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Abstract: Named entity recognition (NER) is a fundamental task in many natural language processing
(NLP) applications, such as text summarization and semantic information retrieval. Recently, deep
neural networks (NNs) with the attention mechanism yield excellent performance in NER by taking
advantage of character-level and word-level representation learning. In this paper, we propose
a deep context-aware bidirectional long short-term memory (CaBiLSTM) model for the Sindhi
NER task. The model relies upon contextual representation learning (CRL), bidirectional encoder,
self-attention, and sequential conditional random field (CRF). The CaBiLSTM model incorporates
task-oriented CRL based on joint character-level and word-level representations. It takes character-
level input to learn the character representations. Afterwards, the character representations are
transformed into word features, and the bidirectional encoder learns the word representations. The
output of the final encoder is fed into the self-attention through a hidden layer before decoding.
Finally, we employ the CRF for the prediction of label sequences. The baselines and the proposed
CaBiLSTM model are compared by exploiting pretrained Sindhi GloVe (SdGloVe), Sindhi fastText
(SdfastText), task-oriented, and CRL-based word representations on the recently proposed SiNER
dataset. Our proposed CaBiLSTM model achieved a high F1-score of 91.25% on the SiNER dataset
with CRL without relying on additional handmade features, such as hand-crafted rules, gazetteers,
or dictionaries.

Keywords: Sindhi named entity recognition; recurrent neural networks; CaBiLSTM; self-attention
mechanism; contextual representation learning

1. Introduction

The Named Entity Recognition system recognizes named entities (NEs) and classifies
them into predefined categories, such as a person, location, organization, and time [1]. It is
used as the first step in question answering [2], information retrieval [1], text summariza-
tion [3], machine translation [4], and more [5]. A series of neural NER models have been
proposed over the past decade for English [6–9], Chinese [10–12], Japanese [13], Urdu [4,14],
and multilingual systems [6,15], which have achieved state-of-the-art performance. The
NER task in Asian languages [16] has recently attracted many researchers due to its im-
portance and widespread NLP applications. Still, Sindhi has not been studied well mainly
because of the unavailability of labeled datasets [17,18].

Sindhi has a complex morphological and syntactical structure [19] that originates
from Arabic, Hindi, Sanskrit, and Persian [18,20]. Context sensitivity in writing and
comprehension are the its main characteristics [21]. Unlike other languages, Sindhi has
spelling variations, ambiguities in suffixes, and different writing styles (inclusion and
exclusion of space), which further contribute to increasing the difficulty in language
processing and the NER [17] task. The NER in the English language has significantly
benefited from its capitalization rule, part-of-speech tagging, and availability of other
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language resources [4]. On the contrary, Sindhi has no capitalization rule, which makes
difference between plain text and NEs [17]. Conversely, digital processing also suffers
from the scarcity of part-of-speech tagger and gazetteer resources [18]. Additionally,
morphological richness in Sindhi leads to ambiguities, which make the NER task more
challenging as compared to western languages [7]. We summarize the challenges related to
Sindhi NER and characteristics in Table 1. Some of these ambiguities may also be found in
other Asian languages, such as Urdu [4].

Table 1. A list of the ambiguities related to Sindhi NER, along with examples.

Ambiguity Description

Lack of capitalization

The capitalization rule in the English language is an important
characteristic to enhance the performance of the NER system. However,
there is no difference between NEs and plain text in Sindhi language.
Thus, NER becomes challenging task.

Context sensitivity

1. Due to change in the context, a token in a sentence that refers to an NE
may change its type or may not remain an NE. Such as the name of a girl

(pronounced as Sindhu) is labeled as PERSON, whereas it also refers
to the name of the river labeled as LOC (location) in the SiNER dataset.
However, as a verb (pronounced as Sandhou), which means ’partition’, it
does not belong to NE.
2. Ambiguities in the person names are also common. An example of a
person’s name (Wazeer- ) is also tagged as the TITLE of a person
because it also means minister. The name of a girl (Suhnhi- ) is also
an adjective, which means beautiful.
3. The country name Syria (Shaam- ) tagged as GPE (geopolitical
entity) is also a name of person (Shaam- ), and it also means evening.

Free word order

The sentence is normally written in subject-object-verb order, but all
writers do not follow the same writing order. For example, the sentence
“Wazeer drives a car" is translated as (transliteration is Wazeer
car halai tho), as well as (transliteration is Car Wazeer halai
tho). Such change in sentence order makes the identification of NEs more
difficult.

Agglutinative and
inflectional
morphology

An NE may either change its type or even may not remain a name when
connected with other words, which makes Sindhi NER a challenging
task. For example, a person’s name ( -Mukhtiyar) does not remain
an NE when combined with ‘khud’ forms ( khud-mukhtiyar),
which means ‘autonomous‘.

More recently, NN-based models have attained a state-of-the-art status in NER [6,15,
22,23] and other sequence tagging tasks [8,24]. These models primarily rely on the feature
representation at character-level [10,11], word-level [25,26], and joint character-level and
word-level [9,13] to encode a word boundary and its context. Moreover, task-specific neural
representation learning [27,28] has been widely used to boost the performance of NER.
However, the limitation of the NN-based encoder-decoder models is their fixed-length
connection [29] of the intermediate semantic vector because the encoder compresses the
sequence of information into a fixed-length vector.

