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Abstract: IoT devices are exponentially increasing in all aspects of our lives. Via the web interfaces
of IoT devices, attackers can control IoT devices by exploiting their vulnerabilities. In order to
guarantee IoT security, testing these IoT devices to detect vulnerabilities is very important. In this
work, we present FirmHunter, an automated state-aware and introspection-driven grey-box fuzzer
towards Linux-based firmware images on the basis of emulation. It employs a message-state queue
to overcome the dependency problem in test cases. Furthermore, it implements a scheduler collecting
execution information from system introspection to drive fuzzing towards more interesting test
cases, which speeds up vulnerability discovery. We evaluate FirmHunter by emulating and fuzzing
eight firmware images including seven routers and one IP camera with a state-of-the-art IoT fuzzer
FirmFuzz and a web application scanner ZAP. Our evaluation results show that (1) the message-state
queue enables FirmHunter to parse the dependencies in test cases and find real-world vulnerabilities
that other fuzzers cannot detect; (2) our scheduler accelerates the discovery of vulnerabilities by an
average of 42%; and (3) FirmHunter is able to find unknown vulnerabilities.
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1. Introduction

With the development of the Internet of Things (IoT), more and more embedded
devices have begun to enter people’s lives. According to Statista [1], at the end of 2018,
there were an estimated 22 billion internet of things (IoT) connected devices in use around
the world, and by 2025, there will be 38.6 billion IoT connected devices. Together with the
exponential growth of use, the security issue of IoT devices should also be considered.

The web interface is an important way for users to interact with IoT devices as well
as making configurations. A search on Shadon [2] showed that among 1,442,722 routers,
790,515 (54.8%) devices provide web interfaces. With the wide use of web interfaces for
service implementation and configuration, web interfaces have also become a big attack sur-
face. According to a survey [3], each web application had an average of 33 vulnerabilities,
with six of them being of high severity. Therefore, testing the reliability and security of
network interfaces is essential.

There are two main vulnerability detection techniques for IoT devices: static analysis
and dynamic testing.

Static analysis can be placed on both the front-end and the back-end of IoT devices.
For front-end analysis, a typical method is to use RIPS [4] to analyze PHP language.
However, the diversity of front-end languages restricts the development of general analysis
engines, and the high false positive rate caused by static analysis is also not optimistic.
For the back-end static analysis, the common process is extracting binaries from the IoT
firmware and analyzing them. In order to analyze the binaries in firmware, time-consuming
reverse engineering needs to be applied, which also introduces false positive alerts.

Dynamic testing, independent of a particular server language, is able to detect vulner-
abilities through interaction with IoT network services. The most promising technique of
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dynamic testing is fuzzing [5], which is effective at finding vulnerabilities in both software
and systems. Fuzzing finds vulnerabilities by sending random input to the test target and
detecting abnormalities in the program or system.

Owning to the low false positive rate, large scalability, and high automation, fuzzing
has been applied in recent studies. With the wide use of web interface, many researchers
focus on fuzzing IoT devices via web interfaces. Some work [6-9] relies on manually
formulated templates to generate test cases. However, writing templates requires full
knowledge of the design of protocols. To this end, some works implement crawlers [10-15]
to traverse the web application and capture the traffic messages. After that, customized
strategies are applied to mutate these captured messages to generate test cases.

However, in practice, the approaches often fail to detect vulnerabilities effectively due
to the following two challenges.

One challenge is the state dependency in test cases, without which exploiting a
vulnerability is impossible. As for a fuzzer, who needs to interact with IoT devices via web
interfaces, there are three types of dependencies through the interaction: authentication
dependency, intra-message dependency, and inter-message dependency. As most of the
vulnerabilities can be triggered by sending malicious messages only after authentication, it
is essential to maintain the authentication state which means authentication dependency.
Intra-message dependency indicates some values in a message that are determined by
other fields within the message, and we focus on the content length field in the HTTP
protocol in this paper. Furthermore, inter-message dependency refers to the fact that the
trigger of a vulnerability after authentication may require multiple messages. The latter
message always contains a field that is rendered from the previous message. Without the
full knowledge of the protocol implementation, a writer can hardly satisfy the three
dependencies and generate lots of invalid test cases. Although some works focus on
stateful fuzzing, they have bad performance on more complex IoT devices. FirmFuzz [10]
and EWVHunter [14] implement web crawlers to maintain authenticated state, but intra-
message and inter-message dependencies are often neglected. SloTFuzzer [16] extracts
messages between page responds to gain a stateful seed while not analyzing the intra-
message dependencies in these messages.

