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Abstract: In the intelligent manufacturing of furniture, the power signal has the characteristics of
low cost and high accuracy and is often used as a tool wear condition monitoring signal. However,
the power signal is not very sensitive to tool wear conditions. The present work addresses this issue
by proposing a novel woodworking tool wear condition monitoring method that employs a limiting
arithmetic average filtering method and particle swarm optimization (PSO)-back propagation (BP)
neural network algorithm. The limiting arithmetic average filtering method was used to process
the power signal and extracted the features of the woodworking tool wear conditions. The spindle
speed, depths of milling, features and tool wear conditions were used as sample vectors. The PSO-BP
neural network algorithm was used to establish the monitoring model of the woodworking tool wear
condition. Experiments show that the proposed limiting arithmetic average filtering method and
PSO-BP neural network algorithm can accurately monitor the woodworking tool wear conditions
under different milling parameters.

Keywords: tool wear; milling parameters; power signals; particle swarm optimization; back propa-
gation neural network

1. Introduction

Woodworking tools are one of the most important tools in the intelligent manufactur-
ing of furniture [1,2]. The cutting edge of the tool and the material to be processed interact
to produce a force that causes the tool to wear [3]. Severe tool wear will cause defects
such as tearing, digging and cutting of the edge surface of the wooden furniture during
cutting [4], which affects the surface roughness of the edge processing of the wooden
furniture and the overall appearance of the wooden furniture [5–7]. Timely replacement
of worn tools can improve product quality and reduce production costs [8–10]. Therefore,
research on the monitoring technology of woodworking tool wear conditions is of great
significance to improve the cutting performance of woodworking tools and promote the
development of intelligent furniture manufacturing technology.

Wood-plastic composite materials (WPC) are composite materials made of wood
powder and thermoplastics which are widely used in furniture manufacturing, such as
decorative panels, railings, cladding, wall panels, windows and door frames [11]. WPC has
extremely high corrosion resistance and a low manufacturing cost, and it is a recyclable en-
vironmentally friendly green material. With superior mechanical properties, the utilization
rate and market share of WPC are gradually increasing [12]. In the process of producing
WPC, the size of wood powder particles is different, which causes the internal structure
of WPC to have inhomogeneity properties [13]. Inhomogeneity causes interference to
the power signal of the machine tool spindle in the cutting of WPC, including periodic
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disturbances of current and voltage fluctuations and random disturbances of the machine
tool vibration. Therefore, the monitoring signals collected during the cutting process
of woodworking tools contain various forms of interference [14,15], and the monitoring
signals need to be processed.

The monitoring method of tool wear conditions is mainly based on the cutting force
signal [16–19]. Ma et al. collected cutting force signals in the milling of TC18 and used
a convolutional bidirectional long- and short-term memory network (CNN + BILSTM)
and a convolutional bidirectional gated loop unit (CNN + BIGRU) to accurately monitor
tool wear conditions [20]. However, the cutting force signal is affected by the structure
of the machine tool and the processing environment during the manufacturing process
of wooden furniture. The power signal is directly related to the cutting force signal, and
the power signal acquisition is not affected by the clamping structure of the machine tool.
Dong et al. used a discrete wavelet transform to process the spindle power signal during
WPC milling, and used the BP neural network optimized by the genetic algorithm to train
the monitoring model to monitor the tool wear conditions [21]. Therefore, the power signal
can be used in tool wear condition monitoring.