The proposed CaBiLSTM model has the ability to tackle the problems of context
sensitivity, spelling variations, and ambiguities related to Sindhi NER. Firstly, we pretrain
character-level and word-level SdGloVe and SdfastText on the recently proposed unla-
beled corpus [30] and use task-specific representations. Then, we propose a CaBiLSTM
model by incorporating task-oriented CRL based on joint character-level and word-level
representations. The proposed model takes character-level input to learn the character
representations. Then, the character representations are transformed into contextual word
features. The output of the final bidirectional long short-term memory (BiLSTM) encoder is
fed to self-attention [31] through a hidden layer before decoding [11] to tackle the limitation
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of the encoder-decoder. Finally, we employ the CRF decoder for the prediction of the label
sequence.

We compare the baselines and the proposed CaBiLSTM model by exploiting external
SdGloVe, SdfastText, task-specific, and CRL-based representations. The synopsis of our
novel contributions is provided below:

• Our main contribution is the design of a neural model for Sindhi NER by taking into
account relations between the entity pairs. The proposed CaBiLSTM model learns the
token-level structure of sentences to capture the dependency of a whole sentence. We
combine self-attention into the BiLSTM encoder to deeply capture semantic information
and lexical features to boost the model’s performance. The CaBiLSTM model relies on the
contextual representations that include task-specific NE-based knowledge.

• To alleviate the low-resource problem for training neural models, we train word-level
and character-level SdGloVe and SdfastText representations on the unlabeled corpus.
To highlight the significance of the proposed model, we compare the neural baseline
models with the proposed CaBiLSTM model while exploiting pretrained SdGloVe,
SdfastText, and task-specific character-level and word-level representations.

• We investigate the performance gap between classical (pretrained) and task-specific
contextual word representations in RNN variants of long short-term memory (LSTM),
BiLSTM, and BiLSTM-CRF to predict and classify NEs in the SiNER dataset. Further-
more, we analyze the influence of dropout on the recurrent dimensions to mitigate the
overfitting problem and evaluate the context window size (CWS) for selecting optimal
hyperparameters. We attain new state-of-the-art results and outperform existing
systems on the publicly available SiNER dataset.

The remaining sections of the paper are organized as follows. The previous work
on the Sindhi NER task and a related variety of recent neural NER models are discussed
in Section 2. A detailed description of the proposed methodology is given in Section 3.
The experimental setup to evaluate different approaches is illustrated in Section 4, while
Section 5 discuses the results and analysis. Lastly, Section 6 provides the summary of this
research.

2. Related Work

In this section, we address the state-of-the-art models related to Sindhi NER techniques
and deep learning-based approaches in NER.

2.1. Sindhi Named Entity Recognition

The approaches utilized for Sindhi can be classified into rule-based and machine
learning-based. The rule-based methods have primary deficiencies, such as they do not
have the potency and manageability [32]. Firstly, they require a high development cost
and the continuous maintenance of rules when new NEs are added to the language.
Secondly, one must have fluency and expert skills in the target language for rules generation.
Additionally, the rules are generic and cannot be applied to other languages. Thirdly, the
generation of rules is practically more time-consuming. A pioneer rule-based Sindhi NER
model was proposed by Hakro et al. [33] with a reported accuracy of 97%. Their dataset
consists of 200k tokens and ten entity types. However, their work lacks the open-source
implementation for further verification and extension. Afterwards, Nawaz et al. [34]
proposed a rule-based method by using an indexing approach to deal with the contextual
ambiguities related to the Sindhi NER. However, their work lacks experimental results,
which signify the usage of rules to deal with ambiguities for developing an automatic
NER system. Another rule-based system [2] addresses the Sindhi NER problem, which
was evaluated on a small number of 936 tokens only, with an accuracy of 98.71%. Their
approach is also language-dependent and tested on a small number of tokens. Moreover,
NER is a sequence labeling problem usually evaluated through classification metrics, such
as precision, recall, and F1-score [35], but Nawaz et al. [34] and Jumani et al. [2] used
accuracy metrics for assessing their rule-based models.
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2.2. Neural NER Approaches

Language-independent NER models like ours have been proposed in the past without
any language-specific setting. Lample et al. [9] introduced neural architectures mainly
based on the BiLSTM network that relied on character-level, word-level representations
and reported the best results in four languages. Kuru et al. [36] proposed a character-based
NER model using the BiLSTM network. It is empirically shown that the character-level rep-
resentation learning is superior compared to word-level representations as the basic input
features. Misawa et al. [13] used a convolutional neural network (CNN) for character-
level representation learning, BiLSTM encoder, and CRF for tag prediction. Empirical
results show that their model outperformed state-of-the-art neural models in the Japanese
NER. Das et al. [37] used word representations to tackle the NER problem in the Ben-
gali language, with the hypothesis that word-level representations are useful because
they belong to the same NE category, such as the name of an organization in the vector
space of embedded words. Their proposed technique outperformed standard baseline
approaches that use cluster labels of word representations and gazetteers constructed from
Wikipedia.Huang et al. [12] integrated self-attention in the BiLSTM-CRF to address the
problem of Chinese NER using character-level and word-level representation learning.
Their results show that the model yields an increased F1-score on two different datasets.
Moreover, Jia and Ma [11] also introduced character-level representation learning for the
Chinese NER task. Their model is mainly based on a self-attention mechanism that dynami-
cally decides how much information to use from character-level or glyph-level components.
The empirical results on two datasets show that their proposed model performs better
than existing state-of-the-art Chinese NER systems. Our work also relates to language-
independent NER approaches [11,13,38]. A hybrid NER approach proposed by [39] in-
tegrates the Support Vector Machine (SVM), dictionaries of Persian NEs, and grammar
rules for the Persian language. Their hybrid model yields comparable performance with
existing state-of-the-art NER models in other languages. More recently, Yamada et al. [6]
proposed a neural model by incorporating the word-level and entity-level contextualized
representations, entity-aware self-attention, and bidirectional transformer, which obtain
state-of-the-art results. Luo et al. [40] proposed a BiLSTM-based model by incorporating
contextual representations and label embedding attention. Their empirical results show the
state-of-the-art performance on three benchmark NER datasets. A BiLSTM-based model
proposed by [15] tackles the problem of boundary tag sparsity and surpasses the existing
state-of-the-art NER systems. These models extract and classify NEs, such as person names,
location, organization, date, and others, from the labeled datasets. We propose a CaBiLSTM
neural model for NE extraction and classification by considering relations between the
entity pairs. Our proposed model relies on joint character-level and word-level contextual
representations, which contain task-specific knowledge or the knowledge-base of NEs, a
BiLSTM encoder, self-attention, and a CRF decoder.

