumulates nonlinear distortions due to the Kerr effect,
which is characterized by the maximum value of the B-integral. The B-integral represents
the nonlinear temporal phase shift acquired after propagation through the system. Typical
levels of the B-integral are in the range of 0.1 to 1 [3–6]. To simulate the consequence of this
nonlinearity on the temporal profile of the output beam, the simulation of nonlinear effects
on stretched pulses with large time-bandwidth products is required. As an example, recent
observations [6] have shown that the temporal characteristics of a pre-pulse may differ
significantly from the main and post pulses from which it was generated via temporal
diffraction.

These observations, significantly affecting the interaction of high-power laser pulses
with matter, have renewed the interest in intuitive simulation capabilities of complex pulse
shapes that are developing through the CPA process.

In the classical finite-difference time-domain and split-step Fourier methods, large
time-bandwidth product laser pulses, such as the ones used in CPA, are difficult to handle.
Although these methods solve the pulse propagation problem, they are time- and memory-
consuming in computation, as the temporal resolution has to be in the order of the Fourier
transform-limited pulse width, while the excursion should remain larger than the pulse
width. For typical CPA conditions, this requires a minimum of 104 or 105 points. For the
sake of simplicity, we restricted our attention to a one-dimensional model for a scalar field
and used Maxwell’s wave equation in the form [7]:

∂2E
∂z2 −

1
c2

∂2D
∂τ2 = 0, (1)
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where E = E(τ,z) is the electric field, D is the electric displacement, and c the velocity of
light in a vacuum. The constitutive relation between D and E takes into account both the
dispersion and nonlinearity of the medium:

D = εE + PNL, (2)

where ε is the dielectric permittivity (ε = n2 with n being the refractive index), and PNL
the nonlinear polarization. In our case, we will only consider the third-order nonlinear
polarization enabling effects, such as four-wave mixing, self-phase modulation and cross-
phase modulation: PNL = χ(3)|E|2E, where χ(3) is the third-order nonlinear susceptibility.

The first term of the electric displacement includes all linear terms and has a simple
form in the frequency domain:

Ẽout(ω) = H̃(ω)Ẽin(ω), (3)

where Ẽout(ω) and Ẽin(ω) are the Fourier transforms of the output and input signals, and
ω = 2πf is the optical pulsation where f is the optical frequency. The frequency response
function H̃(ω) includes the spectral transmission T(ω) as its amplitude and the spectral
phase dispersion ϕ(ω) as its argument, H̃(ω) = T(ω)eiϕ(ω). The simulation of this term
is straight forward in the spectral domain.

As for the nonlinear Schrodinger equation, the nonlinear term must be simulated in
the temporal domain [8,9]; a fast Fourier transform is usually used to pass from the spectral
to temporal domain and vice versa. As already mentioned, the huge temporal excursion,
due to the stretching ratio of the CPA, will introduce a huge number of points that tend to
overload the memory of standard computers.

In this paper, we propose an alternative method that keeps the advantages of both
domains without needing any direct relationship between the spectral and temporal
resolution and excursion. It also has the advantage of being intuitive as a graphical
representation of stretched laser pulses with huge time-bandwidth products.

2. Instantaneous Frequency Representation for a Simple CPA Simulation

Large time-bandwidth product pulses are difficult to represent. In general, there are
no other options other than using a very large temporal excursion that covers the full
duration along with a large bandwidth that covers the spectral amplitude of the pulse. As
both domains are linked by Fourier transformation, the temporal resolution is inversely
proportional to the spectral excursion and vice versa. To visualize such relationships
and large time-bandwidth product pulses, time–frequency representations, such as the
Wigner–Ville distribution or spectrogram, are commonly used. Here, we introduce the
instantaneous frequency representation (IFR). The instantaneous frequency ω(τ) = ∂ϕ/∂τ
weighted by the associated spectral amplitude is fully representative of a laser pulse.
Furthermore, in terms of physics, the line that represents the spectral distribution in the
temporal domain can be convoluted by the Fourier-transformed pulse profile temporal
amplitude. The IFR of a Fourier transform-limited pulse is shown in Figure 1. For a
Wigner–Ville representation, both domains would have the same number of points to easily
calculate the Fourier transformation, as represented by the grey grid in Figure 1. Thus, the
number of points N, resolutions (δf, δτ) and excursions (∆F, ∆T) of both domains are fully
determined:

∆Fδτ = ∆Tδf = 1 and
∆F
δf

=
∆T
δτ

= N =
1
δfδτ

(4)

For Fourier transform-limited pulses, the time-bandwidth product is minimal and
close to 0.5:

∆ωpulse∆tpulse ≥ 0.5 (5)

where ∆ωpulse and ∆tpulse are statistical widths (root mean squares).
On the IFR, similar to the Wigner–Ville representation, the spectral or temporal am-

plitude can be recovered by the projection of the curve along one dimension (Figure 1
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(1,2)). A Fourier-limited pulse is represented as a vertical line. The instantaneous frequency
curve τ(ω) = (∂ϕ/∂ω)ωi−ω0

= 0) is represented by the black-dotted line in Figure 1 (3).
Applying linear filters, such as spectral transmission and dispersion to the pulse, can be
performed directly on the IFR with line-by-line modification. A pure spectral amplitude
corresponds to a simple multiplication of the lineωi by the spectral amplitude T(ωi). After
line-by-line multiplication, the new spectral amplitude is used to calculate the new tem-
poral Fourier limit. This Fourier limit temporal profile is then applied onto the temporal
pulse by convolution.
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ous frequency with typically resolutions required in Fourier transformations (grid) for comparison. 
To avoid symmetric spectral shape while keeping a good visibility on the IFR, the pulse chosen 
exhibits a dip on its spectral intensity. 

However, in a CPA laser, the pulse is stretched. Its time-bandwidth product rises to 
about 105. The temporal excursion of the pulse is then greater than that used for the sim-
ulation, as shown by the grey grid in Figure 2a (3). By using Fourier transformation, such 
as in Wigner–Ville or spectrogram simulation, the temporal domain is restricted to this 
area. The simulation then presents temporal aliasing that is harmful to the result, as shown 
in Figure 2a (3), as well as by the blue curve in Figure 2a (1). For conventional large-scale 
CPA lasers, the initial temporal domain is so small that it becomes nearly invisible on the 
IFR (Figure 2b (3)). With a conventional Fourier transform, in order to avoid this temporal 
aliasing, the only solution is to proportionally increase the number of samples on both 
axes. 

This makes it difficult to use Fourier transformations for very strongly stretched 
pulses with huge time-bandwidth products, as the required number of points grows 
quadratically alongside the stretching rate. 

However, by using IFR, it is possible to stretch the temporal scale without restriction 
(Figure 2a,b), which makes the method very useful for large-stretched CPA laser pulses. 

Figure 1. Instantaneous frequency representation of a Fourier-limited pulse in (1) temporal intensity,

(2) spectral intensity (̃I(ω) =

∣∣∣∣exp
(
−
(

f
0.426

)80
)
(1− 0.3 · exp

(
− (f−0.05)2

0.002

)∣∣∣∣2) and (3) instantaneous

frequency with typically resolutions required in Fourier transformations (grid) for comparison. To
avoid symmetric spectral shape while keeping a good visibility on the IFR, the pulse chosen exhibits
a dip on its spectral intensity.

In this case, the constraint of having the same number of points with the temporal
excursion limited by the spectral resolution is not limiting, as the pulse time-bandwidth
product is still minimal.

However, in a CPA laser, the pulse is stretched. Its time-bandwidth product rises
to about 105. The temporal excursion of the pulse is then greater than that used for the
simulation, as shown by the grey grid in Figure 2a (3). By using Fourier transformation,
such as in Wigner–Ville or spectrogram simulation, the temporal domain is restricted to this
area. The simulation then presents temporal aliasing that is harmful to the result, as shown
in Figure 2a (3), as well as by the blue curve in Figure 2a (1). For conventional large-scale
CPA lasers, the initial temporal domain is so small that it becomes nearly invisible on the
IFR (Figure 2b (3)). With a conventional Fourier transform, in order to avoid this temporal
aliasing, the only solution is to proportionally increase the number of samples on both axes.

