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Abstract: The P2Y receptor family is a class of G protein-coupled receptors activated primarily
by adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP) and
uridine diphosphate (UDP). The P2Y12 receptor is expressed on platelets which mediates platelet
aggregation and morphological changes. At the same time, during the process of vascular remodeling
and atherosclerosis, ADP can also promote the migration and proliferation of vascular smooth
muscle and endothelial cells through P2Y12 receptor activating. Furthermore, P2Y12 is involved
in many signal transductions processes, such as intimal hyperplasia, monocyte infiltration and so
on, which play an important role in immune inflammation and brain injury. In order to solve the
diseases induced by P2Y12 receptor, inhibitors such as ticagrelor, clopidogrel were widely used for
cardiovascular diseases. However, there were some problems, such as limited antithrombotic effect,
remain unsolved. This article summarizes the role and molecular mechanism of P2Y12 receptors in
the pathogenesis of cardiovascular-related diseases, providing in-depth expounding on the molecular
mechanism of P2Y12 receptor inhibitors and contributing to the treatment of diseases based on
P2Y12 receptors.
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1. Introduction

The P2Y receptor family is a class of G protein-coupled receptors (GPCRs) activated
mainly by ATP, ADP, UTP and UDP. They are widely distributed in humans and are closely
related to several physiological functions. In the human genome, the P2Y receptor includes
eight members. After the identification of P2Y1 and P2Y2, P2Y4, P2Y6, P2Y11, P2Y12,
P2Y13 and P2Y14 are successfully separated. P2Y receptors can be divided into Gq and Gi
protein-coupled receptors based on the binding proteins of subunits [1–3].

The P2Y12 receptor is a rhodopsin-like G protein-coupled receptor consisting of
342 amino acid residues. The receptor gene is located in human chromosome 3q25.1 [4].
P2Y12 dominates the platelet aggregation mechanism regulated by soluble agonists and
participates in the platelet aggregation mechanism driven by hemodynamics, and first
discovered on platelets, is activated by ADP. Furthermore, P2Y12 receptor was also found
on vascular smooth muscle, microglia, dendritic cells, macrophages and lymphocytes,
which played an important role in guiding cells to a specific area [5,6]. In clinic, the P2Y12
receptor also plays an important role in various diseases such as thrombus myocardial
atherosclerosis, brain injury repair process, and so on [7,8]. This article summarizes the
role and mechanism of P2Y12 receptor-associated cardiovascular disease, explores the key
role of P2Y12 receptor in the development of the disease further and provides new ideas
for the combined clinical use of P2Y12 inhibitor drugs and drug conversion [9].
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2. P2Y12 Receptor and Fluid Shear Stress

Blood vessels are constantly subjected to various types of blood flow due to pulsating
blood flow and pressure, including fluid shear stress, cyclic stretching and hydrostatic
pressure, which could regulate P2Y12 to activate syk kinase and PI3k kinase to induce
platelet aggregation [10,11]. This phenomenon can activate various chemical and physical
signals, modulating various physiological processes. In physiological blood shear rate
(1000–10,000 s−1), small transient platelets aggregate through the development of mem-
brane tethers [12], whereas at the pathological shear rate (>410,000 s−1), platelets can be
activated independently by integrin α IIb β 3 to form aggregation [13]. Meanwhile, dis-
turbed blood flow also occurred platelet aggregation in vascular injury sites [14,15]. During
platelet aggregation, the P2Y12 receptor can amplify and maintain the activation of ADP on
platelets, release platelet particles, activate platelet mechanical membrane adhesion factors
such as glycoprotein IIb/IIIa (GP IIb/IIIa) and ultimately maintain the growth and stability
of the thrombus [16–18]. The P2Y12 receptor also plays an important role in stabilizing
blood clots formed on atherosclerotic plaques [3,19]. However, P2Y12 is limited to high
shear flow conditions and functions in the presence of coagulation [20].