3. Methodology

This section describes neural baseline models, the pretraining of classical SdGloVe,
SdfastText, and task-specific character-level and word-level representations, CRL, and how
our CaBiLSTM model is designed for the Sindhi NER task.

3.1. Representation Learning

The representation learning aims to capture the useful semantic, syntactic, and mor-
phological information from raw text [25,26] or labeled text [27] for multiple NLP tasks [3],
including NER [13,41]. Generally, characters or words are converted into vector representa-
tions of real numbers in the embedding process. Such representations capture the syntax
and semantics of the given vocabulary [30], enabling us to perform various mathematical
operations. This section illustrates pretrained uncontextualized representation learning
algorithms of SdfastText, SdGloVe, and task-specific contextual representations.
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3.1.1. Uncontextualized Representation Learning

GloVe [25] and fastText [26] are examples of pretrained uncontextual word representa-
tion models, which encode each word from the given input in a fixed vocabulary as a vector
that captures semantic information. Typically, such representations are trained over a large
corpus, such as Common Crawl or Wikipedia corpus [28]. We utilize an open-sourced
recently developed large Sindhi text corpus [30] for unsupervised uncontextual represen-
tation learning using GloVe and fastText models. We jointly pretrain SdfastText https:
//github.com/facebookresearch/fastText/#building-fasttext-for-python (accessed on 17
July 2020) and SdGloVe https://github.com/minimaxir/char-embeddings/blob/master/
create_embeddings.py (accessed on 17 July 2020) using open-source implementations.

1. GloVe: The well-known GloVe [25] model was developed at Stanford. The word
representation can be derived by factorizing the log of the co-occurrence matrix
by minimizing the cosine distance between words to ensure a high co-occurrence
probability [42]. The resulting word representations show the linear substructure of
the words in vector space.

2. fastText: The fastText [26] model was open-sourced by Facebook. This sub-word
model, based on the bag of n-gram characters, is dominant over the skip-gram
model [43]. The vector representation is obtained by taking the sum of the vectors of
the n-grams appearing in the word [28]. The underlying principle behind this method
relies on the information encoding in sub-word representations [30].

3.1.2. Task-Specific Contextual Representation Learning

The limitation of the pretrained word embedding model is the representation of a
word in a single embedding without encoding its context [23].To tackle this drawback, two
different word representation techniques have been developed: one is pattern-based word-
level encoding, and the other is LSTM-based character-level word encoding. The former
(word-level) approach makes it possible to learn pattern-based word representations by
encoding them with different literals but with the same representations [8,9]. However,
the character-level representations are obtained by passing each character within a word
through the LSTM block [27]. Thus, the LSTM network captures prefixes and suffixes
from the given input text [44]. Such representations have the advantage of handling
the out-of-the-vocabulary (OOV) problem because the network can learn all character
representations by sharing the morpheme-level information from a moderate or even
small [11] corpus. We use the BiLSTM network to learn task-specific [27] character-level
and word-level representations. Our task-oriented strategy includes the knowledge-base
of NE into the training process in order to reveal the functional attributes of words in
the embedding space. In this way, the baselines are trained using character-level and
regular word representations. We get two important benefits from adding character-level
representations into our baseline as well as the proposed model.

• Infrequent and OOV (unseen) words with low-quality representations can get extra
information from character glyphs and morphemes.

• The character-based representations act as a highly generalized model of typical
character-level patterns, allowing the word representations to act as a memory storing
exceptions to these patterns.

3.2. Neural Baseline Models

A series of previous works adopted LSTM [45] and BiLSTM [46] networks in a variety
of sequence classification tasks with other variants, such as self-attention and CRF. Sindhi
NER is a novel and challenging task [17,21]. Therefore, firstly, we exploit LSTM [45],
BiLSTM [46], and BiLSTM-CRF [24] networks to form strong baselines and then add more
variants, including character-level and word-level representations, self-attention, and CRF
decoder. In word-level baseline architectures, the sequence of words is given as an input
to learn word-level representations. Our character-level baseline models consider each
sentence as a sequence of characters [36] and output a label for each character. Thus,

https://github.com/facebookresearch/fastText/#building-fasttext-for-python
https://github.com/facebookresearch/fastText/#building-fasttext-for-python
https://github.com/minimaxir/char-embeddings/blob/master/create_embeddings.py
https://github.com/minimaxir/char-embeddings/blob/master/create_embeddings.py
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the word-level labels are converted to character-level labels. The output of the LSTM or
BiLSTM encoder is mapped to the number of labels through a dense layer for decoding. In
this way, every token in a given sentence gets a probability distribution for the possible
NER label to select its maximum probability. The neural baseline models are illustrated
as below:

• WLSTM: The unidirectional LSTM network [24] with 200d forward
←−
h hidden layers.