Another challenge is the lack of test case scheduling. Test case scheduling means
ranking test cases based on their features like execution time and giving priority to testing
those test cases with higher scores. At present, most IoT fuzzers firstly capture traffic
packets as initial test cases and generate new test cases by mutating them. Furthermore,
they have not proposed a proper test case scheduling method for better vulnerability
detection. For FirmFuzz [10], test cases are sorted in the time sequence in which they were
crawled. Furthermore, modern web scanners [11-13] store test cases based on the value of
their URL fields. After that, these tools choose one message in order and change the values
of different fields in it to generate new test cases. However, applying all mutation strategies
to fuzz one message consumes a considerable amount of time due to low throughput.
Assuming the valuable test case, which can generate valuable inputs to a target device,
is crawled at the end and therefore the last to be tested. Lots of computer resources
will be used on fuzzing meaningless test cases and the vulnerability detection process is
greatly delayed.

In this paper, we present FirmHunter, a state-aware introspection-driven grey-box
fuzzer towards Linux-based firmware images. To overcome the above-mentioned chal-
lenges, we propose the message-state queue and the introspection-driven scheduling.
By analyzing both the behavior of the crawler and the features of captured messages, we
extract the authentication, intra-message, and inter-message dependencies from messages
and construct message-state queues. In order to schedule test cases, we emulate target
IoT firmware and obtain two granularities of execution feedback: system calls and code
coverage from system introspection. Based on collected execution feedback, we rank test
cases and give priority to testing more valuable test cases.
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To evaluate our tool, we tested it on a set of real-world IoT firmware images with a
state-of-the-art IoT fuzzer and a web scanner. The evaluation results showed that (1) the
message-state queue enables FirmHunter to parse the dependencies in test cases and to find
real-world vulnerabilities in IoT firmware images; (2) our scheduler accelerates the detec-
tion of vulnerabilities by an average of 42%; and (3) FirmHunter finds known vulnerabilities
much faster than some state-of-the-art IoT fuzzers are able to find unknown vulnerabilities.

In summary, we make the following contributions in this paper:

*  We proposed the message-state queue suited for IoT fuzz test cases, which can satisfy
authentication dependency, intra-message dependency, and inter-message dependency:.

e We developed the scheduling algorithm making use of introspection on system emu-
lation to rank the test cases which speeds up vulnerability detection with an average
of 42%.

*  We designed and implemented FirmHunter, a state-aware introspection-driven grey-
box fuzzer towards Linux-based firmware images via web interfaces. Our evaluation
showed that FirmHunter outperforms other tools in IoT vulnerability detection and
found 3 unknown vulnerabilities.

*  The source code of FirmHunter can be found at https://github.com/StrongerQQ/
FirmHunter (accessed on 15 August 2021).

2. Background and Motivation
2.1. Firmware Emulation

As firmware emulation does not require real devices and can provide web interfaces
for dynamic analysis, thus offering the possibility for automated, large-scale IoT fuzzing.
In the emulation, the emulated system is called the guest system, and the system providing
software support is called the host system. Firmware emulation is divided into user-level
emulation, hybrid emulation, and system-level emulation.

User-level emulation only emulates a single program in the firmware. Using user-
level emulation, fuzzing can obtain the execution information of the program to guide the
generation of test cases and improve the throughput in testing. For example, AFL [17] uses
QEMU [18], which translates and executes the instructions of the target program with the
granularity of the code block level, to achieve the purpose of efficient execution. However,
emulating a program often fails because of the complicated interactions with other binaries
or hardware, such as peripherals.

To overcome the execution problems in user-level emulation, Avatar [19] first proposed
hybrid emulation. By connecting the user-level QEMU-based emulation with real devices,
it is possible to realize the translation and execution of firmware instructions on the desktop
operating system while directing I/O operations to the real devices to solve the running
problems. However, the introduction of symbolic execution [20], as well as frequent
switching between the emulation environment and physical equipment, will greatly reduce
the performance of the fuzz testing.

