
applied
sciences

Article

A Secure CDM-Based Data Analysis Platform (SCAP) in
Multi-Centered Distributed Setting

Seungho Jeon , Chobyeol Shin , Eunnarae Ko and Jongsub Moon *

����������
�������

Citation: Jeon, S.; Shin, C.; Ko, E.;

Moon, J. A Secure CDM-Based Data

Analysis Platform (SCAP) in

Multi-Centered Distributed Setting.

Appl. Sci. 2021, 11, 9072.

https://doi.org/10.3390/app11199072

Academic Editors: Toralf Kirsten and

Oya Beyan

Received: 23 August 2021

Accepted: 26 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Information Security, Graduate School of Information Security, Korea University, Seoul 02841, Korea;
ohgnu90@korea.ac.kr (S.J.); lulustar@korea.ac.kr (C.S.); eun13@korea.ac.kr (E.K.)
* Correspondence: jsmoon@korea.ac.kr; Tel.: +82-02-3290-4750

Abstract: Hospitals have their own database structures and maintain their data in a closed manner.
For this reason, it is difficult for researchers outside of institutions to access multi-center data.
Therefore, if the data maintained by all hospitals follow a commonly shared format, researchers
can analyze multi-center data using the same method. To safely analyze data using a common data
model (CDM) in a distributed multi-center network environment, the objective of this study is to
propose and implement the processes for distribution, executing the analysis codes, and returning
the results. A secure CDM-based data analysis platform (SCAP) consists of a certificate authority
(CA), authentication server (AS), code signer (CS), ticket-granting server (TGS), relaying server (RS),
and service server (SS). The AS, CS, TGS, and RS form the central server group of the platform. An
SS is stored on a hospital server as an agent for communication with the server group. We designed
the functionalities and communication protocols among servers. To safely conduct the intended
functions, the proposed protocol was implemented based on a cryptographic algorithm. An SCAP
was developed as a web application running on this protocol. Users accessed the platform through a
web-based interface.

Keywords: common data model; secure protocol; web application; distributed network

1. Introduction

The importance of medical data has been emphasized over the past several decades,
and numerous medical institutions around the world have built systems to accumulate
medical records. Following this trend, electronic medical record (EMR) or electronic health
record (EHR) systems have been actively adopted in local hospital networks [1,2]. With
the recent development of big data and artificial intelligence technologies, researchers
are attempting to use large numbers of medical data for secondary purposes such as the
research and development of patient-centered services. However, it is unreasonable to
derive statistically meaningful results using only the accumulated data in a single hospital.
To overcome this problem, studies have been proposed to analyze data collected from
several medical institutions, including multi-center or multi-source datasets [3,4].

However, despite the apparent advantages of multi-center datasets, the following
practical problems occur: (1) Hospitals maintain medical data inside the local network
boundary of the institution for management and security reasons. Because this setting
allows resources to be distributed over the network, it is necessary to consolidate medical
data [3,5,6]. (2) In general, hospitals have a database structure for storing medical data.
Differences in data formats can be a stumbling block when merging and further analyzing
medical data collected from institutions [7–9]. (3) Transmitting data from the hospital
network without proper security can violate patient privacy [10]. (4) Even if medical
data are transmitted through secure network channels among institutions, patients may
not want personal information to be included in the transmission [11–14]. To effectively
analyze data collected from various hospitals, these issues should be resolved.

Appl. Sci. 2021, 11, 9072. https://doi.org/10.3390/app11199072 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7116-6062
https://orcid.org/0000-0002-3196-2013
https://orcid.org/0000-0002-8770-2421
https://orcid.org/0000-0002-6457-4316
https://doi.org/10.3390/app11199072
https://doi.org/10.3390/app11199072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199072
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/11/19/9072?type=check_update&version=1

Appl. Sci. 2021, 11, 9072 2 of 19

In order to resolve these problems, there has been an increasing number of attempts
to build a data-driven research infrastructure based on the Common Data Model (CDM). A
Medical CDM is a standardized format of clinical or observational data that differs from
hospital to hospital. Therefore, based on the same CDM format, investigators do not need
to write multiple analysis procedures to analyze data from multiple hospitals [15]. Another
advantage of CDM is that it makes it easier for the hospitals to share the same or similar
infrastructure to store and analyze their data.

Currently, many consortiums in each country develop platforms to support multi-
institutional medical research based on the above characteristics [3,16,17]. Although these
platforms have improved the research environment and convenience, proper security
should be considered, as they process medical data including patients’ personal informa-
tion. General security requirements for medical information system design and operation
are stated in ISO/IEC 27799:2016 [18]: “information security policy”, “organization of
information security”, “human resource security”, “assert management”, “access control”,
“cryptography”, “physical and environmental security”, “operational security”, “commu-
nications security”, “system acquisition”, “development”, and “maintenance”, “supplier
relationships”, “information security incident management”, “information security as-
pects of business continuity management”, and “compliance”. From a technical point of
view, these requirements ensure that only authorized users perform authorized operations,
and the integrity of the results is satisfied. The most important techniques to achieve this
are user authentication [19,20] and digital signatures [21,22]. These techniques are used as
part of many modern security protocols. For example, transport layer security (TLS) [10]
supports authentication between parties communicating with each other, data encryption,
and integrity guarantee for communication security. Although this protocol protects com-
munication in a general way, it does not provide the security specific to the business logic
of the medical system, such as a home health care service, between the user and the server.
This problem is exacerbated in a multi-institutional medical data research environment
where medical data is distributed on a network. Kerberos [23] provides authentication
services in such an environment, but only one server at a time proves a user’s identity and
does not provide security for data sent and received after that. Therefore, a specialized
security protocol is required to design a system to support multi-institutional medical
data-based research.

In this paper, we propose a secure CDM-based data analysis platform (SCAP) for
securely analyzing CDM data from multiple hospitals in a distributed network environ-
ment. SCAP distributes and executes software analysis codes (AC) and returns the analysis
results to external investigators to analyze the CDM data of all hospitals connected to
the platform. While providing an automated CDM data analysis service, SCAP provides
end-to-end authentication to users accessing the platform and the integrity of CDM data
analysis codes. The biggest advantage of this platform is that the medical data kept by each
hospital is not shared beyond the hospital for analysis. This feature reduces the risk of the
patients’ personal information being leaked, and at the same time it enables us to obtain
analysis results from multiple institutions. To safely manage this entire process, SCAP has
the following features: (1) a secure multi-center user authentication, (2) integrity assurance
for AC delivered over the network, (3) running AC and returning analysis results, and (4)
providing a platform user authentication method without an account database for each
hospital. To satisfy these features, the platform includes six subcomponents: a certificate
authority (CA), an authentication server (AS), a code signer (CS), a ticket-granting server
(TGS), a relaying server (RS), and a service server (SS). Among these components, the AS,
CS, TGS, and RS form the central server group of the SCAP and provide an interface allow-
ing users to deliver AC to hospitals registered on the platform. The CA issues certificates
for public key cryptography for all participants of the platform. Finally, the SS is installed
in the internal network of each hospital and analyzes the CDM data using the AC delivered
from the central server group and returns the analysis results. The contributions of this
paper are as follows:

Appl. Sci. 2021, 11, 9072 3 of 19

• This paper proposes a process for safely analyzing medical CDM data in a multi-center
distributed network environment.

