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Abstract: Safety status of artificial slopes is significant for the operation and maintenance of highway
to mitigate the risk; thus, slope hazard identification is necessary. In order to realize large-area and
low-cost application for regional highway, taking the Longqing Highway (length of 55 km) as a case
study, the SBAS-InSAR (Small Baseline Subset-Interferometric Synthetic Aperture Radar) technique
is adopted to detect the ground deformation and conduct hazard identification based on slope dip,
aspect, geological data and historical hazard record. Field survey is carried out to verify the identified
potential hazards. Results show that the detected potential hazards are distributed mainly in the
areas consisting of granite residual and the Quaternary soil. Six potential hazards identified by the
SBAS-InSAR-based method are roughly in accordance with the on-site verification. It is suggested
that the SBAS-InSAR technique has the ability to obtain the slope deformation accurately and reveal
the safe condition of the slopes. The SBAS-InSAR technique can be suitable for assistance in regional
highway slope inspection.

Keywords: artificial slope; hazard identification; mountainous highway; SBAS-InSAR; field verification

1. Introduction

Slope failures (e.g., landslide, debris flow, and rock collapse) pose a great threat to
safety of life and property and highway structures in mountainous area [1], and it has
attracted the attention of highway maintenance departments to mitigate slope hazards. As
the safety status of highway slopes is affected by many factors such as topography, geology,
climate, stabilization work, etc., it is complex and highly uncertain to identify the potential
slope hazards. Normally, the ground deformation or deformation-based indexes are used
to evaluate the slope stability, via deformation monitoring methods including leveling,
triangulation, and GNSS (Global Navigation Satellite System) positioning measurement [2].
Although the accuracy of these methods is high, there are some drawbacks of frequent in
situ operation, intensive labor input, and high maintenance cost. In addition, the above
methods can only provide point-to-point result; thus, it is possible of information omission
between adjacent observation points for linearly distributed highways or railways [3].
Alternatively, with the development of space remote sensing techniques and interpretation
algorithms, Interferometric Synthetic Aperture Radar (InSAR) technology can provide
wide-range coverage and centimeter level or higher accuracy, which becomes a trend for
regional highway slope hazard identification and long-term monitoring [4–6].

For highways, multitemporal InSAR (MT-InSAR) is more suitable than the conven-
tional D-InSAR (Differential InSAR) method, as it can overcome the limitations of spatiotem-
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poral decorrelation and atmospheric disturbance [7,8]. The MT-InSAR techniques have
been devoted to a series of meaningful explorations in the geohazard identification [9–12],
ground deformation monitoring [13–17], bridge deformation monitoring [18,19], and build-
ing deformation detection [20], etc. As limited by the spatial displacement gradient,
the InSAR is normally suitable for detection of slow(13 m/month) to extremely-slow
(<16 mm/yr) movement [21]. Commonly used MT-InSAR techniques include PS-InSAR
(Persistent Scatterer Interferometry) [22–25] and SBAS-InSAR [26–29]. The PS-InSAR
method obtains long-term series of ground deformation at the expense of the density of
monitoring points in space. Since the differential interferograms generated by the PS-
InSAR method are all based on the single master image, there may be cases where the
interferometric has long temporal and spatial baseline. However, this can reduce the coher-
ence of the data points and result in small number of PS (persistent scatterer) points. The
SBAS-InSAR method uses a multimaster image combination method to limit the temporal
baseline and spatial baseline of the interferometric pairs to improve the coherence and
deformation detection accuracy. It can not only overcome the coherence loss of PS-InSAR
due to selecting single master image but also reduce the demand number of SAR data and
increase the computational efficiency [30].

In terms of application in highways, Bayer et al. [31] used the SBAS-InSAR method
to study the evolution of landslide deformation caused by highway tunnel construction.
Zhu et al. [32] investigated the ground subsidence of two highways using SBAS-InSAR
method, and the external accuracy was improved from ±4 to ±3 mm by adopting the
seasonal model. Zhao et al. [6] studied the landslide susceptibility mapping (LSM) of
Karakorum Highway using SBAS-InSAR technology and logistic regression model. By
introducing the SBAS-InSAR slope deformation results, the LSM was refined. Recently,
Zhu et al. [11] conducted preliminary identification of geological hazards by SBAS-InSAR
technique integrated multiple spatial analysis. The visibility analysis was used to remove
the influence of geometric distortion of SAR images. Based on the above literature review,
most studies focus on large-scale geological hazards within a specific region. However,
targeted investigations on the safety evaluation and hazard identification of highway
artificial slopes are few using the SBAS-InSAR technique.