The WSTM baseline model relies on word-level representation learning.
• WBiLSTM: The word-level BiLSTM network [24] with 200d forward

−→
h and 200d

backward
←−
h . The combination of both

−→
h and

←−
h resulted in 400d. The WBiLSTM

baseline model is exploited using softmax, CRF, and self-attention on the pretrained
SdGloVe, SdfastText, and task-oriented character-level and word-level representations.

• CBiLSTM: The character-level BiLSTM network [36] with 200d forward
←−
h and 200d

backward
−→
j hidden LSTM layers, similar to WBiLSTM. The CBiLSTM baseline model

is also exploited with softmax, CRF, and self-attention using SdGloVe, SdfastText, and
task-oriented character-level and word-level representations.

3.3. The Proposed CaBiLSTM Model

The above-presented baseline neural models are not as strong as models based on the
feature combinations. Thus, a simple NN-based model can not tackle ambiguous cases that
rely on the combination of features and inter-word dependencies. To tackle these issues,
we propose a contextual feature-enriched CaBiLSTM model for the Sindhi NER task, which
consists of five different types of layers (see Figure 1) stacked one by one: (1) character-level
bidirectional encoder; (2) word-level contextual representation layer; (3) BiLSTM network;
(4) hidden layer; (5) Self-attention; (6) decoder. We illustrate every step of our proposed
CaBiLSTM model as follows:

3.4. Character-Level Bidirectional Encoder

Following the majority of sequence tagging models [9,11,13], the bidirectional encoder
considers each sentence as a sequence of characters as input and outputs a label distribution
for each character by passing through

←−−−
LSTM and

−−−→
LSTM layers. For a given sentence S =

{c1, c2, . . . , cn}, the final vector is created by a Sindhi character feature ec
i ∈ Rdc and an NER

feature en
i ∈ Rdp . Formally, the embedding vector of each character ci can be formulated

as ei = ec
i ⊕ en

i , where i ∈ {1, 2, . . . , n}; ec
i and en

i are Sindhi character representations and
NER feature representations, respectively; dc and dn are the dimension of Sindhi character
representations and the NER feature vector; ⊕ denotes concatenation operations. The
character-level representations capture shape and morphological information and infer
unseen (OOV) words by sharing information about morpheme-level regularities.

3.5. Contextual Representation Layer

In this layer, each output of the character representations passed through forward
←−−−
LSTM and backward

−−−→
LSTM is concatenated to get the contextual representation of a

corresponding word. The dimension of an input layer is similar to the feature size. The
final word-level representations are obtained by concatenating bidirectional forward

−−−→
LSTM

and backward
←−−−
LSTM layers, which efficiently encode the contextual information. Such

representations capture the semantic and syntactic information of the given input. In this
way, the CaBiLSTM model jointly encodes contextual representations at the WordCharacter
level. Then, the output of the BiLSTM encoder is mapped to the number of labels through
a dense layer and a linear activation function for the input to the self-attention layer.
Moreover, we implement a task-oriented strategy [27] for CRL, which is different from the
pretrained SdGloVe and SdfastText representations.
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Q=K=V=H

Label

CRF Layer

Self Attention

O I-PERSON B-PERSON

B-word LSTM

F-word LSTM

Word representations

B-Char LSTM

F-Char LSTM

Char representations

Char-level input

Word features

Hidden layer

Figure 1. The architecture of our proposed CaBiLSTM model. The initial step is to map each sentence
as a sequence of characters to output a label distribution for each character position. Afterwards,
the BiLSTM network transforms the sequence of tokens into the word representations. In this way,
word-level features are composed of the character-level BiLSTM network. Then, the concatenated
output of contextual representations is fed to the self-attention layer through a hidden layer. Finally,
the CRF jointly decodes the best chain of NE tags of the given input instead of decoding each
label independently.

3.6. Bidirectional Network

Inherently, unidirectional LSTM [45] encode the information in one direction
−→
ht . The

BiLSTM [46] has the ability to encode the sequences from both right
−→
ht as well as left

←−
ht

contexts. The basic idea is to present each sequence into forward
−→
ht and backward

←−
ht

hidden states ht to capture the past and future information for context representation. For
example, by giving an input sentence s = (w1, w2, w3, . . . , wn), which contains n words.
The BiLSTM network computes the forward

−→
h and then backward

←−
h hidden states.

Finally, the context vector is created by concatenating both hidden states,
−→
ht and

←−
ht , for

the final output ht = [
−→
ht ;
←−
ht ] of the network. However, the LSTM hidden state ht takes

information only from past, knowing nothing about the future. Thus, we use BiLSTM to
extract contextual features. The processing flow in the BiLSTM network can be expressed
as follows: 

c̃t
ft
ot
it

 =


σ
σ
σ

tanh

(W>
[

xt
ht−1

]
+ b
)

(1)

ct = it � c̃t + ft � ct−1 (2)

ht = ot � tanh(ct) (3)

where it, ft, and ot indicate the input, forget, and output gates; σ() represents the sigmoid
function; W> and b are the trainable parameters; xt is an input vector of the current time
step; � represents the dot product function.
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3.7. Self-Attention Layer