• This paper describes in detail the functions of the components constituting the A
secure CDM-based data analysis platform (SCAP) and the communication between
components of the SCAP.

The rest of this paper is organized as follows. Section 2 presents the existing research
on addressing the multi-institutional medical data and authentication methods. Section 3
describes the proposed data analysis platform. Section 4 details the implementations for
the proposed platform. Lastly, Section 5 discusses the limitations and the conclusion.

2. Related Work

This section introduces the studies and popularly used user authentication methods
to deal with security concerns that may arise from using multi-institutional medical data.

2.1. Approaches on Multi-Centered Medial Data

In this section, we introduce the existing privacy-preserving methods from different
perspectives.

When combining data from different sources, patient privacy should be considered.
Zhang et al. [3] proposed a solution for collecting data distributed across different depart-
ments and conducting data mining on an Internet of Health Things environment. The
solution they proposed used locality-sensitive hashing (LSH) to consolidate data collected
from multiple locations without concerning patient privacy. Ranbaduge et al. [5] and Vat-
salan et al. [6] proposed privacy-preserving record linkage methods that connect multiple
databases using a hash technique. In addition, Raisaro et al. [24] developed a platform that
allows hundreds of clinical sites to share data and securely deliver the data number to ex-
ternal investigators. The platform uses homomorphic cryptography to provide end-to-end
confidentiality and differential privacy for patient identification.

Most machine learning techniques that are actively employed in data analysis con-
centrate the data in a central storage to train a model. Due to the nature of the medical
data containing sensitive information, exporting the data to the outside the institutional
network is subject to numerous restrictions by policy or by law. Joint techniques for the
learning of artificial intelligence models in a distributed environment without exposing
data outside the institution have been actively studied [25–27]. Existing learning algo-
rithms for artificial intelligence models collect the data necessary for learning in the central
storage. By contrast, federated learning places the data in the locations where they are
created and periodically aggregates only the learning (intermediate) states. Because the
data are not exposed to the outside, federated learning is relatively free from privacy
issues. Li et al. [28] suggested a method for learning a robust decision-making model in a
distributed environment, although they did not explicitly mention any federated learning
in their study.

Another obstacle is the data format. To extract the same information from data from
multiple institutions, it is necessary to understand the database schema of all hospitals.
Because most organizations treat database schema as confidential, not only is such an
extraction extremely tedious, it is also difficult for external investigators to determine the
data format of a particular hospital. To solve this problem, efforts have been made to
unify the format of medical data in recent years. The common data model (CDM) is the
most successful example of standardizing a medical data representation [7–9]. The data
custodian of the hospital converts the original medical data of the institution into CDM
data through an extract-transform-load (ETL) [11,12]. Most CDM specifications require
anonymization to remove sensitive information contained in the original data during
the ETL [13,14]. By unifying the format of such complex medical data, researchers and
data analysts can explore and analyze data from multiple hospitals in the same way. In
general, analysts use scripts or programs written in arbitrary programming languages.
Although a CDM brings about many benefits to data analysis, many medical institutions

Appl. Sci. 2021, 11, 9072 4 of 19

still maintain their data on the premises owing to legal issues. This operation policy
allows medical data to be logically or physically distributed over the network. To improve
the research environment, research platforms for multi-center medical data have been
constructed [29,30].

2.2. Authentication Methods

Most modern applications implement procedures to verify the authenticity of users.
In this section, we introduce communication schemes used for authentication.

The Json web token (JWT) securely transfers information between two parties in
a lightweight and self-contained way using JSON objects [19]. The terminology ’self-
contained’ means that it has all the information needed for a claim in it. In other words,
all the information required for authentication is included in the token. JWT consists of
header, payload, and signature; each part is base64 encoded and separated by a dot. The
header contains the algorithm for the signature generation. In the signature part, the digital
signature for the payload, calculated by the algorithm specified in the header, is located.
The payload holds the information to be contained in the token. This information is called
claims and includes registered claims, public claims, and private claims as specified in
the standard. JWT does not require a special storage because it contains all information
necessary for user authentication in the token itself. However, it is difficult to set an
appropriate token life cycle, and the more information the payload contains, the larger the
token size.

Open authorization (OAuth) 2.0 is an open standard for delegating access of web-
sites or applications to their information on other websites without the users providing
passwords [20]. OAuth 2.0 deals with both authentication and authorization. The users
(resource owner) are authenticated by the application (client) with their credentials. The
client uses these credentials to request an access token from the authorization server. Au-
thorization server verifies the received credentials and issues an access token. The client
presents the access token and obtains the resources from the resource server. OAuth 2.0
is not only adopted as a popular authentication and authorization method in modern
web services, it can also be used very conveniently by a user. In addition, services share
resources with each other and can be easily extended with more functionalities. However,
OAuth 2.0 is used only on HTTPS, and the access tokens should be managed securely.
Since this scheme supports many authentication methods, developers need to correctly
understand the specification, so that setting up the operating environment correctly.

Lastly, Kerberos provides a ticket-based centralized authentication service [23]. In an
environment where services are distributed on a network, users typically should prove their
identity for each service. The services should maintain a storage for the user’s authentica-
tion information and so, it is vulnerable to security breaches. To resolve this inconvenience,
Kerberos provides a simplified authentication mechanism using an authentication server
(AS), a ticket-granting server (TGS), and a service server (V). The users prove their identity
to the AS and receive a token. The users present the token and the ID of V to access to TGS,
and receive a ticket. This ticket is presented when the users access V and is used to authen-
ticate the users by TGS. If the users access another V, without repeating authentication from
the beginning, the users obtain a new ticket by presenting the token of the AS and the ID
of the new V. Owing to this simplified authentication process, Kerberos is often employed
to implement single sign-on (SSO) functionality. However, Kerberos allows access to only
one service at a time, although outside the scope of the protocol design.

3. Methods

In this chapter, we describe the operating environment of the SCAP, the roles of the
subcomponents constructing the platform in detail. Inspired by Kerberos’ convenient
authentication protocol, we designed secure communication between each component
of SCAP.

Appl. Sci. 2021, 11, 9072 5 of 19

3.1. Operating Environment

Figure 1 shows the operating environment of the SCAP. This platform is built on a
distributed network where hospitals store CDM data on their server, and these servers are
connected to the network. In this figure, the central server group consists of the AS, CS,
TGS, and RS. The hospital network consists of an SS and a database of CDM data. The
CA is placed on the Internet and provides trust for all SCAP components with public key
certificates. The SCAP uses the observational medical outcomes partnership CDM (OMOP-
CDM) [7] as a medical CDM. OMOP-CDM is a database scheme defined by observational
health data sciences and informatics (OHDSI). In general, researchers using OMOP-CDM
analyze data using R language and software provided by OHDSI [31,32]. All hospital
networks are connected to a server group through the Internet.