Therefore, the feasibility of artificial slope hazard identification for mountainous
highways using SBAS-InSAR technique was studied. InSAR-based ground deformation
was firstly obtained to determine the deformation abnormal area. Then, the terrain data,
geological data, and historical hazard records were introduced to filter out potential slope
hazards. The results were validated by field investigation on the Longqing Highway in
Lishui, China, and the feasibility of SBAS-InSAR technique in highway slope inspection
was discussed.

2. Study Area and Datasets

The Longquan to Qingyuan highway, as one section of the G25 national highway, is
the main study object in the present study. This highway is about 55 km in total, from
Longquan City, via Chatian, Xiaomei, Huangtian and Zhukou, to Qingyuan County. It is
in the southernmost end of Zhejiang Province, adjacent to Fujian Province, as illustrated
in Figure 1a. The study area is identified by the 1 km buffer of the Longqing highway,
as shown in Figure 1b. The area is hilly and mountainous landforms, with an elevation
range of 120 m~1900 m. The highest mountain of East China is seated northeast of the
highway, namely Huangmao Jian (1929 m). As the large elevation difference in the area, its
climate difference is also very significant in space. Commonly, the area below 800 m has a
sub-tropical humid monsoon climate, while the area above 800 m is close to temperate and
monsoonal climate. The average annual temperature is 17.4 ◦C, and total annual precipita-
tion is 1760 mm. The rainy season is mainly from March to June, and it is influenced by
typhoon activities.
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extensively at the ground surface; as a result, the studied slopes mainly consist of loose 
soil deposits. A total of 84 soil slopes are distributed along the entire Longqing Highway. 
According to the highway slope management records, there have been a total of 40 small-
to-medium-sized cut-slope landslides or embankment washouts from 2015 to 2019 (no 
hazards recorded in 2018 and 2020), as illustrated in Figure 2b. The historical slope 
hazards show an obvious spatial uneven distribution mainly within A, B, and C three 
zones. Combining topography and geological conditions, it can be seen that zone B is 
located in the mountain valley area, and the stratum along the highway is dominated by 
Quaternary alluvial soil. Moreover, large differences exist in lithology within zone C. The 
highway slope body is mainly composed of fully-to-strongly weathered layers such as 
early Yanshanian intrusive granite, upper Jurassic tuff, lower Jurassic sandstone, and 
lower Devonian schist. The residual materials are caused by the warm and humid climate 
in southern Zhejiang, and they are generally broken and loose. Coupled with rainfall, 
slope hazards are more likely to happen within these two zones. 

Figure 1. Study areas: (a) location of Longqing Highway and coverage of SAR image; (b) the STRM 1Sec 30 m digital
elevation model of the study area.

From a geological point of view, the study area mainly consists of a Holocene formation
(Q4), five Jurassic formations (J1, J3

a, J3
b, J3

c, J3
d), and a Devonian formation (AnDch) as

shown in Figure 2a. Igneous rock formations formed in the late Yanshanian (γπ5, γ5
3,

νξγ5), early Yanshanian (γ5
2), and the Indosinian migmatite (γδM5, νξγM5) are also widely

distributed in the area. The rock formations are commonly weathered extensively at the
ground surface; as a result, the studied slopes mainly consist of loose soil deposits. A total
of 84 soil slopes are distributed along the entire Longqing Highway. According to the
highway slope management records, there have been a total of 40 small-to-medium-sized
cut-slope landslides or embankment washouts from 2015 to 2019 (no hazards recorded in
2018 and 2020), as illustrated in Figure 2b. The historical slope hazards show an obvious
spatial uneven distribution mainly within A, B, and C three zones. Combining topography
and geological conditions, it can be seen that zone B is located in the mountain valley area,
and the stratum along the highway is dominated by Quaternary alluvial soil. Moreover,
large differences exist in lithology within zone C. The highway slope body is mainly
composed of fully-to-strongly weathered layers such as early Yanshanian intrusive granite,
upper Jurassic tuff, lower Jurassic sandstone, and lower Devonian schist. The residual
materials are caused by the warm and humid climate in southern Zhejiang, and they are
generally broken and loose. Coupled with rainfall, slope hazards are more likely to happen
within these two zones.
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Figure 2. (a) Geology map for the study area; (b) historical slope hazard records within the study area.