System-level emulation treats the IoT system as a whole. By emulating the kernel and
peripherals, system-level emulation realizes the whole system emulation. On the basis of
QEMU, Costin et al. [21] developed an extensible dynamic analysis framework to analyze
the web interface of IoT devices. Gustafson et al. [22] emulated the operation of memory-
mapped I/O (MMIO) in peripheral communication to successfully run the firmware.

2.2. Web Interface in IoT

Most IoT devices have access to a web Interface [2], which provides an effective way
for IoT dynamic testing.

Web interface communication usually consists of three parts as shown in Figure 1:
front-end, server, and back-end [23]. The front-end is the browser used by the user,
on which static resources such as HTML, CSS, and JS are running. The server and the
back-end are both running in the IoT device, the server is a binary program such as httpd
or mini_httpd, which is responsible for receiving and responding to the front-end and
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communicating with the back-end; the back-end is composed of some executable files like
cgi, php, and asp files. The flow of interaction between the user and the web interface
provided by IoT is shown in Figure 1. (D) User operations are performed, such as filling the
form in the browser, clicking buttons, and ajax events. @ The front-end browser sends
the corresponding request to the IoT device. ) The server component in an IoT device
parses the request and obtains parameters from the message. Then the server chooses the
corresponding back-end executable file, passes the parameters to it and executes it. @
Result of the back-end execution is sent back to the server, and @) the server packs up the
feedback result and sends it to the front-end.

loT Device Back-end
.cgi

.php
.asp

@ URL,

parameters

@ Requests
@User g_l Request Decode
Operat|ons
g r Request Decode
Browser Responses @ Results

Front-end Server

Figure 1. Communication via web interface.

2.3. 10T Fuzzing via Web Interface

Therefore, there exists three dimensions of fuzzing towards the web interface in IoT
devices: front-end fuzzing, server fuzzing, and back-end fuzzing:

In the front-end fuzzing, the inputs are user operations, including GET requests,
filling forms, and JS events. EWVHunter [14] implements web crawlers to interact with
network applications which crawl the static resources from the front-end and explore input
fields like URLs and forms. After filling randomly generated values in fields, EWVHunter
clicks buttons to send mutated test cases and then checks the response message as well
as the connection status to detect potential vulnerabilities. The drawback is that many
network applications in front-end set up security rules which limit the string length, special
characters, transcoding to filter sensitive values.

To fuzz the server in IoT, the inputs are messages in protocol format. Among the tools
for server testing, Peach [6], Sully [7], and boofuzz [8] are widely used in the industry,
which relies on manually formulated templates. The automatic fuzz server, FirmFuzz [10]
uses crawlers to interact with network applications provided by emulated IoT devices.
After capturing a message, it randomly mutates the content of the message. At the same
time, it observes the log and connection of the emulated device after sending each mali-
cious message.

In the fuzzing of back-end programs, the inputs are the parameters needed to run
these executable files. FIRM-AFL [24] puts forward the concept of augmented emulation,
which combines user-level emulation of a single program and system-level emulation of
the firmware, to fuzz binaries in firmware. The disadvantage of this type of tools is that
we need to select a specific binary program and fuzz it which not only introduces heavy
overhead in static analysis but also limits the automated testing.
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2.4. Motivations

Given the status-quo of IoT fuzzing techniques, we choose to implement a server-
oriented fuzzing tool towards IoT firmware, which is based on system emulation. The rea-
son is two-fold. On the one hand, unlike front-end fuzzing that is restricted by filtering
rules or back-end fuzzing is dependent on static analysis of binaries as mentioned in
Section 2.3, server fuzzing can achieve both goals of effective test case generation and low
pre-analysis overhead. On the other hand, easy accessibility of firmware on the internet
and the development of firmware emulation enable the possibility for large-scale testing of
IoT firmware images [25,26].

Equipped with system emulation and robust crawlers, IoT fuzzers can achieve au-
tomated testing on firmware images. However, there still exist two obstacles hindering
fuzzing from effectively testing IoT via web interfaces.

One obstacle is the state dependency in test cases. Take CVE-2019-7298 in the D-
link DSL-3782 as an example, this vulnerability is located in the input box on the page
Diagnostics.asp as shown in Figure 2. After filling this blank with a random IP address and
clicking the “Run test” button, two requests will be sent from the front-end to the server
in the target router, which is shown in Figure 3. The former is a GET request which asks
the server to get a sessionKey. After receiving a sessionKey from the server, the front-end
will append sessionKey as a form data to the form in the latter request. What an attacker
does is just capturing these two request messages, modifying the value in the “Addr” field
of the latter request with a long string, and replaying these two requests. Then the target
router will crash due to buffer overflow.