User

Certificate
Authority issuing

certificates

4) distributing the analyzing codes
& returning results

Server group

Ticket
Granting
Server

Auth.
Server

Code
Signer

Relay
Server

Service
Server

analyze data

Hospital
network

CDM

Internet

Service
Server

Hospital
network

CDM

analyze data

1) authentication

4) distributing the analyzing codes
& returning results

2) getting a signature
for analyzing codes

3) getting a ticket

Figure 1. Operating environment of SCAP.

Each component of the SCAP and the process of analyzing the medical CDM data
are as follows: (1) The users prove their identity to the platform. The AS is responsible for
user authentication and issues a token to authenticated users. (2) The users obtain a digital
signature for the analysis codes written to analyze medical CDM data held by hospitals
through the CS. (3) The users receive a ticket from the TGS proving their identity for the SS
of each hospital. (4) The users distribute the analysis codes to all hospitals connected to
the platform through the RS and receive the analysis results. As a preliminary task for the
safe operation these processes, all platform servers and users create their private/public
keys and receive public key certificates from the CA. This certificate conforms to the X.509
version 3 [33] standard, which is currently the most widely applied. Platform participants
can obtain certificates, such as generic electronic financial transactions.

In this section, we describe the network protocol and information transmitted between
the components of the SCAP. In the results section, we present the detailed implementation
of each component along with the algorithms used.

3.2. Communication between User and AS

Before the communication between a user and the AS, it is assumed that the user
has been appropriately registered in the AS. This assumption implies that the user is also
enrolled in the SCAP. Figure 2 shows the process by which the AS authenticates the user of
the SCAP platform. A user who wants to use the platform sends a message MC with the
user’s identifier IDC, such as an ID/password or biometric, and a signature sigMC of MC to
request proof of identity to the AS (flow 1 in Figure 2). The signature is transmitted along
with the message to prevent tampering by attackers, whereas the message is transmitted

Appl. Sci. 2021, 11, 9072 6 of 19

over the network to verify the sender. Because all components of the SCAP always transmit
a message–signature pair, we omit the description of signatures for convenience in the
remainder of this paper. If the requestor is a legitimate user, the AS returns a message
MAS including a cryptographically generated token, token, and its signature sigMAS to
the user (flow 2 in Figure 2). This token is generated by encrypting the user’s identity
and expiration time using a symmetric key cryptographic algorithm, such as DES [34] or
AES [35]. Therefore, only participants who know the key used to create the token can verify
the validity of the token. The AS does not share the key used to generate the token with
anyone to prevent a third party. In addition, for users not registered on the platform or
illegal requests, the AS delivers an authentication failure response to the user. The user
cannot use any SCAP service.

User AS

1) MC[IDC]||sigMC−AS

2) MAS−C[token]||sigMAS−C

Figure 2. Sequence diagram for communication between the user and AS.

3.3. Communication between User and CS

It is assumed that the user accessing the CS has passed the authentication of the
AS. Figure 3 shows how a user receives a digital signature for the AC to analyze the
CDM data. Before accessing the CS, the user creates an AC to analyze the CDM data
of hospitals through the SCAP. An AC can be written in a variety of ways. Because the
SCAP is implemented based on the OMOP-CDM, users can use software [15,36] provided
by OHDSI. The AC is generally written in R language and contains all information for
analyzing the CDM data, such as cohort definitions and SQL queries. Because the AC
is used to analyze medical data, it should not be tampered with until it is delivered to
each hospital over the network. A digital signature is used to guarantee data integrity and
non-repudiation during transmission. To satisfy this requirement, the user requests the
CS to create a digital signature for the AC. To this end, the user delivers a message MC−CS
and its signature sigMC−CS (flow 1 in Figure 3). The message MC−CS includes the AC and
the token issued from the AS in the previous section. The CS creates a signature sigAC

for the AC using its private key and wraps it in message MCS−C. The CS then delivers
MCS−C and its signature sigMCS−C in response to the user (flow 2 in Figure 3). Because this
signature was created with the private key of the CS, no one except the CS can create the
same signature. However, anyone can verify the digital signature to obtain the public key
of the CS. If the user modifies a part of the AC or writes a completely new AC, the user
requests a new signature to use the CS.

Appl. Sci. 2021, 11, 9072 7 of 19

User CS

1) MC−CS[AC||token]||sigMC−CS

2) MCS−C

[
sigAC

]
||sigMCS−C

Figure 3. Sequence diagram for the communication between the user and CS.

3.4. Communication between User and TGS

Users who have passed authentication with the AS and obtained a digital signature for
the AC can use the TGS to obtain a ticket to access the SSs connected to the SCAP. Figure 4
shows the process of issuing a ticket for a user to access the CDM data of all hospitals in
the SCAP through the TGS. To request the issuance of a ticket to the TGS to access the
SS of the hospital connected to the SCAP, a message MC−TGS, which includes token and
sigAC, along with its signature sigMC−TGS , is transmitted (flow 1 in Figure 4). It does not
matter whether MC−TGS contains the AC, as long as it is proven that the generator of sigAC

is the CS. The TGS delivers a message MTGS−C, including a cryptographically generated
ticket and its signature sigMTGS−C to the platform users (flow 2 in Figure 4). Similar to the
authentication token of the AS, this ticket is generated using a symmetric key cryptographic
algorithm with information such as the user’s ID and expiration time. However, unlike the
AS, the key used to create the ticket is encrypted with the public key of each SS receiving
the ticket and then delivered to the user along with the ticket. Therefore, the user acquires
the same number of tickets as the number of SSs connected to the platform. The user cannot
decrypt the verification key delivered to the ticket. That is, except for the SS, a third party
who has obtained a ticket, including a user, cannot create or decrypt a ticket. The TGS
is an essential component in the SCAP operating on a distributed network. Without the
help of the TGS, if users want to analyze CDM data from multiple medical institutions,
they should prove their identity to the administrator of each institution. Even in such an
environment, each institution should operate a database that stores the identities of all
users who want to use the data. The TGS creates a ticket that allows any medical institution
to authenticate the user’s identity, in an attempt to analyze the data and alleviate these
obstacles. By verifying this ticket, the SS of each hospital can authenticate the user without
a user account database.

User TGS

1) MC−TGS

[
token||sigAC

]
||sigMC−TGS

2) MTGS−C[ticket]||sigMTGS−C

Figure 4. Sequence diagram for communication between the user and TGS.

3.5. Communication for Distributing AC

We implemented three modes for distributing the AC and analyzing the CDM data of
SCAP-connected hospitals: full-automation mode, intervention mode, and hybrid mode.
In this section, we describe these three modes.