To investigate the slope ground deformation and identify slope hazards along the
highway, 30 scenes of ascending Sentinel-1A (S1A) satellite images were obtained from the
European Space Agency in this study. The time span is from 8 August 2020 to 5 April 2021
with a time interval of 12 days. The images are acquired in C-band (wavelength of 5.64 cm)
and generated into Level-1 Single-Look Complex (SLC) products. The imaging mode is
the Interference Wide (IW) Mode, the width is 250 km, and the image spatial resolution
is 20 m × 5 m (azimuth × range). Observation parameters for the images are as follows:
path numbers, 142; average incidence angle, 43.1◦; polarization mode, VV.

In this study, the 30 m resolution SRTM 1Sec and 90 m resolution STRM 3Sec DEM
data are selected as the external DEM data for master-slave image coregistration and
terrain phase removal. Optical remote sensing images were obtained from National
Platform for Common Geospatial Information Services (https://www.tianditu.gov.cn/,
accessed on 22 August 2021). The geological map at 1:200,000 scale for the study area was
accessed from National Geological Archives of China (http://www.ngac.org.cn/, accessed
on 22 August 2021).

3. Methodology
3.1. SBAS-InSAR Techniques

The SBAS-InSAR method was first proposed by Berardino et al. [30]. The SBAS-InSAR
method can extract distributed point targets that maintain coherence within a certain period
and further increase the point density. It is very suitable for natural ground deformation
monitoring and can achieve long-term, millimeter-level deformation monitoring at the
regional scale.

The principle of SBAS-InSAR technology is as follows: First, calculate the time and
space baselines of multiscene SAR images covering a certain area in different time periods,

https://www.tianditu.gov.cn/
http://www.ngac.org.cn/
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select the appropriate temporal and spatial baseline threshold to generate the interferomet-
ric pairs; then perform differential interferometry processing on the selected master-slave
image pairs and conduct the phase unwrapping; finally, phase errors caused by topography
and orbit are removed, and the least square method or singular value decomposition (SVD)
method is used on the interferogram subsets to estimate the deformation parameters. In
actual processing, the method of temporal and spatial filtering is used to remove the atmo-
spheric delayed image to separate the nonlinear deformation. The sum of the estimated
low-frequency deformation and this nonlinear deformation is the deformation information
of the entire study area.

The SNAP (official open-access software for Sentinel data, developed by European
Space Agency) and StaMPS/MTI (version 4.1b, Stanford Method for Persistent Scatterers/
Multi-Temporal InSAR developed by Andy Hooper et al.) were adopted to process the
SAR images. The processing flow of SBAS-InSAR method is shown in Figure 3 [33–35]. The
small baseline interferograms were first generated by SNAP, and the amplitude dispersion
threshold of 0.6 was adopted to preprocess the candidate PS pixels [5,36]. Then, phase
unwrapping, phase error corrections, and deformation estimation were carried out by
StaMPS/MTI.
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Figure 3. Procedures of SBAS-InSAR method based on SNAP-StaMPS workflow.

Taking the image of 12 November 2020 as the super-master image, the time baseline
threshold is set to 72d, and 90 interferometric pairs can be obtained. The small baseline
dataset combinations are shown in Figure 4.
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3.2. Procedure of Slope Hazard Identification along Highway

Unlike the large-scaled geological hazards, the artificial slope hazards along the
highway generally have the characteristics of small scope and scattered distribution. In
addition, the highway slope vegetation coverage rate is normally high; therefore, slope
hazards in the vegetation coverage area cannot be easily identified. Therefore, in the process
of identifying slope hazards along highways, more attention should be paid to information
such as terrain slope, aspect, and engineering history to improve the accuracy of judgment.
For this reason, the following two steps adopted the research on the identification of
potential slope hazard points.

3.2.1. Interpretation of InSAR Results

The SBAS-InSAR method is used to process the SAR images to obtain the average
annual ground deformation velocity along the highway. When deformation velocity is
positive, the ground is moving toward the satellite along the Line of Sight (LOS), and when
deformation velocity is negative, the ground moves away from the satellite. Applying
a velocity threshold of ±10 mm/yr, a series of abnormal areas can be filtered out. If the
deformation abnormal area coincides with slopes within the highway boundary, this area
can be considered as one potential slope hazard candidate.