Enter address (WWW or IP).

Select test you wish to perform: @ Ping test C Traceroute m

Please wait for ping response......

1921681.1 ‘

Results from Ping, Traceroute:

Figure 2. Vulnerable web page of DSL-3782.

GET /cgi-bin/get/New_GUIl/get_sessionKey.asp? |=1617523610704 HTTP/1.1

Host: 192.168.1.1

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */#*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

X-Requested-With: XMLHttpRequest

Connection: close

Referer: http://192.168.1.1/cgi-bin/New_GUI/Diagnostics.asp

POST /cgi-bin/New_GUI/Set/Diagnostics.asp HTTP/1.1

Host: 192.168.1.1

User-Agent: Mozilla/S.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-Requested-With: XMLHttpRequest

Content-Length: 45

origin: http://192.168.1.1

Connection: close

Referer: http://192.168.1.1/cgi-bin/New_GUI/Diagnostics.asp

Type=p4sessi0nKey:1804289383LAddr:192‘16841.1

Figure 3. Inter-message dependency in requests.

However, state-of-the-art IoT fuzzers have not proposed approaches to detect such
kind of challenge-response mechanism. FirmFuzz [10] captures the first message after each
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button-clicking action and mutates this message, and the most popular web application
scanners just choose one message from crawled database to mutate. They both neglect this
inter-message dependency in IoT testing and thus cannot find this vulnerability.

Another obstacle is the scheduling of test cases to mutate. Suppose current IoT
fuzzing tools can recognize the inter-message dependency within these two messages
in Figure 2. The vulnerability detection time is determined by when the fuzzer turns to
mutate the above two messages. For FirmFuzz, you can implement the depth-first-search
(DFS) or breadth-first-search (BFS) algorithm on the crawler to traverse web applications.
Furthermore, fuzzing one test case is time-consuming as the fuzzer needs to wait for IoT
devices to receive messages, execute back-end binaries and send messages back. Once
the vulnerable page is located deeply, it will waste lots of time for FirmFuzz to fuzz the
previously found pages.

3. Our Approaches
3.1. Message-State Queue

To satisfy authentication, intra-message, and inter-message dependencies in fuzzing,
we construct a message-state queue as shown in Figure 4. The construction of this message-
state queue is divided into two phases: the collecting phase and the parsing phase.

Content Content Content
Length Length Length

- N .

Figure 4. Message-state queue

In the collecting phase, we implement a crawler traversing the web interface and a
middle proxy capturing traffic messages. Every time the crawl fills a form, clicks a button,
or triggers a javascript event, it will record the corresponding action with a time stamp.
Furthermore, the middle proxy will capture the messages and store them according to the
time sequence.

In the parsing phase, we use the above-mentioned information to construct a message-
state queue. As the web application firstly comes to the logging page when visiting the
web interface, we find the first form filling action as the logging action and denote the
triggered request as AUTH to satisfy the authentication dependency. After that, we check
the num of requests between every two actions.

If there exist more than one request, we parse them further to identify the potential
inter-message actions. The detailed steps are

1.  Extracting the values of all fields in both the header and the body of these requests;

2. Performing a match between the extracted values and the body contents of responses
to those requests;

3. Once matched, the request containing the matched value is denoted as ACT and the
request B, whose response contains that value, is denoted as REQ;

4. We append REQ to AUTH and denote the response of REQ as the key sender;

5. Then we push ACT to the queue and denote the field of that matched value as the
key receiver.

As a result, the pass of inter-message dependency is accomplished as the red dotted
arrow in Figure 4.
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If there exists only one request, we denote this request as ACT and directly connect
AUTH and ACT to construct a queue. Furthermore, if there is no request between two
actions, we skip to the next two actions. Last but not least, we constrained each request
with their content length fields to satisfy the intra-message dependency, which is shown as
the green dotted arrow in Figure 4.

3.2. Introspection-Driven Scheduling

In order to detect vulnerabilities faster, we need to give priority to those valuable
test cases, which can generate valuable inputs. In order to rank the queues after the
construction of message-state queues mentioned above, we implement a scheduler to score
these queues.