Appl. Sci. 2021, 11, 9072 8 of 19

Figure 5 shows the communication process between the user, RS, and SS of hospitals
in full-automation mode. In this mode, as the name suggests, the entire process, from the
distribution of the AC to the returning CDM data analysis results, is conducted automati-
cally. It is assumed that the user has a token, the AC, sigAC, and a ticket in advance. First,
the user transmits the message MC−RS with the above four pieces of information and the
signature sigMC−RS to the RS of the central server group (flow 1 in Figure 5). The RS verifies
the token in MC−RS to determine whether the AS has authenticated the user. If the user
is verified, the RS repackages the remaining information except for the token in MRS−SS
and sends this message with its signature to the SS (SS1–SSn) (flow 2 in Figure 5). The SS
checks the authenticity of the user and the AC using the ticket and sigAC, respectively. If
the verification of both the user and AC is successful, the SS runs the AC and analyzes the
CDM data of its hospital (flow 3 in Figure 5). The analysis result (AR) is then returned to
the RS (flow 4 in Figure 5). Finally, the user downloads the ARs from the hospitals (flow
5 in Figure 5). In full-automation mode, users can analyze the hospital data without any
intervention.

User RS

1) MC−RS[AC||sigAC

||tocken||ticket]||sigMC−RS

SS1 SSn

2) MRS−SS[AC||sigAC

||ticket]||sigMRS−SS

3) analyzing
CDM data with AC

4) MSS−RS[AR]
||sigMSS−RS

3) analyzing
CDM data with AC

4) MSS−RS[AR]
||sigMSS−RS

5) MRS−C[AR]||sigMRS−C

2) MRS−SS[AC||sigAC

||ticket]||sigMRS−SS

Figure 5. Sequence diagram for distributing AC in full-automation mode.

However, in full-automation mode, the hospital (or data manager) cannot control the
process by analyzing the data of the institution and exporting the results. Institutions may
simply want to deny the user access to the data. Allowing data to be analyzed without
appropriate controls can occasionally violate the security policy of an institution. To satisfy
these requirements, the intervention mode requests the hospital custodian to execute the
AC and return the AR. First, as in full-automation mode, the user transmits a token, the AC,
sigAC, and a ticket to the RS (flow 1 in Figure 6). RS verifies the user’s identity by validating
the token. The RS distributes the AC, a token, and a ticket from the user to the SSs of
the hospitals (flow 2 in Figure 6). The SS verifies the received ticket and digital signature
to verify the user and integrity of the AC. The SS does not immediately execute the AC,
but waits for approval from the data custodian of the hospital. The custodian confirms
the AC delivered to the hospital and approves the execution (flow 3 in Figure 6). Upon
approval, the SS runs the AC to analyze the data of the hospital CDM (flow 4 in Figure 6).
If the custodian suspends or rejects the AC execution, the AC is not executed. Likewise,

Appl. Sci. 2021, 11, 9072 9 of 19

the SS does not immediately return the AR for the CDM data to the user, but rather waits
for the export approval of the custodian. If the custodian approves its export (flow 5 in
Figure 6), the user can obtain the AR (flow 6 in Figure 6). By contrast, if the custodian
suspends or rejects its export, the user cannot access the AR even after the data analysis
has been completed.

User RS

1) MC−RS[AC||sigAC||
tocken||ticket]||sigMC−RS

SS1 Custodian

2) MRS−SS[AC||sigAC

||ticket]||sigMRS−SS

response
response

3) approving to analyze
CDM data

response

4) analyzing
CDM data with AC

5) approving
to release AR

response

6) MC−SS[ticket]||sigMC−SS

7) MSS−C[AR]||sigMSS−C

Figure 6. Sequence diagram for distributing AC in intervention mode.

Intervention mode provides hospital control over the data analysis. Hospitals can
configure secure policies compared with full-automation mode. However, if there are many
requests for analysis in intervention mode, some custodians might be burdened if they
are responsible for all data analyses. To overcome these shortcomings, we implemented a
hybrid mode, which is a combination of full automation and intervention modes. Hospitals
registered on the platform each have a whitelist of users who can analyze the data of
the institution without restriction. If the user is registered on a whitelist, the SS applies
both full-automation and intervention modes to an unregistered user. Using hybrid mode,
the hospital can flexibly and efficiently control the data analysis of the user.

4. Results

We developed the SCAP, a platform for analyzing CDM data in a distributed network
environment based on the communication protocol described in the previous section. This
section describes the implementation details of the SCAP. The source codes of the SCAP
are available from the URLs listed in Table 1. Each of the subcomponents of the SCAP is
implemented as a web application. Interfaces for communicating between subcomponents
are implemented as representational state transfer (REST) APIs. By virtue of the REST
API, each server can provide functionalities, including not just the SCAP, but also any
applications that require a similar functionality.

Appl. Sci. 2021, 11, 9072 10 of 19

Table 1. Repositories for SCAP.

Component URL (Accessed date: 29 September 2021)

CA https://github.com/KUSYS-LAB/Certificate-Authority-for-SCAP
RS https://github.com/KUSYS-LAB/Web-Interface-for-SCAP
AS https://github.com/KUSYS-LAB/Authentication-Server-for-SCAP
CS https://github.com/KUSYS-LAB/Code-Signer-for-SCAP-master
TGS https://github.com/KUSYS-LAB/Ticket-Granting-Server-for-SCAP
SS https://github.com/KUSYS-LAB/Service-Server-for-SCAP

4.1. Implementation of AS

Algorithms 1 and 2 show the algorithms for issuing authentication tokens for users of
the SCAP from Figure 2 (Algorithm 1) and the AS (Algorithm 2). Rather than operating
individually, these algorithms fulfill their respective roles through synchronization.

Algorithm 1: The authentication algorithm on the user side

1 Procedure authenticate(IDC)
2 MC−AS ←make a message with IDC
3 sigMC−AS ← generate a signature for MC−AS
4 MAS−C, sigMAS−C ← request to AS for authentication with MC−AS||sigMC−AS

5

6 sig_check← verify sigMAS−C

7 if sig_check failed then
8 return ERROR
9 end

10

11 token← get a token from MAS−C
12 return token
13 end

Algorithm 2: The authentication algorithm on the AS side

1 Procedure handle_authentication(MC−AS, sigMC−AS)
2 sig_check← verify sigMC−AS

3 if sig_check failed then
4 return ERROR
5 end
6

7 IDC ← get an identifier from MC−AS
8 id_check← verify an identifier
9 if id_check failed then

10 return ERROR
11 end
12

13 token← generate token
14 MAS−C ←make a message with token
15 sigMAS−C ← generate a signature for MAS−C
16 return MAS−C||sigMAS−C