3.2.2. Identification of Slope Hazards

In combination with the slope, aspect, geological condition, optical remote sensing im-
age, and historical hazard records of the study area, potential slope hazards are filtered out
through comparative analysis. To reduce the probability of misjudgment, field verification
study should be carried out and determine the slope hazards.

4. Results and Discussions
4.1. Interpretation of InSAR Results

Average ground deformation velocities within the study area are presented in Figure 5.
As shown in the velocity map in Figure 5a obtained by SBAS-InSAR method, the defor-
mation velocity of the study area ranges from −58.10 to 78.58 mm/yr. Most of the area
is stable with an average deformation velocity of 5.69 mm/yr, while the region north of
Chatian Town is observed to show an overall movement away from the satellite apparently.
It may be due to the regional overall ground surface movement. In the figure, a zoom
region at Huangtian Town is presented, and two local abnormal areas can be observed at
the bottom left and center of the figure in red color. In the present study, the focus is on the
slope along the highway; therefore, only the area A (approximately located on an artificial
slope) is taken into consideration in the following analysis.

According to the abnormal displacement shown in the ground deformation velocity
map, 22 potential hazards as shown in Figure 5b can be initially identified. In addition,
the historical slope hazards are also drawn in Figure 5b. By comparing above data, it
can be found that the hazards identified in this study are mainly distributed to the south
of Chatian Town, which is basically consistent with the spatial distribution of historical
hazards. Furtherly, it can be suggested that the granite residual layer and the Quaternary
soil layer widely distributed south of Chatian Town are more vulnerable to slope hazards.
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4.2. Identification of Slope Hazards and Field Validations

According to the procedures of slope hazard identification as described in Section 3.2,
the slope and the aspect for the study area are analyzed and introduced as shown in
Figure 6. From Figure 6a, the potential hazards are concentrated in the areas with relative
high slope value, especially from Huangtian Town to Zhukou Town. Considering the
aspect as presented in Figure 6b, the main reason is that the surface deformation obtained
by the InSAR method is a displacement component along the line of sight, rather than the
real value. The radar wave incident direction of the Sentinel-1A satellite ascending data
used in this study is about NE80◦. For slopes with dip direction (about NW350◦ or SE170◦)
orthogonal to this direction, it is difficult to judge the actual possible surface deformation
by the LOS deformation velocity. Therefore, in this study, the abovementioned situation
was excluded for slope hazard investigation.

Based on the above analysis, finally six potential slope hazards (named P1~P6) were
identified as illustrated in Figure 7. As seen from the figure, the areas of P3 and P4 are in
nearly the same positions where historical hazards occurred. To summarize, the single
hazard area is not large and is highly coincident with the highway cutting slope regions
rather than natural slopes.
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To better analyze the potential hazards, annual average deformation velocity and
time-series deformation of typical PS points are plotted in Figures 8 and 9, respectively. In
Figure 8, the studied PS points are marked and numbered (e.g., ps-4-1 representing the first
PS point selected for slope potential hazard P4) consequently. Considering the comparison
between different slope, the initial deformation for each PS point is recalculated to zero.

The potential hazard P1 showed obvious deformation on the InSAR results map. The
deformation area is mainly located in the south part of the slope, as shown in Figure 8. The
deformation evolution of point ps-1-1 indicates that the slope has a continuous downward
moving trend during the study period.

The abnormal deformation area of potential hazards P2 and P5 is relatively small
(Figure 8), and the time-series deformation of P2 shows more obvious reduction trend
than P5.

P3 is located on the cutting slope of the bridge-to-subgrade transition zone, covered
with dense natural vegetation. It can be seen from Figure 8 that the obvious deformation
abnormal area is consistent with the slope range. Two chosen PS points are located at
the center (ps-3-1) and crest (ps-3-2) of the slope, respectively. In Figure 9, the defor-
mation evolution of two positions is both slightly decreasing before 31 December 2020;
after the date, the crest remains stable while the center of the slope becomes to move
downward apparently.
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Figure 8. Average deformation velocity map for the identified potential hazards.
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For P4, two obvious abnormal deformation areas can be seen from Figure 8. One area
is located on the existing cutting slope (PS points ps-4-1 and ps-4-2), and the other is a bare
slope (PS points ps-4-3 and ps-4-4). The overall deformation of this area is not large, but
obvious decreasing can be seen of ps-4-1 and ps-4-3 during 7 October to 30 December 2020.
Consequently, the LOS deformations for four PS points stay still and begin to increase
after 28 February 2021. This is a strange phenomenon and may be explained by the
decomposition of ground deformation as following.