The accuracy of tool wear monitoring depends on the authenticity of the features
extracted from the signal and the reliability of the monitoring model. Researchers have
conducted a lot of explorations on tool wear conditions monitoring technology using
power signals. In the feature extraction method, Shen et al. used the Hilbert–Huang
transform (HHT) algorithm to extract two features from the spindle power signals of
different machining states to detect tool wear, and found that the extracted features are
highly correlated with the tool wear condition [22]. Gajewski et al. used the discrete wave
transform (DWT) to process the noise of the power signal and specified the features of the
power signal, which was later used as the input data of the fuzzy neural network to classify
the tool wear conditions [23]. In the monitoring model, Rodrigo et al. measured and
classified the cutting power and acoustic emission signals in the milling process; they then
used a probabilistic neural network to establish a tool wear monitoring model, and found
that the monitoring accuracy reached 91% [24]. Du et al. considered cutting parameters
and tool wear values as variables and used time-frequency domain analysis to extract
important features of vibration signals as input for neural network pattern recognition.
They then established a wear condition monitoring model through the adaptive learning
of a BP neural network [25]. Compared with a probabilistic neural network, the BP neural
network has excellent ability to process classification issues, which are widely used in the
field of fault diagnosis [26]. The classification accuracy of the BP neural network is affected
by the weight, threshold, and the number of hidden layers [27]. Meanwhile, the BP neural
network has the shortcoming of rapid convergence; it is also easy for this network to fall
into the minimum value. These problems can be solved using intelligent optimization
algorithms [28]. Feng et al. used the adaptive particle swarm optimization (PSO) algorithm
to overcome the shortcomings of BP neural networks, which are easily trapped in the
local optimum and have a long training time [29]. The particle swarm optimization (PSO)
algorithm has characteristics such as rapidity and robustness, which are widely used in the
optimization of the network parameters of the BP neural network.

The purpose of this research is focused on the problem of woodworking tool wear
condition monitoring and proposes a limiting arithmetic average filtering method and PSO-
BP neural network algorithm. The method includes three processing stages. In stage one,
the spindle power signals under different spindle speeds, depths of milling and tool wear
conditions were collected. In stage two, the limiting arithmetic average filtering method
is used to process the spindle power signal and extract the features of the woodworking
tool wear conditions. Finally, the spindle speed, depths of milling, features and tool wear
conditions were used as sample vectors, and subsequently, the PSO-BP neural network
algorithm was used to establish a woodworking tool wear monitoring model through the
sample to achieve high-precision monitoring of woodworking tool wear conditions under
different milling parameters.
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2. Experimental Program

The wood-plastic composite material (WPC) prepared by Kolo Material Co., Ltd.
(Hefei, China) was selected as the cutting workpiece. The size of the cutting workpiece was
960 mm × 630 mm × 8 mm. The main components and mechanical properties are shown
in Table 1.

Table 1. Workpiece material chemical composition and mechanical properties.

Content Mechanical Properties

PVC 52.60% Moisture content 0.61%
Calcium powder 15.78% Flexural strength 20.2 Mpa

Wood fiber 15.78% Density 0.81 g/cm3

Others 10.58%

The milling test was carried out on the MGK01 high-speed wood composite machining
center manufactured by Nanxing Machinery Co., Ltd. (Dongguan, China).

The carbide single-tooth shank milling cutter produced by Boshen Prigo (Shanghai)
Tools Co., Ltd. (Shanghai, China) was selected as the cutting tool. The tool geometries are
shown in Table 2.

Table 2. Tool geometries.

Diameter Rake Angle Wedge Angle

12 mm 10◦ 45◦

The AN87300 three-phase power analyzer produced by Ainuo Intelligent Instrument
Co., Ltd. (Qingdao, China) was used to collect the power signal of the machine tool spindle.
The sampling frequency of the three-phase power analyzer is the same as that of the
machine tool, which is constant at 50 Hz. The power signal acquisition system is shown
in Figure 1. The three-phase analyzer was connected to the input terminal of the spindle
motor of the machine tool control box and the data processing computer to realize the
real-time acquisition of the spindle power signal.
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Figure 1. Power signal acquisition system.

The plan of the spindle power signal acquisition was planned by varying the milling
parameters, as shown in Table 3.

Table 3. Milling parameters.

Parameters Units Values

Feed Speed m/min 5
Spindle Speed r/min 6000, 8000, 10,000

Depth of Milling mm 0.5, 1.0, 1.5
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3. Description of the Proposed Method
3.1. Limiting Arithmetic Average Filtering Method

The limiting arithmetic average filtering method is a common method used to process
signals. The limiting arithmetic average filtering method can process the spindle power
signal and extract the features of the woodworking tool wear conditions. The steps of the
limiting arithmetic average filtering method are as follows:

Step 1: Set the maximum sampling deviation (Y) of the limiting filter method.
Step 2: Use a high-precision three-phase power analyzer to collect the spindle power

signal when the machine tool is cutting the workpiece.
Step 3: Determine the deviation (Xi) of the two-adjacent data of the spindle power

signal according to the acquisition time sequence: When |Xi ≤ Y|, the two data are retained,
and when |Xi > Y|, the average value of the two data is used as the output result.