17 end

A user invokes an authenticate procedure with identity information IDC. This
procedure creates an MC−AS wrapping IDC and its signature sigMC−AS , and requests user
authentication to AS (line 4 in Algorithm 1 for flow 1 in Figure 2). When the AS receives
an authentication request from the user, it calls the handle_authentication procedure
using MC−AS and sigMC−AS . This procedure verifies sigMC−AS to determine the integrity of

https://github.com/KUSYS-LAB/Certificate-Authority-for-SCAP
https://github.com/KUSYS-LAB/Web-Interface-for-SCAP
https://github.com/KUSYS-LAB/Authentication-Server-for-SCAP
https://github.com/KUSYS-LAB/Code-Signer-for-SCAP-master
https://github.com/KUSYS-LAB/Ticket-Granting-Server-for-SCAP
https://github.com/KUSYS-LAB/Service-Server-for-SCAP

Appl. Sci. 2021, 11, 9072 11 of 19

MC−AS and the sender (from lines 1–5 in Algorithm 2). If sigMC−AS fails, the AS returns an
appropriate ERROR to the user. Otherwise, AS uses IDC to check whether the sender is a
registered user on the SCAP platform (from lines 7–11 in Algorithm 2). If the user is not
registered, the AS returns an ERROR. When a full verification is successfully completed, AS
generates a token based on cryptography and returns MAS−C and its signature sigMAS−C
to the user (line 16 in Algorithm 2 for flow 2 in Figure 2). When the AS returns a token or
ERROR, the execution of the authenticate procedure resumes from line 4. The user verifies
sigMAS−C to verify the integrity and source of MAS−C (from lines 6–9 in Algorithm 1). If
MAS−C is not created by the correct AS or is corrupted during network communication,
the authenticate procedure returns an ERROR. Otherwise, it obtains a token from MAS−C
and returns it (line 12 in Algorithm 1). The user stores the acquired tokens safely during
their local storage.

4.2. Implementation for CS

Algorithms 3 and 4 show algorithms for generating a digital signature for the AC
written by a user between the user (Algorithm 3) and CS (Algorithm 4), as shown in
Figure 3. To analyze the CDM data intended by the user, the AC should not be tampered
with by attackers while being transmitted to the SS. In addition, the author of the AC
should be proven in an end-to-end manner.

The user calls the request_to_sign_AC procedure with the AC and the token issued
by the AS. This procedure requires the CS to issue a digital signature to guarantee the
integrity of the AC. The procedure sends MC−CS with its signature sigMC−CS (line 4 in
Algorithm 3 for flow 1 in Figure 3). The message MC−CS contains both the AC and a token.
Upon receiving the request, the CS invokes the handle_signing_AC_request procedure.
This procedure uses sigMC−CS to verify the integrity of the sender of MC−CS (from lines 2 to
5 in Algorithm 4). The CS extracts the token from MC−CS and checks the identity of the
sender (from lines 7–11 in Algorithm 4). If any of these checks fail, the procedure returns
an ERROR. Otherwise, the CS acquires AC from MC−CS and generates a digital signature
sigAC (lines 13 and 14 in Algorithm 4). A hash algorithm, such as a secure hash algorithm
(SHA) and a public key encryption algorithm (RSA [37] or ECDSA [38]) may be used to
generate a digital signature. This procedure returns MCS−C, which wraps sigAC and its
signature sigMCS−C , to the user (from lines 16 to 18 in Algorithm 4 for flow 2 in Figure 3).
When a response is received from the CS, the request_to_sign_AC procedure is resumed
from line 4. This procedure validates sigMCS−C to verify the message and sender (lines 6
to 9 in Algorithm 3). If the integrity stands, the procedure obtains and returns sigAC from
MCS−C (line 12 in Algorithm 3). The user safely maintains the acquired sigAC.

Algorithm 3: The code signing algorithm on the user side

1 Procedure request_to_sign_AC(AC, token)
2 MC−CS ←make a message with AC, token
3 sigMC−CS ← generate a signature for MC−CS
4 MCS−C, sigMCS−C ← request to CS for signing AC with MC−CS||sigMC−CS

5

6 sig_check← verify sigMCS−C

7 if sig_check failed then
8 return ERROR
9 end

10

11 sigAC ← get a signature for AC from MCS−C
12 return sigAC

13 end

Appl. Sci. 2021, 11, 9072 12 of 19

Algorithm 4: The code signing algorithm on the CS side

1 Procedure handle_signing_AC_request(MC−CS, sigMC−CS)
2 sig_check← verify sigMC−CS

3 if sig_check failed then
4 return ERROR
5 end
6

7 token← get a token from MC−CS
8 token_check← verify token
9 if token_check failed then

10 return ERROR
11 end
12

13 AC← get analyzing codes from MC−CS
14 sigAC ← generate a signature for AC
15

16 MCS−C ←make a message with sigAC

17 sigMCS−C ← generate a signature for MCS−C
18 return MCS−C||sigMCS−C

19 end

4.3. Implementation for TGS

Algorithms 5 and 6 show the algorithms used to issue a ticket for the user to access
the SS between the user (Algorithm 5) and the TGS (Algorithm 6). TGS issues tickets that
allow users to authenticate multiple SSs.

The user calls the request_to_issue_ticket procedure with the token and sigAC to
receive a ticket from the TGS. The procedure parameters are included in MC−TGS and sent
to the TGS with the signature sigMC−TGS (line 4 in Algorithm 5 for flow 1 in Figure 4). The
TGS calls the handle_issuing_ticket_request procedure. As presented in the previous
algorithms, this procedure verifies the message, identity, and sigAC passed by the user and
returns an ERROR if it fails (from lines 2 to 17 in Algorithm 6). If all of the information is valid,
this procedure generates a ticket cryptographically. The TGS creates a message MTGS−C
with the ticket and returns the message to the user along with sigMTGS−C (from lines 19 to 22
in Algorithm 6 for flow 2 in Figure 4). The request_to_issue_ticket procedure verifies
sigMTGS−C , and if the message is not tampered with, the procedure on the user side extracts
a ticket from the message and returns it. The user safely stores the acquired TGS ticket,
along with the token and sigAC.

4.4. Implementation of RS and SS

Algorithms 7–9 show algorithms for analyzing the CDM data among users
(Algorithm 7), RS (Algorithm 8), and SS (Algorithm 9), as shown in Figure 5. In this
section, only algorithms for the SS set in full-automation mode are introduced. However,
there was no significant difference in the algorithm in the intervention or hybrid modes.