As the highway from Chatian to Zhukou is approximately parallel to the azimuth
direction of Sentinel-1A satellite, the cutting slope can be classified into two types, i.e.,
westward slope and eastward slope. Figure 10 illustrates the decomposition of vertical
deformation and down-slope deformation for both westward and eastward slopes [37,38].
The unit deformation vectors along down-slope or vertical direction and the corresponding
projections to the LOS direction for four situations are shown in the figure. Then, the
possible movement process can be traced back from the LOS deformation according to
Figure 10. According to Figure 7, P1~P3 and P5~P6 are covering the areas of westward
slope. In this case, vertical and down-slope deformation are both negative value in LOS
direction (away from the satellite) in any slope dip angle. Unlike other slopes, the dip
direction of P4 is mainly westward. As ascending orbit data are used in the study, for
westward slope, a vertical deformation on the slope always appears to be away from the
satellite in the LOS direction (see Figure 10). However, a down-slope deformation can
be either close to or away from the satellite when the slope dip angle is larger or smaller
than the incidence angle. In terms of P4, the dip angle is around 34◦~39◦ and less than the
average incidence angle 43.1◦. Thus, the down-slope deformation dominated deformation
is positive value in LOS direction. Back to Figure 9, it is suggested that the area may
experiences downward movement with decreasing LOS deformation (during 7 October
to 30 December 2020) and down-slope movement with increasing LOS deformation (after
28 February 2021).

P6 also shows obvious abnormal deformation areas, which are mainly distributed on
the north side of the slope, as shown in Figure 8, with the concrete crest drain ditch as the
boundary. It can be observed in Figure 9 that the deformation value of ps-6-2 fluctuates
slightly in a small range, but the point ps-6-1 keeps decreasing.

To verify identification results, the field investigation has been carried out from 14 May
to 17 May 2021. Typical photographs are presented in Figures 11 and 12 for potential
hazards P1~P6.
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Figure 11. Field validation photographs of potential hazards P1~P5. (a) Joint crack at the 2nd-level
slope. (b) Shallow landslide on top of the 2nd-level slope. (c) Full view of P2. (d) Excavation on the
slope. (e) Slope surface washout. (f) Vegetation cover on slope.
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Figure 11a show obvious joint cracks on the second-level slope with a width of about
1 cm and an extension of about 5 m. The cracks are located roughly at the same area where
the deformation velocity of InSAR results is the largest. In addition, shallow landslides
were also found near the sidewalk (Figure 11b).

From Figure 11c,f, dense vegetation can be seen on the slope for both P2 and P5, but
there was no obvious sign of slope deformation or instability. Therefore, the possibility of
slope hazards P2 and P5 is ruled out.

Field investigations showed that there were obvious excavation traces on the slope
surface (see Figure 11d). Based on consultations from highway maintenance staffs, the
slope surface was damaged by artificial excavation around January 2021. It can be indicated
that the highway slope deformation identification based on InSAR technology can well
reflect the dynamic status of the slope.

Through field survey on P4, it is found that the slope has been well vegetated, and
there are local surface washout and cracks on the slope (Figure 11e).
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Figure 12 is for potential hazard P6, and it is reported that the several historical hazards
has occurred on the slope. Two slope stabilization systems can be found in Figure 12a,b,
and the new structure began to build in 2020 and was finished around August 2020. As
described in Figure 8, the crest drain ditch can be the dividing line of area P6, and the south-
side of the drain ditch is artificially regreened (Figure 12b), while the vegetation on the
north-side is sparsely covered (Figure 12d). It is found that the no vegetation coverage zone
is basically consistent with the abnormal deformation area identified by InSAR method.
The field investigation also found that there were local shallow landslides (Figure 12a) and
cracks on the drain ditch structure (Figure 12c) at the 2nd-level slope. There is a rocky
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layer exposed on the 3rd-level and 4th-level slope, and it has been stabilized by a flexible
protection net combined with grid beams (Figure 12b). Since the begin date of the InSAR
calculation is just near the completion date of the new slope stabilization structure, it
is speculated that the slope deformation may be postconstruction settlement caused by
construction disturbance.