We send a message-state queue to the target emulated device, wait for its execution,
collecting execution information using system introspection, and score them using the
collected information. The system introspection seeks two kinds of execution information:
coarse-grained system calls and fine-grained coverage.

For system calls, the six system calls listed in Table 1 are preferred for analysis for
the following reasons. When valuable inputs, e.g., a series of network messages causing
buffer-overflow are sent to the target device, this device will parse these messages and
invoke several processes to handle them. Then some operations, like file creations, file
deletions, binary executions, memory comparisons, and memory copies, are carried out.
Thus, test cases triggering more system calls in Table 1 are more valuable. To capture
the system calls triggered by a test case, we modify the Linux kernel to apply the kernel
dynamic probes (kprobes) framework, which can intercept the system calls of the kernel.

Table 1. Hooked System Calls.

Type Name Func
Network inet_accept Acceptation of messages
System do_mount Mounting of file system
Write vfs_unlink Deletion of files
Read do_sys_open Opening of file descriptors
Execution mmap_region Memory mapping
do_execve Execution of programs

For coverage, the more program logics are executed by a test case, the more likely
this test case is to contain vulnerabilities. Therefore test cases improving more program
coverage are more valuable. In order to obtain coverage information, we implement a
QEMU plugin to collect the ids of executed basic blocks (BBs).

For each message queue g; in {41, 92, ..., gu}, we send it to the emulated device, wait
for several seconds and count the triggered system calls S(g;) and the ids of executed
BBs C(g;). After sending all of the message queues we can score each queue using the
following algorithm:

Score = C(q,-)k (1)
k = S(ai) —minS o)

maxS — minS

where minS selects the minimum in S(q1), S(92), - - -, S(g») and max$S selects the maximum.

4. Tool Design

The architecture of FirmHunter is shown in Figure 5. The workflow is that we first em-
ulate the target firmware and provide its web interfaces. Once running, our Traffic Collector
applies a crawler to interact with web applications, captures the messages, and delivers the
collected messages formatting in pcap files to Message Parser. Then Message Parser builds
state-message queues which satisfy authentication dependency, intra-message dependency,
and inter-message dependency. After that, Queue Scheduler sends these message queues
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to the emulated device and scores them. After a more interesting queue is chosen, Fuzzer
establishes socket communication with the emulated device and sends test cases generated
by applying mutation on the chosen queue; Monitor detects the abnormal behaviors of the

emulated device and generates reports.
Traffi M Message-state
raffic pcap essage s
Collector Parser
Queue

Fi ‘
irmware — Emulater Scheduler —

REPORT
O<7 Moniter Fuzzer

Figure 5. Architecture of FirmHunter.

Emulator: For the collected firmware images, we implement a full-system emulation
platform to emulate them.

In order to capture system calls, we modify the Linux kernel to hook sensitive system
calls in Table 1. At the same time, to obtain the coverage information of the whole system,
we write a QEMU plugin to gain the executed basic block ids.

Furthermore, after we extracted the file system from firmware, we injected a CI(Command
Injection) file into it, which helps us find command injection vulnerabilities. When a ClI file
is executed, a system call for open “ci_file” will be triggered and we assume a OS command
is successfully injected once we capture this specified system call.

Traffic Collector: To avoid manually writing protocol templates, we obtain templates
by analyzing traffic packets. This component consists of two parts, one is a crawler, which
traverses web applications, and the other is a middle proxy used to process traffic packets.

First, we write a crawler for the web application of IoT devices. This crawler logs in on
the homepage according to the IP address provided by the emulation platform, recognizes
the input box and clicks on the button, fills in the username and password, and traverses
the web application. At the same time, it records these actions with time stamps.

While the crawler crawls the pages, the middle proxy processes the generated requests.
First, it de-duplicates the messages according to the URL in the message header and filters
out the useless requests, which are related to static resources like Javascript files and images.
Then this component delivers the filtered messages to the Message Parser.

Message Parser: Message Parser analyzes the collected messages to construct message-
state queues according to the rules in Section 3.1.

Queue Scheduler: Queue Scheduler sends the constructed state-aware queues to the
Emulator and collects execution information after 10 s separately. Then this component
ranks these queues according to the algorithm in Section 3.2 and sends queues to Fuzzer
in order.