The user invokes the request_to_analyze_CDM_data procedure with a token, AC,
sigAC, and ticket. This procedure transmits MC−RS, which includes the above parameters
and signature sigMC−RS , to RS (line 4 in Algorithm 7 for flow 2 in Figure 5). RS calls the
handle_distributing_AC_request procedure. This procedure validates the tokens in
sigMC−RS and MC−RS and returns an ERROR if the verification fails (from lines 1 to 11 in
Algorithm 8). If there are no errors, this procedure forwards MRS−SS, which includes AC,
sigAC, and the ticket, and signature sigMRS−SS , to all SSs registered in the SCAP (line 19
in Algorithm 8 for flow 2 in Figure 5). SS calls the handle_analyzing_CDM_data_request.
This procedure validates sigMRS−SS , ticket, and sigAC before executing the AC and returns
an ERROR if verification fails (from lines 2 to 17 in Algorithm 9). The SS does not immediately

Appl. Sci. 2021, 11, 9072 13 of 19

execute the AC, even if all verifications are successful. In general, AC execution is a time-
consuming task; therefore, instead of synchronizing all algorithms in Algorithms 7–9, we
append the AC to the thread pool. If AC is successfully included in the thread pool, this
procedure returns a SUCCESS message, and if it fails for any reason, it returns an ERROR
immediately (from lines 19 to 24 in Algorithm 9). If the thread pool is full owing to many
data analysis requests from other users, a scheduler suspends the execution AC until
resources become available. Thus, the computational resources of the SS can be efficiently
operated. The return of the handle_analyzing_CDM_data_request procedure is delivered
to the user through the RS without hesitation.

Figure 7 shows the structure of the SS used to implement the algorithm of Algorithm 9.
Unlike other components of SCAP, the SS provides various functions for analyzing medical
data. (1) The SS places the AC into the queue. In general, the execution of the AC requires
considerable computational resources; it is therefore impossible to execute all analysis
requests from users in parallel. Thus, the SS limits the ACs that can be run at a time using
the management pool for the ACs. (2) The SS can run the AC to analyze the CDM data of
the institution. If all previous verifications are successful, the SS executes the AC using
the R engine. Alternatively, if the AC is written in a programming language other than R,
the appropriate execution engine is called. When the data analysis is complete, the SS stores
the analysis results, AR, in a compressed file type, such as a zip file. (3) The SS may notify
the user of the CDM data analysis status. The data analysis process is time consuming
(typically several hours). In addition, there may be differences in the execution times of the
AC for each institution. Because the user cannot wait for the data analysis of all hospitals
to be completed, the user should periodically check the analysis status of each hospital.
When the user requests the analysis status, the SS responds with a “Waiting for execution”,
“Running”, or “Analysis complete” message. If the SS is in full-automation mode, the AC is
immediately executed without going through the execution standby state. (4) The SS may
notify the user of the AR export status. As in the AC execution, the SS receives instructions
from the custodian regarding whether to provide the results of the CDM data analysis to
the user. When the user requests the SS where AR replies are possible, the SS responds with
either “available for download” or “waiting for approval”. Users can only obtain the AR if
they are “available for download”. As with function 3, when the SS is in full-automation
mode, the “waiting for export” state is not used.

Algorithm 5: The ticket issuing algorithm on the user side

1 Procedure request_to_issue_ticket(token, sigAC)
2 MC−TGS ←make a message with token and sigAC

3 sigMC−TGS ← generate a signature for MC−TGS
4 MTGS−C, sigMTGS−C ← request to TGS for issuing ticket with

MC−TGS||sigMC−TGS

5

6 sig_check← verify sigMTGS−C

7 if sig_check failed then
8 return ERROR
9 end

10

11 ticket← get a ticket from MTGS−C
12 return ticket
13 end

Appl. Sci. 2021, 11, 9072 14 of 19

Algorithm 6: The ticket issuing algorithm on the TGS side

1 Procedure handle_issuing_ticket_request(MC−TGS, sigMC−TGS)
2 sig_check← verify sigMC−TGS

3 if sig_check failed then
4 return ERROR
5 end
6

7 token← get a token from MC−TGS
8 token_check← verify token
9 if token_check failed then

10 return ERROR
11 end
12

13 sigAC ← get a signature from MC−TGS
14 sig_AC_check← verify the signature for AC
15 if sig_AC_check failed then
16 return ERROR
17 end
18

19 ticket← generate a ticket
20 MTGS−C ←make a message with ticket
21 sigMTGS−C ← generate a signature for MTGS−C
22 return MTGS−C||sigMTGS−C

23 end

Algorithm 7: The AC distributing algorithm on the user side

1 Procedure request_to_analyze_CDM_data(token, AC, sigAC, ticket)
2 MC−RS ←make a message with token, AC, sigAC, and ticket
3 sigMC−RS ← generate a signature for MC−RS
4 response← request to RS for distributing AC to analyze the CDM data with

MC−RS||sigMC−RS

5

6 if request success then
// user can download AR after CDM data analysis is complete

7 return SUCCESS
8 else
9 return ERROR

10 end
11 end

Appl. Sci. 2021, 11, 9072 15 of 19

Algorithm 8: The AC distributing algorithm on the RS side

1 Procedure handle_distributing_AC_request(MC−RS, sigMC−RS)
2 sig_check← verify sigMC−RS

3 if sig_check failed then
4 return ERROR
5 end
6

7 token← get a token from MC−RS
8 token_check← verify token
9 if token_check failed then

10 return ERROR
11 end
12

13 AC← get the analyzing codes from MC−RS
14 sigAC ← get the signature for AC from MC−RS
15 ticket← get the ticket from MC−RS
16

17 MRS−SS ←make a message with AC, sigAC, and ticket
18 sigMRS−SS ← generate a signature for MRS−SS
19 result← distribute the analyzing codes with MRS−SS||sigMRS−SS

20 if distribution success then
21 return SUCCESS
22 else
23 return ERROR
24 end
25 end

Service Server

validation
module Queue

Execution
manager

AC pool
R-engine

AC

...

R-engine
AC

AR manager
...

AC, ticket, and
signature

AR

Approval to run AC
from custodian

Approval to release AR
from custodian

Figure 7. Architecture of SS.

Appl. Sci. 2021, 11, 9072 16 of 19

Algorithm 9: The AC distributing algorithm on the SS side

1 Procedure handle_analyzing_CDM_data_request(MRS−SS, sigMRS−SS)
2 sig_check← verify sigMRS−SS

3 if sig_check failed then
4 return ERROR
5 end
6

7 ticket← get the ticket from MRS−SS
8 ticket_check← verify ticket
9 if ticket_check failed then

10 return ERROR
11 end
12

13 sigAC ← get the signature for AC
14 sig_AC_check← verify the signature for AC
15 if sig_AC_check failed then
16 return ERROR
17 end
18

19 result← append AC to the thread pool
20 if result success then

// AC will be executed to analyze the CDM data by the thread
scheduler and AR will be saved.