Step 4: Repeat the judgment until the filtering of a group of spindle power signals ends.
Step 5: Use the arithmetic average filtering method to arithmetically average the

filtered spindle power signal.
Step 6: Output the features of the woodworking tool wear conditions.

3.2. Back Propagation Neural Network

Rumelhart and McClelland proposed the back propagation neural network in 1985 [30].
The BP neural network is an effective nonlinear problem modeling algorithm which has
wide applications in many research fields [31]. The performance of the BP neural network
depends on the network structure, training algorithm and parameter selection. Choosing a
suitable network structure and optimal weight set can make the BP neural network have
higher accuracy and convergence speed.

Figure 2 shows a common three-layer BP neural network structure. The BP neural
network includes input layer neurons (i1, i2), hidden layer neurons (h1, h2) and output
layer neurons (o1, o2). The input layer neuron and the hidden layer each contain a deviation
(b1, b2), and the hidden layer, the input layer neuron and the output layer neuron also
contain a weight (wi).
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3.3. Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm is a global random search algorithm
proposed by Kennedy and Eberhart based on the bird swarm foraging phenomenon [32].
The PSO algorithm has excellent global optimization capabilities and is often used to
optimize the parameters of neural networks. The PSO algorithm searches for the optimal
solution by designing a particle that simulates birds. The particles have two attributes:
speed and position. When each particle searches for the optimal solution, it continuously
marks itself as an individual extreme value, and shares the individual extreme value with
other particles until the optimal individual extreme value is found [33]. The speed and
position of the particles are adjusted by searching for individual extremums and global
optimal solutions [34].
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The classification accuracy of the BP neural network is affected by the weight, thresh-
old, and the number of hidden layers. The BP neural network has the shortcoming of
rapid convergence; furthermore, it is easy for this algorithm to fall into the minimum
value. These problems can be solved using intelligent optimization algorithms. The PSO
algorithm has characteristics such as rapidity and robustness, which are widely used in the
optimization of network parameters of BP neural network [35].

The PSO algorithm optimization of the BP neural network process is as follows:
Step 1: Initialize the parameters of the BP neural network and the relevant parameters

in the particle swarm algorithm.
Step 2: Update the speed and position of individual particles in the particle swarm.
Step 3: Update the individual extremum and global extremum in the particle swarm.
Step 4: Update the fitness of the particles and the global optimal fitness.
Step 5: Cycle the optimization.
Step 6: Output the optimal extremum and the weights and thresholds of the BP

neural network.

4. Monitoring Model Results
4.1. Spindle Power Data in Process Analysis

The tool wear condition is usually divided into three categories: initial wear (flank
wear is 0.1 mm), normal wear (flank wear is 0.2 mm) and rapid wear (flank wear is 0.3 mm),
as shown in Figure 3.
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The maximum sampling deviation (Y) was selected as 0.1 to process the spindle power
signal. Figure 4 shows the comparison of the features and the average value of the spindle
power signal under different milling parameters. In Figure 4, the average value of the
spindle power signal is numerically the same as the features of the woodworking tool wear
conditions. Therefore, it is effective to use the limiting arithmetic average filtering method
to extract the features of the woodworking tool wear conditions.
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Table 4 shows a sample of woodworking tool wear conditions under different milling
parameters. The spindle speed, depth of milling, and features of the spindle power signal
were used as input vectors, and the tool wear conditions were used as the output vector.

Table 4. Sample of woodworking tool wear conditions.

Sample ID Spindle Speed
(r/min)

Depth of Milling
(mm)

Flank Wear
(mm) Feature

1 6000 0.5 0.1 565.72
2 6000 0.5 0.2 570.42
3 6000 0.5 0.3 579.12
4 6000 1.0 0.1 576.49
5 6000 1.0 0.2 590.36
6 6000 1.0 0.3 603.87
7 6000 1.5 0.1 586.45
8 6000 1.5 0.2 608.27
9 6000 1.5 0.3 625.61