The limitation of an encoder-decoder model is their fixed-length connection [29] of
the intermediate semantic vector because the encoder compresses the whole sequence
of information into a fixed-length vector. This approach has two shortcomings: (1) The
semantic vector cannot fully represent the sequential information, which results in the
information in the input sequence not being fully utilized. (2) An input sequence’s length
grows when the later-entered information may overwrite the first-entered information. To
tackle the limitations of the encoder-decoder, self-attention [11,47–49] is implemented to
extract as much feature information as possible from the input sequences. Thus, to enhance
the ability of the proposed model, and we incorporate token-level multi-head attention
to the output H = [h1, h2, h3 . . . hn] of concatenated BiLSTM states to learn the internal
structure of sentences and capture token-level dependency. Self-attention [31] before the
CRF [11] automatically focuses on the specific Sindhi tokens that play a crucial role in
NER and captures the essential semantic information while reducing the focus on less
important information in the input sequence. We use the scaled dot product to calculate the
similarity between query Q and key K matrices to obtain the weights of each word. Then,
we normalize the obtained score and calculate the weights using softmax. Afterwards, we
obtain the final attention by a weighted sum of the value matrix V and the weights. The
intuition of the self-attention is described as follows:

attn(Q, K, V) = softmax

(
QKT
√

d

)
V (4)

where Q ∈ Rn×2dh , K ∈ Rn×2dh , and V ∈ Rn×2dh are the query, key, and value matrices,
respectively. dh is the dimension of both

−→
h and

←−
h hidden units of BiLSTM, which equals

2dh. Firstly, the attention mechanism linearly maps Q, K, and V in h times with different
weights matrices. Then h projections perform parallel scaled dot-product attention. Finally,
these results of an attention layer are concatenated and once again mapped to get the new
representations. In our setup, we use self-attention as a set Q = K = V = H, which aims
to capture the inter-word dependencies in the input sequence, where H denotes the output
of the BiLSTM network. Formally, the function can be stated as follows:

hi = attn
(

Qw Q
i , Kw K

i , Vw V
i

)
(5)

H′ = (hi ‖ . . . ‖ headh)wo (6)

where w Q
i ∈ R2dh×dk , w K

i ∈ R2dh×dk , and w V
i ∈ R2dh×dk are the trainable projection

parameters, and dk = 2dh/h. w o ∈ R2dh×2dh are the trainable parameters.

3.8. Decoder

The tag decoder or an output layer is the last stage in an NER model that takes the
input of context-dependent representations and outputs a tag sequence corresponding to
the input. The CRF is an effective approach for sequence tagging problems [50] because it
learns the scoring function from tag pairs, such as [B-I-O] in the training phase [24]. It is
useful to consider the correlation in the neighboring labels [8] and model the tag sequences
jointly with CRF [51] instead of modeling them independently. For example, in NER
with a standard (B-I-O) tagging scheme [52], I-GPE can not follow I-ORG. Therefore, the
modeling of independent assumptions would be impossible. Formally, given a sentence
X = {x1, x2, . . . , xn}with a predicted label sequence Y = {y1, y2, . . . , yn}, the tanh function
is used firstly to predict the confidence score for each possible label:

oi = tanh
(
Wch′i + bc

)
(7)

where Wc and bc are the trainable parameters.
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The CRF incorporates the transition information between succeeding NE tag sequences
to obtain optimal tags over the entire sentence. In this way, CRF jointly decodes the
best chain of NE tags instead of decoding each label individually. For a given sentence
X = {x1, x2, . . . , xn}, the definition of the probability for the prediction result is given
as follows:

s(X, y) =
n

∑
i=1

(
oi,yi + Tyi−1,yi

)
(8)

where y ∈ (B-I-O) labels; the scoring function s(X, i)yi
is the output of the hidden layer at

ith token; T denotes the scores of any two adjacent labels, and Tyi−1 represents the score
from the successful transfer of the label yi−1 to the label yi; oi,yi represents the confidence
score of the yi-th label of each token.

The decoding is the search for a sequence of NE tags y with the highest conditional
probability. We compute the probability p of the label sequence ŷ and output the label
sequence y by using the Viterbi algorithm [53]. The loss function is defined as:

p(ŷ | X) =
es(x,ŷ)

∑ỹ∈Yx es(x,y)
(9)

loss = −
N

∑
i=1

log p
(

ŷ(i) | x(i)
)

(10)

y = arg max
y∈Yx

s(X, y) (11)

We use the gradient backpropagation method to minimize the loss function.

4. Experimental Setup

In this section, we illustrate the experimental setup for the performance evaluation of
the baselines and the proposed CaBiLSTM model on the SiNER dataset. Since our baselines
and the CaBiLSTM model rely on labeled training data, no external resources are used, such as
gazetteers. We use the TensorFlow [54] in python for the implementation of baselines as well
as CaBiLSTM models. All the experiments are run using a single GTX 1080Ti Nvidia GPU at
SMILE Lab. UESTC, China.

4.1. Dataset

We utilize the recently introduced gold-standard SiNER dataset [21] with the most
commonly used (B-I-O) tagging scheme [35]. The SiNER dataset contains a large number
of NEs, annotated with the Sindhi news corpus. The complete statistics of the dataset used
in training, development, and test sets are depicted in Table 2 with the number of NEs in
each label, and the format of the SiNER is shown in Table 3. The B-prefix before an NE
label indicates the beginning of an NE, I-prefix before a label denotes the nested NE, and
O-tag denotes that a token does not belong to any NE.

4.2. Evaluation Metrics

Generally, an NER system is evaluated by identifying boundaries and types of named
entities. Hence, an NE is considered correct if recognized with both boundaries and its
type match the ground truth [35]. We compute precision (P%), recall (R%), and F1-score
(F1%) on the number of True-Positives (TP), False-Positives (FP), and False-Negatives (FN),
respectively. The true-positive NEs are recognized by the system that match the ground
truth, false-positive NEs are recognized by the system but do not match the ground truth,
and false-negative NEs annotated in the ground truth but not recognized by the NER
system. Precision measures the ability of the NER system to present only correct entities.
Recall measures the ability of the NER system to recognize all NEs in the given input
dataset. Moreover, F1-score is the harmonic mean of precision and recall. We report a
micro-average score, which is an effective measure [35,55] on the large classes in a test
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collection. It aggregates the contributions of NEs from all categories to compute the average
by equally treating all of them.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1-score = 2× Precision × Recall
Precision + Recall

(14)

Table 2. The statistics of named entities in the SiNER dataset for the training, development, and
test sets. The highest proportion named entities is Person names, followed by miscellaneous and
geopolitical entities.