21 return SUCCESS
22 else
23 return ERROR
24 end
25 end

5. Discussion
5.1. Limitations

Although the SCAP has basic functions for analyzing CDM data in a distributed
network environment, it has the following limitations. First, at this point, the SCAP
does not have an access control mechanism for users. If each hospital operates the SS
in intervention or hybrid mode, access to the data of the institution can be manually or
automatically restricted to users. However, this is undesirable as an access control, and the
user’s access service should be controlled at the central server group level. Fortunately,
the SCAP already uses the AS to authenticate users, and thus it is relatively easy to embed
access control into the platform. Second, the SCAP allows CDM data from each hospital
to be analyzed individually. However, because medical data show different statistical
characteristics according to the geographical location, it is insufficient to analyze hospital
data individually through big data analysis. Additional techniques, such as federated
learning, should be considered to solve this problem.

5.2. Conclusions

This paper proposed the SCAP, a platform that facilitates an analysis in a distributed
environment in which CDM data are stored in the internal network of a hospital. The
SCAP consists of the CA, AS, CS, TGS, RS, and SS for safely protecting the data analysis
process. We designed and implemented a communication protocol among the components.
In addition, some limitations of the platform were discussed. At this point, the SCAP is
at the prototype level. In the future, we plan to expand this platform with continuous
research and development.

Appl. Sci. 2021, 11, 9072 17 of 19

Author Contributions: Conceptualization, S.J.; methodology, S.J.; formal analysis, S.J.; writing—
original draft, S.J.; visualization, S.J.; software, C.S. and E.K.; investigation, C.S. and E.K.; validation,
J.M.; writing—review and editing, J.M.; supervision, J.M.; project administration, J.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the Korea Health Technology R&D Project
through the Korea Health Industry Development Institute (KHIDI) and funded by the Ministry of
Health & Welfare, Republic of Korea (Grant Number: HI19C0791).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EMR electronic medical record
EHR electronic health record
LSH locality-sensitive hashing
CDM common data model
ETL extract-transform-load
AC analysis codes
WI web interface
CA certificate authority
AS authentication server
CS code signer
TGS ticket-granting server
RS relaying server
SS service server
OMOP-CDM observational medical outcomes partnership CDM
OHDSI observational health data sciences and informatics
AR analysis result
REST representational state transfer
PKI public-key infrastructure
SHA secure hash algorithm
JWT Jwon web token
OAuth 2.0 Open authorization 2.0

References
1. Liu, J.; Li, X.; Ye, L.; Zhang, H.; Du, X.; Guizani, M. BPDS: A Blockchain Based Privacy-Preserving Data Sharing for Electronic

Medical Records. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab
Emerites, 9–13 December 2018; doi:10.1109/GLOCOM.2018.8647713. [CrossRef]

2. Kruse, C.S.; Smith, B.; Vanderlinden, H.; Nealand, A. Security Techniques for the Electronic Health Records. J. Med. Syst. 2017,
41, 1–9. [CrossRef] [PubMed]

3. Zhang, Q.; Lian, B.; Cao, P.; Sang, Y.; Huang, W.; Qi, L. Multi-source medical data integration and mining for healthcare services.
IEEE Access 2020, 8, 165010–165017. [CrossRef]

4. Deng, Y.; Li, Y.; Shen, Y.; Du, N.; Fan, W.; Yang, M.; Lei, K. MedTruth: A semi-supervised approach to discovering knowledge
condition information from multi-source medical data. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, Beijing, China, 3–7 November 2019; doi:10.1145/3357384.3357934. [CrossRef]

5. Ranbaduge, T.; Vatsalan, D.; Christen, P.; Verykios, V. Hashing-based distributed multi-party blocking for privacy-preserving
record linkage. In Lecture Notes in Computer Science, Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Auckland, New Zealand, 19–22 April 2016; Springer: Cham, Switzerland, 2016; Volume 9652._33. [CrossRef]

6. Vatsalan, D.; Christen, P. Scalable privacy-preserving record linkage for multiple databases. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, Shanghai, China, 3–7 November 2014;
doi:10.1145/2661829.2661875. [CrossRef]

7. OHDSI. OMOP Common Data Model. Available online: https://www.ohdsi.org/data-standardization/the-common-data-
model/ (accessed on 29 September 2021).

http://doi.org/10.1109/GLOCOM.2018.8647713
http://dx.doi.org/10.1007/s10916-017-0778-4
http://www.ncbi.nlm.nih.gov/pubmed/28733949
http://dx.doi.org/10.1109/ACCESS.2020.3023332
http://dx.doi.org/10.1145/3357384.3357934
http://dx.doi.org/10.1007/978-3-319-31750-2_33
http://dx.doi.org/10.1145/2661829.2661875
https://www.ohdsi.org/data-standardization/the-common-data-model/
https://www.ohdsi.org/data-standardization/the-common-data-model/

Appl. Sci. 2021, 11, 9072 18 of 19

8. Sentinel Initiative. Sentinel Common Data Model. Available online: https://www.sentinelinitiative.org/methods-data-tools/
sentinel-common-data-model (accessed on 29 September 2021).

9. PCORI. PCORnet. Available online: https://pcornet.org/data/ (accessed on 29 September 2021).
10. Dierks, T.; Rescorla, E. RFC 5246: The Transport Layer Security (TLS) Protocol—Version 1.2; International Engineering Task Force

(IETF): Wilmington, DE, USA, 2008.
11. Vassiliadis, P. A survey of extract-transform-load technology. Int. J. Data Warehous. Min. 2009, 5, 1–27. [CrossRef]
12. Denney, M.J.; Long, D.M.; Armistead, M.G.; Anderson, J.L.; Conway, B.N. Validating the extract, transform, load process used to

populate a large clinical research database. Int. J. Med. Inform. 2016, 94, 271–274. [CrossRef] [PubMed]
13. Lee, H.; Kim, S.; Kim, J.W.; Chung, Y.D. Utility-preserving anonymization for health data publishing. BMC Med. Inform. Decis.

Mak. 2017, 17, 1–12. [CrossRef] [PubMed]
14. Nayahi, J.J.V.; Kavitha, V. Privacy and utility preserving data clustering for data anonymization and distribution on Hadoop.

Futur. Gener. Comput. Syst. 2017, 74, 393–408. [CrossRef]
15. OHDSI. ATLAS-A Unified Interface for the OHDSI Tools. Available online: https://www.ohdsi.org/atlas-a-unified-interface-

for-the-ohdsi-tools/ (accessed on 29 September 2021).
16. Yao, X.; Lin, Y.; Liu, Q.; Long, S. Efficient and privacy-preserving search in multi-source personal health record clouds.

In Proceedings of the IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015;
doi:10.1109/ISCC.2015.7405612. [CrossRef]

17. Woong Park, R. A Clinical Real-World Evidence Sharing Platform Over the Globe. J. Acupunct. Meridian Stud. 2020, 13. [CrossRef]
18. ISO. ISO 27799: 2016-Health Informatics-Information Security Management in Health Using ISO/IEC 27002. International

Organization for Standardization (ISO). 2016. Available online: https://www.iso.org/standard/62777.html (accessed on 29
September 2021).

19. Jones, M.; Bradley, J.; Sakimura, N. RFC 7519: Json Web Token (JWT); Internet Engineering Task Force (IETF): Wilmington, DE,
USA, 2015.