4.3. Feasibility of SBAS-InSAR Technique in Highway Slope Inspection

SBAS-InSAR technology was used to investigate potential artificial slope hazards
along the Longqing Highway. A total of six potential hazards were identified and surveyed
manually in the field. The results of InSAR analysis are basically consistent with the on-site
verification, which proves that SBAS-InSAR technique can well catch the deformation of
slope and reflect the safe status of the slopes.

For slope maintenance inspection, the purpose is to find out potential slope hazards
and to limit the risk of slope failure to minimum. According to the Technical Specification
for Expressway Slope Maintenance (DB 33/T 2099-2018, a provincial standard of Zhejiang,
China) [39] (p. 4) and Guide to Slope Maintenance (Geoguide 5, a recommended standard
of Hongkong, China) [40] (p. 53), the routine inspection frequency is normally larger
than once per two weeks, as shown in Table 1. Moreover, the entire length of highway
should be tested. Thus, the InSAR method can meet the frequency requirement of slope
inspection. Taking account of slope safety, the frequency of InSAR inspection can be set as
once every 2 months, referring to the abovementioned standards. During the rainy season,
the frequency can be adjusted to once or twice every month based on the evolution of
deformation and duration/intensity of rainfall. To ensure the quality of results, the time
span is recommended to be 6–8 months before each inspection date.

Table 1. Frequency of routine maintenance inspections.

Hongkong Standard Zhejiang Standard
Consequence-to-Life

Category Frequency Maintenance Grade 1 Frequency

Category 1 and 2 Once every year Grade 1 Once every week
Category 3 Once every 2 years Grade 2 Once every month
Category 3

located in a remote area 2 React to known hazard Grade 3 Once every 2 month

1 Determined based on safety risk classification and traffic volume. 2 A disturbed terrain feature is in a remote area if it is surrounded by
natural terrain such that a failure would bring no significant direct or indirect consequences.

However, there remain several limitations of SBAS-InSAR. As discussed in Figure 10,
the orbit track and slope dip influences the deformation detection significantly [38]. In
specific cases of slope dip and dip angle, the InSAR method can be insensitive to the defor-
mation. Additionally, most artificial slopes should be regreened after excavation; therefore,
high-density coverage of vegetations also reduce the accuracy of InSAR interpretation. In
the situation, corner reflector (CR) can be an aid to natural ground objects to supplement PS
candidates and to remove the residual topographic phase error [41,42]. From an economic
point of view, the cost of SBAS-InSAR method is relatively low, by saving part of the labor
input. Nevertheless, the SBAS-InSAR method cannot replace manual inspections in the
maintenance of highway, as signs of drainage leakage and cracking on slope surface can
be hardly detected by SBAS-InSAR. In addition, the InSAR method has a capability of
deformation velocity detection at the level of mm/yr to m/yr; thus, it can be useful for slow
to extremely slow slope events rather than fast slope movement. For fast slope movement,
approaches with higher monitor frequency should be adopted, such as terrestrial laser
scanning (TSL), unmanned aerial vehicles (UAV), ground-based InSAR, and GNSS [21,43].

To summarize, the SBAS-InSAR technique is suitable for assistance in slope routine
inspection.
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5. Conclusions

In this study, the artificial slopes along Longqing Highway were selected as study
object. The SBAS-InSAR technique was applied to obtain the ground deformation of 1 km
buffer area along the highway. Potential hazards were detected based on deformation
abnormal area preliminarily and then filtered by terrain, geological, and historical hazards
data. Field verification study was then conducted for the identification results, and the
feasibility of SBAS-InSAR technique in highway slope inspection was analyzed.

The results show that the identified potential slope hazards are mainly distributed
to the south of Chatian Town, where the granite residual layer and the Quaternary soil
layer are widely distributed. It is in good consistence with the areas of historical hazards.
Six slope potential hazards were identified based on slope terrain, geological data, and
historical hazard record. The interpretation of InSAR basically accord with the on-site
verification. It is proved that SBAS-InSAR technique can well catch the deformation of
slope and reflect the safe status of the slopes. Finally, the SBAS-InSAR technique can be
suitable for assistance in slope routine inspection.
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