NE Type Label Train Set Valid Set Test Set

Person names PERSON 21,515 10,540 3478
Title of a person TITLE 5122 4703 2009
Organizations ORG 1943 1934 741
Geopolitical Entities GPE 9652 4814 3041
Locations LOC 4628 1085 360
Nationalities NORP 4678 4210 2950
Names of Buildings FAC 568 586 130
Events, incidents EVENT 885 399 575
Languages LANGUAGE 972 174 52
Art work, title of books and songs ART 1172 276 67
Miscellaneous OTHERS 16,297 6681 4601

Table 3. The format of the SiNER dataset; the Roman transliteration of each token is given for the
ease of reading.

Named Entity Label Roman

Transliteration

عدنان B-PERSON Adnan 

ميندريس I-PERSON Menderes 

جيڪو O Jaiko 

ترڪي B-GPE Turkey 

جو O Jo 

1960 B-OTHERS 1960 

- O -

1950 B-OTHERS 1950 

وزير B-TITLE Vazeere 

اعظم B-TITLE Azam 

رهيو O Rahyo 

. O . 

4.3. Training Setup

The training setup consists of two phases. In the first phase, we train non-contextual
pretrained word-level and character-level SdGloVe and SdfastText representations. In the
second phase, we train and evaluate all the baselines and the proposed CaBiLSTM model.

4.3.1. Uncontextualized Representations

For the pretraining of SdfastText, we use sub-sampling [43] and negative sampling
(NS) to select the minimum and maximum length of character n-grams (charn) [28] for
character-level representations. Furthermore, the minimum word count (minw) is also an
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important parameter to discard rare or less frequent words in the fastText [26] algorithm.
Notably, the size of the input vocabulary decreases at a large scale by ignoring more words.
Similarly, the vocabulary size increases by considering rare words. Therefore, ignoring
words with a frequency of less than four in SdfastText yields better results [30]. We train
SdGloVe with AdaGrad by choosing the same CWS (see Figure 2) and the dimension
of the character-level, word-level representations, and filter out stop words [30] in the
preprocessing step for SdGloVe. The optimal hyperparameters for pretraining of SdfastText
and SdGloVe are shown in Table 4.

رهيو حصو وڏو سندس ۾ ترقي جي ترڪي ۽ رهيو اعظم وزير جو ترڪي تائين 1960 کان 1950 جيڪو مينڊريس عدنان

رهيو حصو وڏو سندس ۾ ترقي جي ترڪي ۽ رهيو اعظم وزير جو ترڪي تائين 1960 کان 1950 جيڪو مينڊريس عدنان

رهيو حصو وڏو سندس ۾ ترقي جي ترڪي ۽ رهيو اعظم وزير جو ترڪي تائين 1960 کان 1950 جيڪو مينڊريس عدنان

رهيو حصو وڏو سندس ۾ ترقي جي ترڪي ۽ رهيو اعظم وزير جو ترڪي تائين 1960 کان 1950 جيڪو مينڊريس عدنان

Target word

CWS=3

CWS=5

CWS=7

CWS=10

Figure 2. An example of a sentence taken from the SiNER dataset to select the context window size
(CWS). The writing direction of Sindhi Persian-Arabic is right-to-left.

Table 4. Optimal hyperparameters for pretrained word-level and character-level (Char) SdGloVe
and SdfastText representations, neural baselines, and the proposed CaBiLSTM model. † denotes
the parameters for SdGloVe, SdfastText, and task-specific representations. ‡ denotes the parameters
for SdfastText only.

Model Hyperparameter Range

Representation learning

Epochs † 100
Learning rate † 0.025
CWS † 7
Pretrained word representations † d 300
Task-specific word representations d 300
CRL representations d 300
Char representations † d 64
minn Char count ‡ 3
maxn Char count ‡ 10
NS ‡ 20
minw ‡ 3

Neural models

Learning rate 0.02
Decay rate 0.05
Gradient normalization 0.82%
h layers 200
Dropout λ 0.25
Batch size 32
Epochs 40

4.3.2. Training Neural Models

Several hyperparameters and configurations are evaluated in our experiments, and
we picked optimal parameters that work well on the SiNER dataset. We used early
stopping [56] for regularization. According to our experiments, the early stopping is based
on the performance on the validation sets, and the model converges in around 40 epochs.
We use Adam Optimizer [57] with default settings. We use similar CWS and dimensions of
the pretrained character-level and word-level representations, as well as CRL. We update
the parameters of neural baselines and the CaBiLSTM model after each mini-batch size of
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32 sentences and shuffle the order of mini-batches before each epoch. We use both forward
and backward BiLSTM layers of size 200 and apply variational dropout [58], which applies
the same dropout mask [59] ∀tokens in the same sentence. The gradient normalization [60]
is used to stabilize the training procedure by setting the maximum normalization [59] to
0.82% to prevent gradients from diverging. All the hyperparameters are adjusted according
to the final performance of the neural model on the test sets by random search. The details
of hyperparameters are summarized in Table 4.