Fuzzer: For one message queue, Fuzzer performs the following mutations on the queue:

1. Select the Auth of the message queue for fuzzing.

2. Keep the Auth unchanged and mutate the REQ.

3. Keep the Auth and the REQ unchanged and mutate the ACT.

For each message, Fuzzer identifies the types of different values in both the header
and the body. Then Fuzzer performs mutation strategies, which are shown in Table 2,
according to the value Type.
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Table 2. Mutating strategies.

Type Name Description

Change the value to null to trigger potential Null

Null Value Pointer Dereference (NPD) vulnerabilities.

Extending the string with a thousand character “A”

‘ Long String to trigger Buffer Overflow (BO) vulnerabilities.
String CI Attack Using command injection statements to trigger po-

ac tential Command Injection (CI) vulnerabilities.
Using XSS injection statements to trigger potential

XSS Attack Cross-Site Scripting (XSS) vulnerabilities.
Mutate original number value to very large number
Large Number for integer overflow to trigger potential BO vulnera-
N bilities.
umber

Mutate original number value to off-by-one value
Boundary Number  for out-of-bound access to trigger potential BO vul-
nerabilities.

Monitor: Monitor is responsible for detecting abnormal behaviors of IoT devices,
identifying types of vulnerabilities, and maintaining the status of emulated IoT devices.

First of all, Monitor detects the aliveness of the web service provided by Emulator
according to the socket connection, and also checks the responses from the Emulator to
detects some internal crashes, such as the response code is 504.

As for bug detection, Monitor detects four kinds of vulnerabilities: Buffer Overflow
(BO), Null Pointer Dereference (NPD), Command Injection (CI), and Reflected Cross-Site
Scripting (XSS). Monitor reads the log information generated by the Emulator, which
records the memory error, to detect BO and NPD. For CI, Monitor detects the file-open
system opening “ci_file” which will be generated if the command is successfully injected.
Monitor also checks the response messages from Emulator to find whether there exist
injected scripts, which indicates a reflected XSS bug is triggered.

Last but not least, Monitor needs to maintain the stability of the IoT device. Once the
IoT device responds with a 504 status code which means there is an internal error, or has
no response for a long time, Monitor will backtrack the initial snapshot of the Emulator to
restore the IoT device to its initial state. Typically, this timeout is set by the user as 5 to 10 s.

5. Evaluation
5.1. Implementation of FirmHunter

FirmHunter is implemented with around 3000 python lines of code and 1500 C lines of
code in total. Furthermore, several open-source projects (e.g., Selenium [27], FirmAE [26],
mitmproxy [28], and Panda [29]) are integrated into this fuzzer.

In Emulator, we build our emulation on the basis of the state-of-the-art system emula-
tion tool FirmAE [26]. To capture the system calls within the kernel, we added a probes
driver, which is written by C code, to the modified Linux kernel. Furthermore, we leverage
the QEMU plugin of Panda [29] to trace the executed BB. In Traffic Collector, the crawler
which coordinates with a Selenium driver [27] to traverse the web interface, is written
in python code. Furthermore, the middle proxy that intercepts the messages is written
in python as an application of mitmproxypackage. In Queue Scheduler, python code
is written to read the output log of system calls as well as the executed BB ids and to
calculate the score of each queue according to the rule in Section 3.2. In Fuzzer, we extend
boofuzz [8], a popular protocol fuzzing tool with state connections in message-state queues
and mutation strategies, which is written in python code. Furthermore, in Monitor, python
code was written to detect potential vulnerabilities as well as outputting the result.
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5.2. Evaluation of FirmHunter

In order to evaluate the effectiveness and efficiency of FirmHunter, we tested it on
eight IoT firmware images and compared it with a state-of-the-art IoT fuzzer FirmFuzz [10]
and a web application scanner ZAP [11]. The purpose of this section is to test whether
FirmHunter can detect vulnerabilities in real-world IoT firmware images effectively with
the help of our state-message queue and introspection-driven scheduling, together with
whether FirmHunter outperforms other work in vulnerability detection. In short, we
would answer the following questions:

*  Q1: Do our message-state queue and introspection-driven scheduling help to detect
vulnerabilities?

*  Q2: How effective is FirmHunter in detecting real vulnerabilities compared to other
popular tools?