10 8000 0.5 0.1 647.43
11 8000 0.5 0.2 657.81
12 8000 0.5 0.3 664.42
13 8000 1.0 0.1 663.24
14 8000 1.0 0.2 683.28
15 8000 1.0 0.3 693.66
16 8000 1.5 0.1 675.63
17 8000 1.5 0.2 702.15
18 8000 1.5 0.3 718.02
19 10,000 0.5 0.1 714.15
20 10,000 0.5 0.2 722.81
21 10,000 0.5 0.3 728.82
22 10,000 1.0 0.1 734.11
23 10,000 1.0 0.2 749.88
24 10,000 1.0 0.3 760.90
25 10,000 1.5 0.1 752.41
26 10,000 1.5 0.2 772.47
27 10,000 1.5 0.3 786.35

4.2. Establishment of Monitoring Model

The PSO-BP neural network was used to establish a monitoring model for the wood-
working tool wear conditions in MATLAB (MathWorks Inc., Natick, MA, USA). The
evolutionary algebra of the particle swarm algorithm was 30, the minimum error was 0.001,
the particle swarm size was 40, the maximum flying speed of the particle was 0.5, the
maximum inertia factor was 0.9, and the minimum inertia factor was 0.3. The learning
rate of the BP neural network was 0.01, the number of training times was 20, the training
accuracy was 0.0001, and the number of hidden layers was 5 layers.

Figure 5 shows the fitness curve of the PSO algorithm of the monitoring model. When
the evolutionary algebra was 8, the fitness remained the same. The PSO algorithm reached
the state of convergence; the optimization effect of the PSO algorithm was the best, and the
prediction accuracy of the BP neural network was the highest.

Figure 6 shows the prediction accuracy of the established woodworking tool wear
monitoring model. The predicted output of all test samples in the figure is basically the
same as the actual expected output. Combined with the prediction error analysis of the
PSO-BP neural network algorithm in Table 5, it can be concluded from the table that the
maximum error rate of the test sample is 7.54%, the minimum error rate is 3.55%, and
the average error rate is 5.07%. Therefore, the woodworking tool wear monitoring model
established by using PSO-BP neural network algorithm can monitor the woodworking tool
wear conditions under variable milling parameters, and can achieve the effect of identifying
the woodworking tool wear conditions under variable milling parameters.
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Table 5. Error values of the test sample.

Text ID Actual Value Predictive Value Error Value Error Rate

1 0.1 0.0927 −0.0073 7.32%
2 0.2 0.1993 −0.0007 3.55%
3 0.2 0.1849 −0.0151 7.54%

Average 5.07%

In order to verify the reliability of the PSO-BP neural network algorithm, the es-
tablished model was run 10 times. Table 6 shows the average error rate of 10 runs; the
maximum average error rate is 15.93%, the minimum average error rate is 3.14%, the
average error rate (10 times) is 9.48%, and the model running time is 8.59 s. It can be
seen that the PSO-BP neural network algorithm has good reliability and fast calculation
speed. Therefore, the proposed PSO-BP neural network algorithm can effectively establish
a monitoring model for the woodworking tool wear conditions which can realize accurate
monitoring of the woodworking tool wear conditions.

Table 6. The analysis of error.

Run Average Error Rate

1 6.46%
2 10.36%
3 3.14%
4 7.57%
5 11.61%
6 8.42%
7 15.93%
8 4.27%
9 14.86%

10 12.21%
Average 9.48%
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4.3. Comparative Results of Monitoring Model Accuracy

In order to further verify the accuracy and reliability of the monitoring model estab-
lished by the PSO-BP neural network algorithm, the genetic algorithm (GA)-optimized BP
neural network algorithm was selected for reliability comparative analysis.

GA is an optimization algorithm developed based on Darwin’s theory of evolution
and Mendelian genetics; it is used for neural network parameter optimization and genetic
mechanism biological evolution processes [21,36]. Figure 7 shows the fitness curve of the
GA of the monitoring model. When the evolutionary algebra was 30 times, the genetic
algorithm could not reach the state of convergence. When the evolutionary algebra was
200 times, the GA still could not reach the state of convergence.
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Figure 8 shows the prediction accuracy of the monitoring model established using the
GA-BP neural network algorithm. It can be seen from the figure that the predicted output
of all test samples is basically the same as the actual expected output. Combined with the
GA-BP neural network algorithm prediction error analysis in Table 7, it can be concluded
that the maximum error rate of the test sample is 10.05%, the minimum error rate is 1.45%,
and the average error rate is 6.23%.
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Table 7. Error values of the test sample.