5. Results and Analysis
5.1. Baseline Results

We conducted several experiments on the SiNER dataset to determine whether the
performance of the neural baseline models of LSTM, BiLSTM, and BiLSTM-CRF genuinely
rely upon the character-level and word-level representations, an attention mechanism, or
otherwise due to setting up more model parameters. All the baseline models are used to
predict the NEs, including the name and title of a person, names of organizations, places,
locations, nationalities, buildings, events, languages, artwork, and miscellaneous, in the
SiNER dataset. The training data are used to train the models using similar hyperparam-
eters (see Table 4). The development data are used for choosing the best configurations,
and the presented results are based on the test set. Table 5 shows an average precision,
recall, and F1-score on the test set. The results in the table demonstrate the slight perfor-
mance difference between pretrained word representations of SdGloVe, SdfastText, and
task-specific character-level and word-level representations. The first WLSTM baseline
model yields weak results compared to WBiLSTM using pretrained SdGloVe, SdfastText,
and task-specific representations. It is because the BiLSTM model is capable of capturing
contexts better than LSTM with its bidirectional layers. Thus, we do not employ more vari-
ants to WLSTM, such as character-level representations, self-attention, and the CRF. Thanks
to the bidirectional model that has access to both left and right contexts of the given input
for better contextual representations. The BiLSTM network yields better overall results
with self-attention mechanisms and CRF with character-level and word-level representa-
tion learning. However, the character-level BiLSTM-Attention-CRF model yields superior
results than other baselines in SdGloVe and SdfastText by yielding F1-scores of 87.61%
and 89.27%, respectively. Notably, the BiLSTM-Attention-CRF baseline model surpasses
all the baselines by attaining the F1-score of 89.42% and 90.39% using the task-specific
character-level and word-level representations, respectively.

5.2. Parameter Sensitivity

For parameter sensitivity analysis, we apply dropout [58] to mitigate the over-fitting
problem and CWS for context selection for the CaBiLSTM model. Dropout λ ensures the
robustness of the neural model without depending on the change of weights. To avoid
overfitting, we employ the variational dropout before the character-level input to the
BiLSTM encoder. At the start of training, the dropout randomly removes some neurons
without changing the input and output layers. Thus, the network loses some hidden layers
due to the deletion of neurons. After training, the network restores the temporarily deleted
part. For the parameter adjustment, we select a two-dimensional tuple that corresponds to
the input and output dropout. For better training, after parameter sensitivity analysis, we
finally set it to λ = 0.25. We also evaluate the performance of the CaBiLSTM model using
various CWS settings. The large CWS means considering more words in both the left and
right context (see Figure 2), taking more training time. For instance, in CWS = 10, the size
of the context will be larger than CWS = 5, which will capture twice as much contextual
input. Both parameters influence the average performance of the proposed model, which
can be seen in Table 6 and Figure 3. In Table 6, we found a good trade-off in the model
performance by applying a dropout rate of 0.25 and a position of CWS = 7, respectively.
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Table 5. Results of neural baseline models on the SiNER test set on the pretrained and task-specific
character-level and word-level representations. Bold font denotes the best results.

Representation Model Variants Precision% Recall% F1-Score%

SdGloVe

WLSTM softmax 84.41 84.85 84.73
WBiLSTM softmax 86.33 85.76 85.92
CBiLSTM softmax 86.74 85.9 86.15
WBiLSTM CRF 87.19 86.39 86.79
CBiLSTM CRF 87.64 86.71 86.83
WBiLSTM Attention, CRF 86.59 87.46 87.32
CBiLSTM Attention, CRF 87.93 87.41 87.61

SdfastText

WLSTM softmax 85.23 85.94 85.24
WBiLSTM softmax 87.62 86.34 86.58
CBiLSTM softmax 87.84 86.55 87.16
WBiLSTM CRF 87.69 87.8 87.63
CBiLSTM CRF 88.36 88.72 88.24
WBiLSTM Attention, CRF 88.89 88.53 88.79
CBiLSTM Attention, CRF 89.45 89.42 89.27

Task-specific

WLSTM softmax 86.48 86.63 85.82
WBiLSTM softmax 87.61 86.28 86.9
CBiLSTM softmax 88.35 87.59 87.26
WBiLSTM CRF 88.62 88.91 88.58
CBiLSTM CRF 89.34 89.38 89.21
WBiLSTM Attention, CRF 89.45 89.29 89.42
CBiLSTM Attention, CRF 90.48 90.52 90.39

Table 6. The impact of context (length of CWS) and various dropout rates for the CaBiLSTM model on
the SiNER test set using the contextual representation learning approach. The bold results highlight
the best performance.

CWS
No Dropout Dropout = 0.25 Dropout = 0.5

P% R% F% P% R% F% P% R% F%

3 88.74 89.41 88.43 89.67 90.28 89.55 88.24 88.39 89.17
5 90.21 90.47 90.36 90.86 90.61 90.83 89.37 89.42 89.28
7 90.79 90.94 90.89 91.43 91.76 91.25 90.79 90.29 90.59

10 90.84 90.9 90.82 91.13 91.32 91.28 90.36 90.72 90.24

It can be observed from Figure 3 that 0.25 dropout converges slower than the one with
no-dropout but avoids over-fitting. However, the training error is higher with a dropout
of 0.5 than a dropout of 0.25 or without dropout. It seems to be under-fitting. The results
in Table 6 are presented in precision, recall, and F1-score on the development set. It can
be observed that CWS = 7 is a better choice in all cases. Hence, we choose the optimal
CWS = 7 and apply 0.25 dropout to baselines and the proposed CaBiLSTM model for
balancing a trade-off between efficiency and accuracy.