ADP is involved in regulating vascular development, especially in changing hemo-
dynamic environment, may play an important role in vascular reconstruction [6]. Some
studies have found that ADP can affect the morphology, skeleton structure, migration,
proliferation and apoptosis of endothelial cells, which affect the absorption and metabolism
of lipoproteins and other macromolecular substances in the blood vessel wall [5]. ADP also
regulate the synthesis, secretion and expression of vasoactive substances, to regulate the
function of blood vessels reconstruction [21]. Activating the P2Y receptor of endothelial
cells in vitro can change their form and permeability [22]. In the angiogenesis model, ADP
significantly inhibits angiogenesis [23]. At the same time, endothelial cell migration experi-
ments also found that ADP has a strong chemotactic effect on endothelial cells [24]. It may
be that ADP activates the P2Y receptor to cause activation of the MAPK pathway, thereby
promoting endothelial cell migration [25]. Platelet activation induced by ADP will also
increase the expression level of VEGF in plasma and participate in the repair of vascular
injury [26]; ADP inhibitors can reduce the release of VEGF and delay the healing of gastric
ulcers [27]. Thus, the P2Y receptor plays a crucial role in regulating the homeostasis of
endothelial cells.

3. P2Y12 and Thrombosis

Thrombus caused by the abnormal activation of platelets is the pathological basis
for the formation of many diseases. Under various physiological and pathological con-
ditions, platelets can be activated and undergo processes such as adhesion, deformation,
aggregation, particle release and synthesis of thromboxane A2, which ultimately leads to
physiological hemostasis or pathological thrombosis [28]. Platelet activation participates in
the injury repair response during vascular injury, which is very important for the physi-
ological hemostasis process. Furthermore, in the process of damage repair, platelets are
activated in blood vessels and will indirectly adhere to subendothelial collagen through von
Willebrand factor (vWF) [29,30]. Meanwhile, the platelet surface membrane glycoproteins
GPVI and GPIa/IIa are also activated and directly adhere to collagen. However, under
pathological conditions, when the blood flow shear rate is high, the GPIb/IX/V-vWF-
collagen axis plays a key role in mediating the initial unstable platelet adhesion process,
which is important for Ib/IX/V-vWF-collagen. Blocking of the axis is a key target for
blocking platelet adhesion and subsequent reactions [31–33]. Among them, ARC-1779,
as a nucleic acid aptamer of vWF, can block vWF and GPIb/IX/V by binding to the A1
region of vWF [34]. At the same time, abnormal platelet activation also causes arterial
thrombosis to cause blood vessel stenosis or occlusion, resulting in ischemia of the body
tissue or interruption of blood supply, which ultimately leads to the pathological basis
of arterial thrombotic diseases such as coronary heart disease, acute coronary syndrome,
stroke, sticky platelet syndrome, etc. [18,35,36]. The following protein-coupled receptors
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are important receptors on the surface of platelets: thrombin receptors, PAR1, PAR3 and
PAR4; ADP receptors, P2Y1 and P2Y12; prostaglandin receptors, such as thromboxane,
prostacyclin, PDG2 and PGE2 receptors; and some lipid and chemokine receptors [37,38].

ADP is the earliest and most important substance in the body that induces platelet
aggregation. ADP exists in high-density granules in platelet cells, and is released when
platelets undergo an aggregation reaction. In sticky platelet syndrome, due to the increased
aggregation of ADP and epinephrine, a variety of unexplained thromboembolic diseases
result [39]. Human platelets have two ADP receptors: the Gq-coupled P2Y1 and Gi-coupled
P2Y12 receptors. Among them, P2Y1 receptor is distributed on platelets and other tissue
cells. P2Y12 receptors are mainly distributed on platelets and glial cells and have been
most studied on platelets. ADP released from damaged blood vessels and red blood cells
in the in vivo environment mediates platelet aggregation by acting on the two G-protein
coupled receptor subtypes 2 and 3. Platelet surface ADP receptors mainly include P2Y1
and P2Y12. P2Y1 is a Gq protein coupled receptor, and P2Y12 is a Gi protein coupled
receptor (Figure 1). When the ADP activates the P2Y1 receptor, it increases the intracellular
free Ca2+ and changes the platelet morphology, causing reversible aggregation. After ADP
activates the P2Y12 receptor, the initial platelet aggregation induced by the P2Y12 receptor
can cause the release of dense particles in the platelets (including a large amount of ADP),
inhibit adenylate cyclase and trigger irreversible platelet aggregation [40,41]. The P2Y1
receptor can only cause weak platelet activation, while P2Y12 can gradually amplify the
signal. At the same time, the number of P2Y12 receptors on platelet membranes far exceeds
that of P2Y1, so P2Y12 receptors have become one of the important targets of antiplatelet
drugs [42]. P2Y12 receptor-mediated platelet activation is mainly achieved through the
following mechanisms:

1. Inhibiting adenylate cyclase, reducing the concentration of cyclic adenosine monophos-
phate (cAMP), thereby increasing the free Ca2+ concentration, inactivating the cyclic
adenosine monophosphate-dependent protein kinase and promoting platelet aggre-
gation (first-phase gathering).

2. The first-phase aggregation reaction can activate PI3K kinase and promote the release
of related substances (ADP, serotonin, etc.) in platelets, resulting in continuous and
stable platelet aggregation (second-phase aggregation).

3. Activating phosphatidylinositol-3 kinase, serine-threonine protein kinase B and rapid
guanosine triphosphate (GTP) binding protein, promote the exposure of the active site
of platelet GPIIb/IIIa receptor binding to fibrinogen and promote platelet fibrin cross-
linking and aggregation between platelets [43,44].These interactions are facilitated
by the release of the intracellular tether of GP IIb/IIIa, possibly via release from
cytoskeletal actin components (the so-called inside-out signaling), which allows the
extracellular domains of the GP IIb/IIIa receptor complex to expose multiple binding
sites for fibrinogen and, also, for the von Willebrand factor [45]. Therefore, the P2Y12
receptor plays a vital role in platelet activation and aggregation. Furthermore, platelet
aggregation may affect the infiltration of monocytes into the infarcted myocardium
and influence the prognosis, which is contributed by P2Y12 [46]. The unique feature of
P2Y12 may mediate platelet independent responses, especially in enhanced thrombin
formation, such as local vascular injury and the rupture of atherosclerotic plaques [47].
Although this new biological signal is associated with long-term functional outcomes,
the corresponding cellular substrates remain unclear.

Given that P2Y12 receptors regulate platelet activation and thrombosis, some an-
tithrombotic drugs can covalently bind to P2Y12 receptors, including the highly active
compounds clopidogrel and prasugrel. The nucleoside analogue ticagrelor, which is used to
prevent stroke and myocardial infarction, acts directly on this receptor [48]. The analysis of
the crystal structure of the complex of P2Y12 with the non-nucleotide reversible antagonist
AZD1283 revealed the unique linear conformation of the spiral V, thereby differentiating
P2Y12 from all other known class A GPCR structures (Table 1). In the case of binding
to AZD1283, highly conserved disulfides in GPCRs are not observed between helix III
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and extracellular loop 2. The analysis of the extracellular interface revealed an adjacent
ligand-binding region and suggested that both substances may be required for dinucleotide
binding. This structure provides important ideas for developing improved P2Y12 ligands
and allosteric modulators as drug candidates [49] (Table 1).

Figure 1. The activation of P2Y12 receptor in platelet activation and other biological process.

Table 1. The treatment drugs of diseases based on P2Y12 receptors.

P2Y12 Inhibitors The Targets Functions of Drugs References

Clopidogrel

Clopidogrel is a P2Y12 receptor inhibitor which selectively inhibits the binding
of ADP to platelet receptors, the activation of ADP-mediated glycoprotein

GPIIb/IIIa complex, and platelet aggregation. It is used to prevent and treat
heart, brain and other arterial circulatory disorders caused by high platelet
aggregation, such as recent strokes, myocardial infarctions and confirmed

peripheral arterial diseases.