20. Hardt, D. RFC 6749: The OAuth 2.0 Authorization Framework; International Engineering Task Force (IETF): Wilmington, DE, USA,
2012.

21. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

22. Cao, Y.Y.; Fu, C. An efficient implementation of RSA digital signature algorithm. In Proceedings of the 2008 Interna-
tional Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 20–22 October 2008;
doi:10.1109/ICICTA.2008.398. [CrossRef]

23. Neuman, C.; Yu, T.; Hartman, S.; Raeburn, K. RFC 4120: The Kerberos Network Authentication Service (V5); International Engineering
Task Force (IETF): Wilmington, DE, USA, 2005.

24. Raisaro, J.L.; Troncoso-Pastoriza, J.R.; Misbach, M.; Sousa, J.S.; Pradervand, S.; Missiaglia, E.; Michielin, O.; Ford, B.; Hubaux, J.P.
MEDCO: Enabling secure and privacy-preserving exploration of distributed clinical and genomic data. IEEE/ACM Trans. Comput.
Biol. Bioinform. 2019, 16, 1328–1341. [CrossRef] [PubMed]

25. Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 1–7. [CrossRef] [PubMed]

26. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019,
10, 1–19. [CrossRef]

27. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated Learning for Healthcare Informatics. J. Healthc. Inform. Res.
2021, 5, 1–19. [CrossRef] [PubMed]

28. Li, Y.; Bai, C.; Reddy, C.K. A distributed ensemble approach for mining healthcare data under privacy constraints. Inf. Sci. (NY)
2016, 330, 245–259. [CrossRef] [PubMed]

29. Gruendner, J.; Schwachhofer, T.; Sippl, P.; Wolf, N.; Erpenbeck, M.; Gulden, C.; Kapsner, L.A.; Zierk, J.; Mate, S.; Stürzl, M.; et al.
Ketos: Clinical decision support and machine learning as a service—A training and deployment platform based on Docker,
OMOP-CDM, and FHIR Web Services. PLoS ONE 2019, 14, e0223010. [CrossRef]

30. OHDSI. OHDSIonAWS-Automation Code and Documentation for Standing Up the OHDSI Toolstack in an AWS Environment.
Available online: https://github.com/OHDSI/OHDSIonAWS (accessed on 29 September 2021).

31. Kim, G.L.; Yi, Y.H.; Hwang, H.R.; Kim, J.; Park, Y.; Kim, Y.J.; Lee, J.G.; Tak, Y.J.; Lee, S.H.; Lee, S.Y.; et al. The Risk of Osteoporosis
and Osteoporotic Fracture Following the Use of Irritable Bowel Syndrome Medical Treatment: An Analysis Using the OMOP
CDM Database. J. Clin. Med. 2021, 10, 2044. [CrossRef]

32. Zhang, X.; Wang, L.; Miao, S.; Xu, H.; Yin, Y.; Zhu, Y.; Dai, Z.; Shan, T.; Jing, S.; Wang, J.; et al. Analysis of treatment pathways for
three chronic diseases using OMOP CDM. J. Med. Syst. 2018, 42, 1–12. [CrossRef] [PubMed]

33. Forsby, F.; Furuhed, M.; Papadimitratos, P.; Raza, S. Lightweight X.509 Digital Certificates for the Internet of Things. In Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Proceedings of the International
Conference on Safety and Security in IoT, Valencia, Spain, 6–7 November 2017; Springer: Cham, Switzerland, 2017; Volume 242._14.
[CrossRef]

34. Plata, I.T.; Panganiban, E.B.; Bartolome, B.B. A security approach for file management system using data encryption standard
(DES) algorithm. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8. [CrossRef]

https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://pcornet.org/data/
http://dx.doi.org/10.4018/jdwm.2009070101
http://dx.doi.org/10.1016/j.ijmedinf.2016.07.009
http://www.ncbi.nlm.nih.gov/pubmed/27506144
http://dx.doi.org/10.1186/s12911-017-0499-0
http://www.ncbi.nlm.nih.gov/pubmed/28693480
http://dx.doi.org/10.1016/j.future.2016.10.022
https://www.ohdsi.org/atlas-a-unified-interface-for-the-ohdsi-tools/
https://www.ohdsi.org/atlas-a-unified-interface-for-the-ohdsi-tools/
http://dx.doi.org/10.1109/ISCC.2015.7405612
http://dx.doi.org/10.1016/j.jams.2020.03.004
https://www.iso.org/standard/62777.html
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1109/ICICTA.2008.398
http://dx.doi.org/10.1109/TCBB.2018.2854776
http://www.ncbi.nlm.nih.gov/pubmed/30010584
http://dx.doi.org/10.1038/s41746-020-00323-1
http://www.ncbi.nlm.nih.gov/pubmed/34518641
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1007/s41666-020-00082-4
http://www.ncbi.nlm.nih.gov/pubmed/33204939
http://dx.doi.org/10.1016/j.ins.2015.10.011
http://www.ncbi.nlm.nih.gov/pubmed/26681811
http://dx.doi.org/10.1371/journal.pone.0223010
https://github.com/OHDSI/OHDSIonAWS
http://dx.doi.org/10.3390/jcm10092044
http://dx.doi.org/10.1007/s10916-018-1076-5
http://www.ncbi.nlm.nih.gov/pubmed/30421323
http://dx.doi.org/10.1007/978-3-319-93797-7_14
http://dx.doi.org/10.30534/ijatcse/2019/30852019

Appl. Sci. 2021, 11, 9072 19 of 19

35. Stallings, W. The advanced encryption standard. Cryptologia 2002, 26, 137–139. [CrossRef]
36. OHDSI. HADES-Health Analytics Data-to-Evidence Suite. Available online: https://ohdsi.github.io/Hades/ (accessed on 29

September 2021).
37. Fotohi, R.; Firoozi Bari, S.; Yusefi, M. Securing Wireless Sensor Networks Against Denial-of-Sleep Attacks Using RSA Cryptogra-

phy Algorithm and Interlock Protocol. Int. J. Commun. Syst. 2020, 33, e4234. [CrossRef]
38. Gennaro, R.; Goldfeder, S. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; doi:10.1145/3243734.3243859.
[CrossRef]

http://dx.doi.org/10.1080/0161-110291890876
https://ohdsi.github.io/Hades/
http://dx.doi.org/10.1002/dac.4234
http://dx.doi.org/10.1145/3243734.3243859

	Introduction
	Related Work
	Approaches on Multi-Centered Medial Data
	Authentication Methods

	Methods
	Operating Environment
	Communication between User and AS
	Communication between User and CS
	Communication between User and TGS
	Communication for Distributing AC

	Results
	Implementation of AS
	Implementation for CS
	Implementation for TGS
	Implementation of RS and SS

	Discussion
	Limitations
	Conclusions

	References