This makes it difficult to use Fourier transformations for very strongly stretched pulses
with huge time-bandwidth products, as the required number of points grows quadratically
alongside the stretching rate.

However, by using IFR, it is possible to stretch the temporal scale without restriction
(Figure 2a,b), which makes the method very useful for large-stretched CPA laser pulses.
This stretching corresponds to a translation of the points on the instantaneous curve,
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depending on the frequency in time. For eachωi, the position of the new point is modified
by the relative delay from the central pulsation:

dτ(ωi) = (∂ϕ/∂ω)ωi−ω0
. (6)

The operation has no temporal limitation and does not need a regular temporal
pattern. It is a pure line-by-line spectral operation. The output temporal scale is no longer
linked to the spectral one by a regular point-to-point pattern. The temporal amplitude
estimation will then require either resampling of the curve on a regular temporal pattern
or consideration of the irregular pattern in the amplitude calculation. The IFR will then be
compatible with any time-bandwidth product.
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Without nonlinearities, the pulses are then amplified with minor dispersions and mi-
nor spectral narrowing due to amplification. With proper dispersion management, the 
main pulse is perfectly recompressed by the compressor, and the output and input pulses 
look very similar to one another. PW-class CPA systems are designed to maximize the 
extracted laser pulse power, resulting in an operation close to or within an intensity range 
of the stretched pulse that causes significant nonlinearities. This results in laser pulse deg-
radation that is deleterious for ultra-high laser applications. The main effect is the Kerr 
effect, globally characterized by the B-integral. The most deleterious impact of this effect 
on the temporal contrast is the pre-pulse generation from a post pulse by temporal dif-
fraction [6,10,11].  

Figure 2. Instantaneous frequency representations of (a) a chirped pulse with moderate chirp
(ϕ(2) = 2

(π∆ f )2 8.5 · 103), where π∆ f is the frequency range, and (b) a typical chirped pulse with

stretching factor of 105, typical for CPA lasers (ϕ(2) = 2
(π∆ f )2 1.6 · 106). In (a3), the grey area is a

reduced time window, typically used for Fourier transformations, and it is depicted together with
the resulting aliasing. This leads to a distorted temporal representation (blue inset in (a1)). In (b1),
this temporal span is even smaller for large stretching (blue line).

Pulse replicas are also due to linear operations but combine both spectral amplitude
and spectral phase. As an example, a post-pulse delayed by td is simply introduced by
replicating the IF curve and translating the full curve by td. Here, the absolute phase
difference atω0 between the pulses is ignored. It can be considered by using an additional
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array within the phase values or by using complex weights rather than purely real ones.
The calculation of the spectral amplitude is then more complex as it requires the integration
of all the differentωi components. The sum of these components includes the phase terms
that are frequency dependent ϕ(ωi) = ωitd. The spectral amplitude is then obtained
through the following integration:

Ã(ωi) =
∫ T

−T
A(τ)eiωiτdτ. (7)

By symmetry, the temporal intensity is also recovered by integration as:

A(τi) =
∫ ∞

−∞
Ã(ω)eiωτi dω. (8)

As expected by its linear nature, this operation is still performed line by line (spectral
amplitude) or column by column (temporal amplitude). Combining the main pulse with a
post-pulse, generated, e.g., by partial internal reflection in planar transmission optics, and
stretching results in what usually occurs in CPA systems (Figure 3).