Text ID Actual Value Predictive Value Error Value Error Rate

1 0.1 0.1072 0.0072 7.20%
2 0.2 0.2029 0.0029 1.45%
3 0.2 0.2201 0.0201 10.05%

Average 6.23%

Table 8 shows the average error rate of 10 runs of the GA-BP neural network algorithm;
the maximum average error rate is 22.10%, the minimum average error rate is 6.10%, the
average error rate (10 times) is 10.81%, and the GA-BP neural network algorithm training
time is 91.53 s. The GA-BP neural network can effectively monitor the woodworking
tool wear conditions, but the long training time of the model restricts its application. The
proposed PSO-BP neural network algorithm is superior to the GA-BP neural network
algorithm in terms of error rate and training time. Overall, the proposed PSO-BP neural
network algorithm performs better than the GA-BP neural network algorithm.

Table 8. The analysis of error.

Run Average Error Rate

1 9.59%
2 12.03%
3 3.74%
4 10.86%
5 12.14%
6 22.10%
7 6.10%
8 14.40%
9 9.50%

10 7.60%
Average 10.81%

5. Discussion

This work presents a limiting arithmetic average filtering method and a particle swarm
optimization (PSO)-back propagation (BP) neural network algorithm to monitor the wear
of woodworking tools during the milling process. The proposed method can accurately and
quickly monitor the woodworking tool wear conditions under different milling parameters.
Table 9 demonstrates the performance comparison analysis of the monitoring model estab-
lished by the two algorithms. Compared with the GA-BP neural network algorithm [21],
the training time of the GA-BP neural network algorithm is much longer than that of
the PSO-BP neural network algorithm (91.53 s > 8.5 s), and the monitoring error is also
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higher than that of the PSO-BP neural network algorithm (10.81% > 9.48%). Overall, the
proposed algorithm performs better than the GA-BP neural network algorithm. Therefore,
the PSO-BP neural network algorithm is suitable for monitoring the woodworking tool
wear conditions under variable milling parameters.

Table 9. Comparative analysis of algorithm performance.

Performance PSO-BP Neural Network GA-BP Neural Network

Average Error Rate 9.48% 10.81%
Training Time 8.59 s 91.53 s

Evolutionary Algebra 8 NO

The proposed method is still in the theoretical stage. In the next stage, it will be
applied in actual production.

6. Conclusions

In this paper, a limiting arithmetic average filtering method and particle swarm
optimization (PSO)-back propagation (BP) neural network algorithm were used to monitor
the woodworking tool wear conditions in milling processing. At present, the monitoring
level of the woodworking tools wear conditions is still low, and advanced woodworking
tool wear monitoring technologies urgently need to be studied to improve the cutting
performance of woodworking tools and promote the development of intelligent furniture
manufacturing technology. The proposed limiting arithmetic average filtering method was
used to process the power signal and extracted the features of the woodworking tool wear
conditions. The spindle speed, depths of milling, features and tool wear conditions were
used as sample vectors. The BP neural network optimized by PSO was used to establish a
monitoring model for the woodworking tool wear conditions. Compared with the genetic
algorithm (Table 9), the optimization effect of PSO on the BP neural network is obviously
better than the genetic algorithm. PSO can quickly optimize the weights and thresholds of
the BP neural network and reduce the training time of the BP neural network. The error of
the proposed monitoring model established by the PSO-BP neural network algorithm is
9.48%, and the training time is 8.59 s. Therefore, the proposed method can accurately and
quickly monitor the woodworking tool wear conditions under different milling parameters.

The proposed method speeds up the process of intelligent furniture manufacturing
and reduces the cost of woodworking tool wear condition monitoring technology. However,
the delay effect of the power sensor is not considered, and the hysteresis of the spindle
power signal is ignored. In future research, in order to further improve the accuracy of
the woodworking tool wear state monitoring model, the question of how to eliminate the
hysteresis of the power signal will become the focus.