Testing Images: We collected more than 500 IoT firmware images and successfully emu-
lated no more than 30 unique firmware images with accessible WEB interfaces. Within them,
FirmHunter and benchmarks found vulnerabilities in eight firmware images, including
seven routers and an IP camera. The detailed specification of these images is described in
Table 3.

Testing Environment: Experiments are conducted on an 8-core Intel(R) Core(TM)
i9-990KF 3.60GHz CPU machine with 62.8GB of RAM. The operating system is Ubuntu
18.04 LTS.

Table 3. Summary of firmware images under testing.

Type Vender Device Version
Trendnet tew-652brp 3.04b01
D-Link DSL3782 1.01a01
Router D-Link DIR-865L 1.08b01
oute D-Link DAP-2695 1.11
Tp-Link WR940 3.16.9v04
Netgear WNAP320 2.0.3
Ip Camera Trendnet ip110wn 122

5.2.1. Effectiveness of Message-State Queue and Introspection-Driven Scheduling (Q2)

Table 4 lists the vulnerabilities detected by FirmHunter. For each image under testing,
FirmHunter firstly emulates it. Then FirmHunter leverages a crawler in Traffic Collector
to traverse the web interface for 1 h automatically. After that, the remaining parsing,
scheduling, and fuzzing rounds are performed on those collected messages within 24 h.
At last, FirmHunter found 13 vulnerabilities: 7 BOs, 4 CIs, and 2 XSSs, including three
unknown vulnerabilities.

FirmHunter uses state-message queues to maintain the state for the fuzzer and lever-
ages introspection-driven scheduling to speed up the vulnerability detection. To evalu-
ate their effectiveness, we conducted a comparison testing between FirmHunter-NULL,
FirmHunter-MSQ, and FirmHunter, where

¢  FirmHunter-NULL directly fuzzes the messages captured by Traffic Collector;

e  FirmHunter-MSQ construct a full message-state queue that satisfies all of authentica-
tion, intra-message, and inter-message dependencies;

¢  FirmHunter not only constructs message-state queues but also applies introspection-
driven scheduling.

For FirmHunter-NULL, it does not analyze the dependencies in messages and directly
fuzzes the captured messages. It finally detected three unauthorized BO vulnerabilities.
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Table 4. Statistic on vulnerability detection against FirmHunter-NULL and FirmHunter-MSQ.

Exploited ID Vendor Device Type F1r_1n:I}I-I]1£1£ter Flrﬁt?slgter FirmHunter Improvement
CVE-2016-1555 Netgear WNAP320 BO 8min 10s 2l min1ls 9min42s 54%
CVE-2016-1558 DLink DAP2695 BO 51 min 43 s 6 min 39 s 6 min 43 s —1%
CVE-2017-13772  TPLink WR940N BO NA 16 min2s 11min 59 s 25%
CVE-2018-19240  Trendnet IP110wn BO 1h 15 min 2h 39 min 1h 21 min 49%
CVE-2019-11400  Trendnet  tew-652BRP BO NA 1 h 56 min 1h 3 min 46%
CVE-2019-7298 DLink DSL-3782 BO NA 18 min 10's 12min 25s 32%
CVE-2021-40284 DLink DSL-3782 BO NA 35min 3 s 15 min 27 s 56%
CVE-2018-17990 DLink DSL-3782 CI NA 10 h 22 min 6 h 19 min 39%
CVE-2019-11399  Trendnet tew-652BRP cI NA 3 h 34 min 2h 12 min 38%

Unknown2 Netgear =~ WNDR3700 CI NA 9 h 24 min 2h 22 min 75%
Unknown3 Netgear =~ WNDR3700 cI NA 14 h 51 min 5h 27 min 63%
CVE-2018-6529 DLink DIR-865L XSS NA 18 min 31 s 13 min 48 s 25%
CVE-2018-17989 DLink DSL-3782 XSS NA 10 h 20 min 6 h 18 min 39%

For FirmHunter-MSQ), its message-state queue satisfies authentication, inter-message,
and inter-message dependencies, which helps it detect more vulnerabilities but intro-
duces some overhead in sending REQ before ACT. Thus, FirmHunter-MSQ is slower
than FirmHunter-NULL on detecting the above-mentioned 3 BO vulnerabilities except for
CVE-2016-1558 in which the vulnerability lies in Auth node.