[50–52]

Prasugrel

Prasugrel is a new orally effective thienopyridine drug. The P2Y12 adenosine
diphosphate receptor on platelets can be irreversibly inhibited after the

cytochrome P450 enzyme system is metabolized to the active metabolite.
Prasugrel has a higher conversion rate of prodrug to active metabolites and

higher bioavailability, so it takes effect faster and can reduce the difference in
efficacy between individuals, and reduces major ischemic cardiovascular events

to a greater extent Incidence rate.

[53–55]

Ticagrelor

Ticagrelor is an oral P2Y12 receptor antagonist, which is a new type of
cyclopentyl triazole pyrimidine oral antiplatelet drug. Ticagrelor promotes a

greater inhibition of adenosine 5′-diphosphate (ADP)-induced Ca2+ release in
shed platelets compared with other P2Y12R antagonists. Studies have also

shown that ticagrelor is significantly better than clopidogrel. In clinical trial,
2 different dosages, 90 twice daily and 60 mg once a day of ticagrelor both

showed reduced risk of cardiovascular death.

[56–60]
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Table 1. Cont.

P2Y12 Inhibitors The Targets Functions of Drugs References

AZD1283
The P2Y12 receptor inhibitor AZD1283 induces an increasing in blood flow and
inhibits ADP-induced platelet aggregation, with antithrombotic ED50 values of

3.0 and 10 µg/kg/min.
[61]

2-Methylthioadenosine
diphosphate trisodium

2-Methylthioadenosine diphosphate trisodium is a potent purinergic P2Y
receptor agonist, 2-methylthioadenosine diphosphate trisodium induces platelet

aggregation and shape change, and inhibits cyclic AMP accumulation in
platelets exposed to prostaglandin E1.

[62–64]

Cangrelor tetrasodium

An adenosine triphosphate analogue, a reversible and selective platelet P2Y12
antagonist, has a rapid and effective antiplatelet effect. Cangrelor tetrasodium
directly blocks adenosine diphosphate (ADP)-induced platelet activation and
aggregation. Cangrelor tetrasodium is also a non-specific GPR17 antagonist.

[65–67]

4. P2Y12 Receptor and Atherosclerosis

Atherosclerosis is the most important atherosclerotic condition in clinical practice. It
causes cerebrovascular disease and coronary heart disease among other diseases. It severely
threatens the health and life of middle-aged and elderly people (10.1016/j.jacc.2018.08.1043) [68].
Atherosclerosis is characterized by the accumulation and bleeding of lipids and complex
sugars, resulting in fibrous tissue hyperplasia and calcium deposition, and the gradual
metamorphosis and calcification of the middle layer of arteries [69].

In atherosclerosis, acute vascular obstruction causes thrombosis, further producing
atherosclerosis and vasoconstriction [70]. The occlusive effect of these aggregates com-
bines with their inherent instability and tendency to embolic distal circulation. Thus, this
aggregation mechanism may enhance cerebral blood vessel symptoms of acute coronary
syndrome and intermittent thromboembolism [71]. In addition, this aggregation process
can occur independent of soluble agonists, further illustrating the important role of platelet
aggregation mechanism driven by hemodynamic changes [11]. This phenomenon may help
explain the limited antithrombotic effect of aspirin, clopidogrel and thrombin inhibitors,
especially in individuals with severe vascular diseases. These findings help reconcile some
fundamental controversies in the field and provide a mechanical explanation for discoid
platelet formation and aggregation. Acute plaque rupture leads to the rapid formation of
non-occlusive thrombus. Under the action of P2Y12 blocker, the thrombus volume is small
and unstable. In vitro, when mouse or human blood is perfused onto collagen or atheroscle-
rotic plaque material, the occlusion or deficiency of P2Y12 can reduce thromboembolic
events [72].