Without nonlinearities, the pulses are then amplified with minor dispersions and
minor spectral narrowing due to amplification. With proper dispersion management, the
main pulse is perfectly recompressed by the compressor, and the output and input pulses
look very similar to one another. PW-class CPA systems are designed to maximize the
extracted laser pulse power, resulting in an operation close to or within an intensity range
of the stretched pulse that causes significant nonlinearities. This results in laser pulse
degradation that is deleterious for ultra-high laser applications. The main effect is the
Kerr effect, globally characterized by the B-integral. The most deleterious impact of this
effect on the temporal contrast is the pre-pulse generation from a post pulse by temporal
diffraction [6,10,11].
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Figure 3. Instantaneous frequency representation of the stretched main and post-pulse. The main
pulse (A) is followed by a post-pulse (B) with a delay of 100 ps. The combination of two pulses results
in a spectral interferometric pattern on the spectral axis.

Let us consider the two pulses of Figure 3, E1 representing the main pulse and E2
a post-pulse time, delayed by td. The third-order nonlinear polarization due to the Kerr
effect [11] is

PNL(τ) = χ3[E1(ω1(τ)) + E2(ω2(τ))][E∗1(−ω1(τ)) + E∗2(−ω2(τ))][E1(ω1(τ)) + E2(ω2(τ))], (9)

where it gives rise to four-wave mixing (FWM), self-phase modulation (SPM), cross-phase
modulation (XPM) and cross-polarized wave generation (XPW). In particular, the terms
E1(ω1(τ))E∗2(−ω2(τ))E1(ω1(τ)) and E2(ω2(τ))E∗1(−ω1(τ))E2(ω2(τ)) are the FWM pro-
cesses of interest, giving the new frequencies 2ω1 −ω2, and 2ω2 −ω1. We see that a
pre-pulse is generated td before the main pulse and δω1 = (2ω1 −ω2)τ −ω1 = btd, so it
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is constantly blue-shifted fromω1(τ) as b > 0 in PW-class CPA. Similarly, a post-pulse is
also generated td after the post-pulse and δω2 = (2ω2 −ω1)τ −ω2 = −btd is red shifted
fromω2(τ). Here, δω1 indicates its origin from the main pulseω1, and δω2 indicates its
origin from the post-pulse ω2. The FWM process is efficient as long as all spectral com-
ponents are phase matched. The phase matching is kept since the componentsω1(τ) and
ω2(τ) are nearly equal. On the IFR, this temporal effect is simulated column by column.
For any τi, the temporal amplitude is calculated by using the inverse Fourier transform:

∀τi, i ∈ {1..Nτ}, A(t, τi) = FT−1
[
Ã(ω, τi)

]
. (10)

Then, the nonlinear effect is applied in this time domain:

Aout(t, τi) = |Ain(t, τi)|2Ain(t, τi). (11)

Finally, the spectral amplitude at any τi is obtained by Fourier transform:

∀τi, i ∈ {1..Nτ}, Ãout(ω, τi) = FT[Aout(t, τi)]. (12)

The pre-pulse and post-pulse generation appears naturally from this process as shown
in Figure 4.

If ∀τi, i ∈ {1..Nτ}, b(τi) is large enough, then one can approximate: A(t, τi) ≈[
Ã(ω,τi)

b(τi)

]
. Thus, ˜Apre−pulse(ω, τi) ≈ α

∣∣∣Ã(ω, τi)
∣∣∣2 ˜Apost−pulse(ω, τi), where α is the cou-

pling factor from post-pulse to pre-pulse [12].
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generated post-pulse. The spectral axis shows the interference in between the four different pulses.

3. Instantaneous Frequency Representation for a Realistic CPA Laser Simulation Step
by Step

A typical CPA laser chain is depicted in Figure 5. Here, we follow the scheme presented
by Liu et al. [11]. The pulses are derived from a high repetition rate mode-locked oscillator
with an initial pulse length order of 25 fs. The laser pulse train typically passes Pockels
cells, Faraday isolators and polarizers to decrease the repetition rate and for back-reflection
isolation within the laser chain. The repetition rate is reduced for amplification to the
order of a few Hz or less, especially in the case of petawatt class systems. After being
stretched, typically from a time-bandwidth product of 0.5 to approximately 105, or from
25 fs to 1ns, the laser pulse is amplified and recompressed close to the Fourier limit, which
is determined by the spectral shape. The actively controlled spectral shape of the amplified
pulse is typically a top hat, which is taken into account in all of the simulations presented
here. Since the huge dispersion generated by the stretcher far outweighs the dispersion
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of the material in the amplifier chain, we only consider the stretcher and compressor as
dispersive elements at this time.