Author Contributions: Conceptualization, W.D. and X.X.; methodology, W.D. and X.X.; writing—
original draft preparation, W.D. and X.Y.; writing—review and editing: W.D. and Y.M.; supervi-
sion, X.X.; funding acquisition, X.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2018YFD0600304),
Postgraduate Education Reform Project of Jiangsu Province (SJCX20_0267) and Technology Innova-
tion Alliance of Wood/Bamboo Industry (TIAWBI202010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the College of Furnishings and Industrial
Design of Nanjing Forestry University.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 9026 12 of 13

References
1. Xu, W.; Wu, Z.; Zou, Y. Development and Application of High-Valued Wood Products Made of Fast-Growing Poplar. Adv. Mater.

Process. 2011, 311–313, 117–121. [CrossRef]
2. Liu, M.; Xu, G.; Wang, J.; Tu, X.; Liu, X.; Wu, Z.; Lv, J.; Xu, W. Effects of Shellac Treatment on Wood Hygroscopicity, Dimensional

Stability and Thermostability. Coatings 2020, 10, 881. [CrossRef]
3. Zhu, Z.; Buck, D.; Cao, P.; Guo, X.; Wang, J. Assessment of Cutting Forces and Temperature in Tapered Milling of Stone-Plastic

Composite Using Response Surface Methodology. JOM 2020, 72, 3917–3925. [CrossRef]
4. Zhu, Z.; Buck, D.; Guo, X.; Cao, P. High-quality and high-efficiency machining of stone-plastic composite with diamond helical

cutters. J. Manuf. Process. 2020, 58, 914–922. [CrossRef]
5. Li, R.; He, C.; Wang, X. Evaluation and Modeling of Processability of Laser Removal Technique for Bamboo Outer Layer. JOM

2021, 73, 2423–2430. [CrossRef]
6. Wu, S.; Tao, X.; Xu, W. Thermal Conductivity of Poplar Wood Veneer Impregnated with Graphene/Polyvinyl Alcohol. Forests

2021, 12, 777. [CrossRef]
7. Li, R.; He, C.; Chen, Y.; Wang, X. Effects of laser parameters on the width of color change area of poplar wood surface during a

single irradiation. Eur. J. Wood Wood Prod. 2021, 79, 1109–1116. [CrossRef]
8. Nouni, M.; Fussell, B.K.; Ziniti, B.L.; Linder, E. Real-time tool wear monitoring in milling using a cutting condition independent

method. Int. J. Mach. Tools Manuf. 2015, 89, 1–13.
9. Spinelli, R.; Glushkov, S.; Markov, I. Managing chipper knife wear to increase chip quality and reduce chipping cost. Biomass

Bioenergy 2014, 62, 117–122. [CrossRef]
10. Facello, A.; Cavallo, E.; Magagnotti, N.; Paletto, G.; Spinelli, R. The effect of knife wear on chip quality and processing cost of

chestnut and locust fuel wood. Biomass Bioenergy 2013, 59, 468–476. [CrossRef]
11. Guo, X.; Wang, J.; Buck, D.; Zhu, Z.; Guo, Y. Machinability of wood fiber/polyethylene composite during orthogonal cutting.

Wood Sci. Technol. 2021, 55, 521–534. [CrossRef]
12. Sohn, J.S.; Cha, S.W. Effect of Chemical Modification on Mechanical Properties of Wood-Plastic Composite Injection-Molded

Parts. Polymers 2018, 10, 1391. [CrossRef]
13. Wargula, L.; Wojtkowiak, D.; Kukla, M.; Talaska, K. Symmetric Nature of Stress Distribution in the Elastic-Plastic Range of

Pinus L. Pine Wood Samples Determined Experimentally and Using the Finite Element Method (FEM). Symmetry 2021, 13, 39.
[CrossRef]

14. Zhu, Z.; Buck, D.; Guo, X.; Cao, P.; Wang, J. Cutting performance in the helical milling of stone-plastic composite with diamond
tools. CIRP J. Manuf. Sci. Technol. 2020, 31, 119–129. [CrossRef]

15. Wargula, L.; Kukla, M. Determination of maximum torque during carpentry waste comminution. Wood Res. Slovakia 2020, 65,
771–783. [CrossRef]

16. Saglam, H. Tool wear monitoring in bandsawing using neural networks and Taguchi’s design of experiments. Int. J. Adv. Manuf.
Technol. 2011, 55, 969–982. [CrossRef]

17. Jaworski, J.; Kluz, R.; Trzepiecinski, T. Operational tests of wear dynamics of drills made of low-alloy high-speed HS2-5-1 steel.
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