5.3. Final Results

The baselines and CaBiLSTM models had several components that we could tweak to
understand their impact on the overall performance. We analyzed the effect of pretrained
SdGloVe, SdfastText representations, task-specific character-level, word-level representa-
tions, self-attention, and softmax, CRF classifiers. It can be observed in the performance
comparison of baselines and the CaBiLSTM model that F1-score obtained by CaBiLSTM
(see Table 7) is higher than all the baselines for three types of representation learning. The
word-level and character-level representations almost yield close results to each other on
the GloVe.
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Figure 3. The performance of the CaBiLSTM model with different dropout rates and context settings
(CWS) on the SiNER development set.

Table 7. The results of the proposed CaBiLSTM network on the SiNER test set. Bold font denotes the
best results.

Representation Variants Precision% Recall% F1-Score%

SdGloVe No-attention 87.92 88.27 88.16
Attention 88.37 89.25 88.79

SdfastText No-attention 89.74 90.18 89.76
Attention 90.27 90.64 90.11

CRL No-attention 90.58 90.86 90.82
Attention 91.43 91.76 91.25

In contrast to SdGloVe, the character-level representations achieve better performance
than word-level representations in SdfastText. However, the task-specific character-level
and word-level representations achieve the best performance. It is because representation
learning with the BiLSTM model captures the contextual features. The presented results
also demonstrate that the CRF is dominant over softmax. The CRF gains +0.87% and
+0.58% on the word-level WBiLSTM and character-level CBiLSTM models with SdGloVe
representations. Similarly, CRF is also beneficial in SdfastText and task-specific represen-
tation learning, respectively. Moreover, self-attention has boosted the F1-score in all the
experiments. The task-specific word-level, as well as character-level representations, are
dominant along with self-attention and CRF. Moreover, it is observed that CRL gave us
the most significant increase in the overall performance of +2.46% and +1.14% in F1-score
over pretrained SdGloVe and SdfastText representations with the CaBiLSTM model. Fur-
thermore, the training accuracy and time of each baseline and proposed model are depicted
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in Figure 4. The lower training accuracy of the SdGloVe (see Figure 4a) model indicates
that the model configuration does not capture the complexity of the given training data.
The training accuracy of all baseline models is better with SdfastText (see Figure 4b) repre-
sentations than SdGloVe. However, neural baseline models achieve high training accuracy
using task-specific representations (see Figure 4c) as compared to both pretrained SDGloVe
and SdfastText representations. Overall, the CaBiLSTM model attains more accuracy in
less training time than all the baselines, as depicted in Figure 4d. It can be observed that
task-specific joint representation learning as CRL is more beneficial for performance gain.
We also present the label-wise F1-score of our CRL-based CaBiLSTM model in Figure 5.
This Figure shows that NEs of ORG, LOC, EVENT, and ART get lower F1-scores due to the
context-sensitivity and other ambiguities discussed in the earlier section. In contrast, the
other NEs, such as NOPR, FAC, and LANGUAGE, get high F1-scores.

5.4. Comparison with Existing Sindhi NER Systems

The CaBiLSTM model also surpasses previous Sindhi NER systems [21] based on the
BiLSTM-CRF with GloVe and fastText representations. Table 8 shows that the CaBiLSTM
with SdGloVe representations obtain +4.12% improvement in F1-score over previously
reported results of BiLSTM-CRF-GloVe [21]. Moreover, the CaBiLSTM model with Sdfast-
Text also adds a +0.95% increase in the F1-score compared to the best-reported results of
BiLSTM-CRF-fastText [21]. Furthermore, our proposed CaBiLSTM model surpasses all the
neural baselines and the previous best-reported results by attaining a 91.25% F1-score.
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Figure 4. Training accuracy and time of neural baselines and the CaBiLSTM model on the SdGloVe,
SdfastText, task-specific, and CRL-based representations.



Appl. Sci. 2021, 11, 9038 16 of 19

PE
RS

ON
 

TIT
LE OR
G

GP
E

LO
C

NO
RP FA

C

EV
EN

T
LA

NG
UA -G

E
AR

T

OT
HE

RS

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

F-S
cor

e

Figure 5. Label-wise F1-score of the CaBiLSTM model on the test set.

Table 8. The comparison of our proposed CaBiLSTM model with the previous works on SiNER
dataset using SdGloVe and SdfastText representations. Bold font denotes the best results.

Paper Model Precision% Recall% F1-Score%

Existing work [21] BiLSTM-CRF (GloVe) 84.40 84.93 84.67
BiLSTM-CRF (fastText) 90.83 87.54 89.16

Our work
CaBiLSTM (SdGloVe) 88.37 89.25 88.79
CaBiLSTM (SdfastText) 90.27 90.64 90.11
CaBiLSTM (CRL) 90.43 91.76 91.25

Notably, the performance of the CaBiLSTM model surpasses all the baselines and the
previously reported state-of-the-art results on the SiNER dataset. In particular, the CRL-
based approach is dominant over SdGloVe, SdfastText, and task-oriented character-level
and word-level representations.

6. Conclusions

In this paper, we propose the CaBiLSTM neural architecture for Sindhi named entity
recognition and obtains excellent results in the entity extraction task. Based on the BiLSTM-
Attention-CRF, we introduce task-specific contextual representation learning in the form
of joint character-level and word-level representations. In addition, we exploit the neural
baseline models, the impact of dropout, the context window size, and the pretrained
representations, including SdGloVe and SdfastText. Our proposed CaBiLSTM model obtain
new state-of-the-art performance by yielding the excellent F1-score of 91.25% on the SiNER
dataset without relying on external language-specific resources, such as dictionaries or
gazetteers. In the future, we intend to exploit the CaBiLSTM model on the other NER
datasets. Moreover, our proposed model can be applied to sequence tagging tasks, such as
part-of-speech tagging.
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