Post-pulses are typically generated when the laser pulse passes through elements with
plane-parallel surfaces. While for some cases this issue can be avoided by use of wedged
components, causing spatio-temporal distortions and degrading the laser pulse quality in
the focus, for others, this might not be possible. Anti-reflection coatings reduce the relative
pulse level of the generated post-pulse to a certain degree. Plan-convex or plan-concave
lenses can also cause post-pulses within a certain angular acceptance. For the simulation
discussed here, we considered a rather large post-pulse level of 1% with respect to the main
pulse and a delay of 100 ps.

Taking this into consideration, the spectral group delay can be expressed as:

τ(ω) = ∑∞
n=2

ϕn
(n−1)!

[
(ω−ω0)

n−1
]
≈ ϕ2(ω−ω0) +

ϕ3
2 (ω−ω0)

2 + ϕ4
3! (ω−ω0)

3 (13)

where ϕ2 is the linear chirp, mainly stretching the pulse and called the group velocity
dispersion (GVD); ϕ3 is the third-order spectral phase (third-order dispersion TOD), i.e.,
the first distortion order on the linear chirp; and ϕ4 is the fourth-order spectral phase
(fourth-order dispersion FOD), i.e., the second distortion order on the linear chirp. As
sketched in Figure 5b, these distortions modify the previously used simplified IFR where
only the linear chirp was applied, in contrast to Liu et al. [11].
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Figure 5. Schematic diagram of a typical laser chain, including post-pulse generation.

The pulse and its post-pulse will undergo the Kerr-effect-induced FWM, which is
predominantly induced by the amplifier materials [10]. After amplification, the pulses
are recompressed by the compressor, such that the main pulse is near-perfect dispersion
compensated and compressed as in the previous example.

The first simulation considers only pure linear chirp stretching (Figure 6). The overall
B-integral is chosen such that the pre-pulse generates yields close to the same power as
the post-pulse [12], meaning about

√
3. As expected, in the output pulse, the Kerr effect

through FWM generates a “time-diffracted” pre-pulse blue shifted in frequency. A post-
pulse should also appear, but it is too weak to be visible on the dynamic scale of 80dB. In
the ideal case of a pure chirp, as already mentioned by Liu et al. [11], the generated and
compressed pre-pulse appears exactly with the mirrored delay of the original post-pulse but
with significant frequency shifts (Figure 6a–c). This blue shift can be significant compared
to the pulse bandwidth and can lead to an underestimated temporal deterioration by
third-order cross-correlators with limited bandwidths [13]. The generated post-pulse can
also be resolved on the temporal intensity display.
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The simulation was performed on a standard personal computer with a 2000-point
array in a few seconds without any code optimization. The chirp stretched the pulse by a
factor of 40,000 (1ns stretched pulse), so the delay of 100 ps is still observable (Figure 3).
Smaller or larger delays could be used without significant impact on simulation time and
precision of the result.

In the more interesting case of distortions of the linear chirp, commonly present in
the CPA stretcher and compressor realizations, the generated pre-pulse is modified and
not recompressed completely at the output by the compressor. In the case of third-order
spectral phase distortions, the pre-pulse is chirped (Figure 7) and its peak power can be
decreased by two orders of magnitude. In contrast, the generated post-pulse appears
unaffected, changing the relative pulse height of the pre- and post-pulse. The apparent
delay of the pre-pulse is also shifted to a smaller delay than the equivalent delay of the
post-pulse by symmetry.