In a recent report, the P2Y12 receptor plays an important role in the progress of
plaques, speculating that it may be through the promotion of platelets and leukocytes
adhesion and aggregation affect the recruitment of leukocytes to the plaque area and
mediate plate formation [73]. In subsequent experiments, some researchers proved by
bone marrow transplantation that the P2Y12 receptor on the blood vessel wall is a key
factor in promoting the development of early atherosclerosis [74]. The latest research
also shows that P2Y12 receptors are also expressed in human carotid plaques and are
mainly distributed on smooth muscle cells in plaques [6]. At the same time, atherosclerosis
factor ox-ldl can induce smooth muscle cells to express the P2Y12 receptor and inhibit
the cAMP/PKA signalling pathway by activating the transcription factor NF-κB, thereby
inducing the dephosphorylation of the framework protein conflin and the depolymerization
of fibrous actin, thereby promote skeleton protein renewal and enhance smooth muscle
migration ability [75,76]. Platelet P2Y12 also regulates the release of platelet factor 4 by
inhibiting the cAMP/protein kinase A pathway, affecting the recruitment and infiltration
of monocytes [77]. F0F1 ATPase on the cell surface can catalyze the ADP produced by ATP
hydrolysis in endothelial cells and stimulate the binding and internalization of apoA-I and
HDL (Figure 1) [78,79]. The inhibition of P2Y12 by clopidogrel can reduce platelet-related
inflammatory responses and the expression of p-selectin and CD40L after atherosclerotic
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thrombosis [80]. Ticagrelor and clopidogrel can effectively reduce platelet reactivity by
inhibiting the P2Y12 receptor, but they cannot inhibit the formation of early atherosclerosis.
The role of P2Y12 inhibitors is mainly reflected in the development of atherosclerotic
diseases [74].

5. Discussion and Prospect

Since the discovery of the self-activation of GPCRs, our understanding of receptor
activation and disease mechanisms has dramatically changed. In this review, we sum-
marized the related signal transduction processes of P2Y12 receptors that participate in
the physiological and pathological processes of diseases in various ways. These receptors
play an important role in the formation of many human diseases, especially cardiovascular
diseases. P2Y12 can directly participate in the formation of thrombus and also activate
Syk kinase and PI3K kinase to induce thrombus formation in the biomechanical-mediated
aggregation mechanism. Antiplatelet therapy that targets ADP receptor P2Y12 has become
the main strategy to prevent acute coronary events and coronary stent thrombosis. At
present, the main P2Y12 inhibitors used in clinic are clopidogrel, prasugrel and ticagrelor.
However, their effects are closely related to the occurrence and development of the disease.
For example, P2Y12 antagonists, such as clopidogrel, effectively prevent atherothrombotic
thrombosis and are widely used. However, some studies discovered that clopidogrel has
no effect on the treatment of atherosclerosis [81]. This contradictory result suggests the
need for further research on P2Y12 receptor. This result prompted us to further study the
therapeutic mechanism of P2Y12 receptor and explore the effect of this receptor on disease
occurrence in different environments.

In addition, P2Y12 participates in the physiological and pathological processes of
the cardiovascular system in different ways. First, P2Y12 receptor plays an important
role in LPS-induced inflammation, which may be involved in the regulation of spleen
and bone marrow cell content during LPS systemic inflammation. P2Y12 can promote
the release of platelet and the aggregation of inflammatory α-granules and platelets. The
P2Y12 inhibitor clopidogrel can inhibit platelet-related inflammation and decrease the
expressions of systemic inflammatory markers. In addition, P2Y12 receptors in brain
tissue are closely related to glial cell chemotaxis, inflammatory factor release, and pain
regulation. At the same time, miRNAs that regulate P2Y12 signalling are also considered
to be new disease biomarkers and therapeutic targets, which have attracted attention. It
regulates the expression of genes after transcription to exert biological functions, thereby
participating in the regulation of various physiological functions of the body, and is closely
related to the pathophysiological processes of various diseases. Recent studies have found
that microRNA have high expression in platelets which participation in the regulation of
platelet function and play an important role in the pathophysiological process of thrombotic
cardio-cerebrovascular diseases. miR-223 can regulate the expression of P2Y12 in platelets
and a variety of cells. miR-223 could influence the cutting process of mRNA and affect the
expression of P2Y12. With the deepening of research on microRNA, the biological function
of microRNA and its target genes will be discovered more and more. The importance of
microRNA for cardiovascular diseases also needs to be further discovered.

Research on ion channels and G protein-coupled receptors and signalling molecules
has changed our understanding of P2Y12. This activation not only affects platelet aggre-
gation, but also regulates changes in multiple signalling pathways within the cell, such
as regulating smooth muscle cytoskeletal morphology and controlling vascular tone and
remodeling. At the same time, through the local release of ADP, the vascular tension and
tensile stress are affected [82,83]. Studies on P2Y12 receptors and signalling pathways have
shown that P2Y12 receptors play an important role in diseases such as atherosclerosis,
inflammatory diseases and neuropathy, and are potential drug targets. However, the
interaction between the P2Y12 receptor and other signalling proteins and the interaction
with other cell signalling pathways requires further study.
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The role of P2Y12 in the recruitment of inflammatory cells in the perturbed flow area
is also worthy of further study.

Under normal physiological conditions, the blood flow in the blood vessels is mainly
laminar, but in certain bifurcated stenoses, the blood flow will be separated due to inter-
ference and the flow process. The result of this change is the formation of some so-called
vortex zones, which changes the laminar flow of blood into turbulent flow, which strength-
ens the impact on the blood vessel wall, and also causes damage to some parts of the
intima of the blood vessel. It accelerates and promotes the accumulation of some harmful
substances in the vicinity. Peripheral blood monocytes migrate into the inner membrane
and can differentiate into macrophages. Macrophages can use the scavenger receptors on
their surface to take up lipids to form a source of macrophages in atherosclerotic plaques.
Foam cells have become an important cause of accelerated atherosclerosis [84,85].

In the initial stage of atherosclerosis, endothelial cells are first damaged to cause
dysfunction, which in turn causes lipid deposition, macrophage recruitment, foam cell
formation and T lymphocyte and platelet aggregation. The P2Y12 receptor is a member of
the P2 receptor family. The P2 receptor consists of the ion channel receptor P2X family and
the G protein-coupled receptor P2Y family. Platelets, endothelial cells and immune cells can
release ATP or ADP, and ATP and ADP can bind to P2 receptors as ligands to activate P2
receptors. Additionally, the P2Y12 receptor is also mainly expressed in platelets and brain
tissue glial cells. Platelet P2Y12 receptor plays an important role in maintaining platelet
activation. The P2Y12 receptor in brain tissue is closely related to glial cell chemotaxis,
inflammatory factor release and pain regulation. In recent years, the P2Y12 receptor on the
blood vessel wall has gradually attracted people’s attention. The P2Y12 receptor on normal
vascular smooth muscle tissue can regulate the contractile function of blood vessels [76]. In
addition, some studies have found that P2Y12 receptors are expressed in human carotid
plaques and coronary atherosclerotic plaques, and compared with plaques in patients with
stable and colic, P2Y12 receptors in plaques in patients with acute myocardial infarction
have higher expression level [86]. The formation of atherosclerotic plaques includes a series
of specific cellular and molecular reactions. Some studies have found that by comparing
Low-Density Lipoprotein Receptor (LDLR), P2Y12 double knockout mice and LDLR single
knockout mice, the P2Y12 receptor plays an important role in the progress of plaque [87],
and its potential mechanism may be through the promotion of platelet adhesion and
aggregation of leukocytes and the recruitment of leukocytes to the plaque area. Therefore,
we speculate that P2Y12 as an immune cell activation receptor is closely related to immune
cell recruitment behavior exposed to fluid shear stress. Further clarification of the role of
P2Y12 in the recruitment of inflammatory cells in the perturbed flow area will provide a
basis for our in-depth understanding of the relationship between P2Y12 as an immune cell
activation receptor and immune cell recruitment exposed to fluid shear stress.
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