For a fourth-order spectral phase distortion, the pre-pulse exhibits a third-order
spectral phase distortion (Figure 8). Its maximum peak power is also decreased but less
than for the third-order distortion. The generated post-pulse disappears below −80 dB. In
both cases, interestingly, the peak power of the pre-pulse is decreased by the stretching
and detuning of the pure linear chirp.

This pre-pulse temporal intensity distortion is similar to the one observed by Kiriyama
et al. [6]. A proper stretching distortion could thus be intentionally applied to decrease the
pre-pulse peak power and enhance the temporal contrast of the laser. This observation can
be understood by the effect of the blue shift on the compression. Without the blue shift,
the compressor fully compensates for the dispersion of the system. With the blue shift, the
compensation is incomplete:

δτδω1(ω) = ∑∞
n=2

ϕn
(n−1)!

[
(ω−ω0)

n−1

−(ω+ δω1 −ω0)
n−1

]
= ∑∞

n=2
ϕn

(n−1)! (−δω1)

[
∑n−2

k=0 ∑k
j=0

(
k
j

)
(δω1)

j(ω−ω0)
k
] (14)



Appl. Sci. 2021, 11, 8934 9 of 11

If we consider the effect nearby ω0, ω −ω0 � δω1 and that δω1 is nearly con-
stant over the bandwidth, the Nth-order distortion for the pre-pulse is produced by a
combination of higher order terms of the stretcher dispersion:

ϕM,prepulse(ω0) = −∑∞
n=M+1

ϕn

(M− 1)!(n−M)!
(δω1)

n−M (15)

For pure third-order distortion, the chirp of the pre-pulse can be approximated to:

∂δτδω1(ω)

∂ω
≈ −[(ϕ3δω1)]. (16)

For pure fourth order, the chirp is combined with a third order:

∂δτδω1(ω)

∂ω
≈ −

[(ϕ4

2!
δω1

2
)]
−
[ϕ4

2!
δω1

]
[(ω−ω0)]. (17)

These approximations confirm the effects seen in Figures 7 and 8. Non-intuitively,
having a large third order may ease the constraints on the pulse contrast, as it decreases
the peak power of the generated pre-pulse due to its residual chirp. Note, however, that
this model lacks precision because it assumes that δω1 = (ω1 −ω2)τ is constant.
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This pre-pulse temporal intensity distortion is similar to the one observed by Kiri-
yama et al. [6]. A proper stretching distortion could thus be intentionally applied to de-
crease the pre-pulse peak power and enhance the temporal contrast of the laser. This ob-
servation can be understood by the effect of the blue shift on the compression. Without 
the blue shift, the compressor fully compensates for the dispersion of the system. With the 
blue shift, the compensation is incomplete: 
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Figure 8. (a) Instantaneous frequency representation with fourth-order spectral phase distortion in
stretching (ϕ(2) = 2

(π∆ f )2 1.6 · 106 and ϕ(4) = − 24
(π∆ f )4 105), (b) its temporal intensity on log scale

(dB), (c) zoom of temporal intensity of the pre-pulse on log scale (dB) and (d) normalized pre-pulse
spectrum.

This realistic example of a case that is currently limiting high-intensity laser perfor-
mance on the target illustrates the main advantage of the presented IFR simulation method.
It is compatible with huge time-bandwidth product pulses existing in most high-power
CPA laser systems. The temporal domain can be stretched and recompressed without loss
of information and without any modification on the frequency domain. It is also very
efficient numerically, as all the operations presented above are purely along one dimension.

4. Conclusions

We introduced a novel method for the simulation of nonlinearities on very large
time-bandwidth product pulses. This method is very efficient numerically and is intuitive
in the interpretation of the physical meaning of pulse modifications. It was applied to
model pre-pulse generation in CPA chains as an example of current interest and will be
used for a quantitative description of a full laser chain. Based on the investigated principles,
it was observed in the simplified picture of single higher order stretching distortions that a
contrast enhancement, i.e., a reduction in the intensity of the generated pre-pulse, becomes
possible due to its corresponding incomplete compression.
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