For FirmHunter, it leverages introspection-driven scheduling to speed up vulnerabil-
ities detection by an average of 42%, comparing to FirmHunter-MSQ. One exception is
CVE-2016-1558 that FirmHunter-MSQ and FirmHunter fuzz Auth node firstly and detect
this vulnerability in similar time.

The result shows that both message-state queue and introspection-driven scheduling
contribute to vulnerability detection.

5.2.2. Comparison with FirmFuzz and ZAP(Q2)

In order to evaluate the efficiency of FirmHunter in detecting real-world vulnera-
bilities, we compare it with a state-of-the-art IoT fuzzer Firmfuzz and a popular web
application scanner ZAP.

To configure the other two tools, we manually modified the crawler in FirmFuzz
so that it can automatedly traverse the web application. Furthermore, for ZAP, we set
username and password in credentials for authentication, used the automated scan with
both traditional spider and ajax spider. Likewise, FirmFuzz applied the crawler traversing
the WEB interface to obtain initial messages and ZAP collected websites in automated scan
mode within 1 h.

The discovered vulnerabilities and used time are listed in Table 5.

For FirmFuzz, it only detected five vulnerabilities due to the neglect of dependencies
between messages. Furthermore, for ZAP, the front-end web application scanner, it could
just find 2 XSS vulnerabilities.

The results show that FirmHunter not only finds more vulnerabilities than other tools,
but also takes less time to find them in almost all cases.
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Table 5. Statistic on vulnerability detection against FirmFuzz and ZAP.

Exploited ID Vendor Device Type FirmHunter FirmFuzz ZAP
CVE-2016-1555 Netgear WNAP320 BO 9min42s 12min 55 s NA
CVE-2016-1558 DLink DAP2695 BO 6 min 43 s NA NA
CVE-2017-13772 TPLink WR940N BO 11 min 59 s NA NA
CVE-2018-19240 Trendnet IP110wn BO 1h 21 min 2h 12 min NA
CVE-2019-11400 Trendnet tew-652BRP BO 1 h 3 min 1 h 32 min NA
CVE-2019-7298 DLink DSL-3782 BO 12min25s NA NA
CVE-2021-40284 DLink DSL-3782 BO 15 min 27 s NA NA
CVE-2018-17990 DLink DSL-3782 CI 6 h 19 min NA NA
CVE-2019-11399 Trendnet tew-652BRP CI 2h 12 min 3h 15 min NA

Unknown2 Netgear WNDR3700 CI 2h 22 min NA NA

Unknown3 Netgear WNDR3700 CI 5h 27 min NA NA
CVE-2018-6529 DLink DIR-865L XSS 13 min 48 s 36 min5s 45 min 56 s
CVE-2018-17989 DLink DSL-3782 XSS 6 h 18 min NA 5h 56 min

6. Related Work

Since IoT programs are commercially available, few manufacturers disclose source
code and documents. We can only obtain firmware images or purchase physical devices
to analyze IoT devices. As firmware contains more information and lends access for
large-scale analysis, when the firmware is available, performing analysis on firmware
is a better choice. To obtain firmware, one way is to extract firmware from real devices
through the debugging interface or a flash chip [30]; another way is to download it from
the manufacturer’s official websites. After that, Binwalk [31] and other firmware extractors
are used to extract all files and programs within firmware for further static analysis or
dynamic testing.

6.1. Static Analysis on Firmware

The homology analysis, which is based on the similarity analysis on file granularity,
was first applied on IoT firmware by Costin et al. [21]. They found 38 unknown vul-
nerabilities in 693 firmware images. Through similar file associations, they found that
some vulnerabilities infected 123 different products, affecting 140,000 physical devices in
cyberspace. However, only the coarse-grained file similarity comparison was performed in
this work, which resulted in a low accuracy rate. Thomas et al. [32] proposed a technique
using static data analysis to find hardcoded vulnerabilities. This work identified data
comparison functions by modeling function features and ranked these functions based
on the uniqueness of their comparing data. Through further analysis of the important
functions, the hard-coded authentication backdoor vulnerability was detected. However,
in the applications of backdoor vulnerability detection and text-based protocol instruction
recovery, it could not promise a high accuracy rate. Hence, the applicability of the program
in large-scale testing is not good.

6.2. Dynamic Testing on Firmware

In order to overcome the dependence of dynamic testing such as fuzzing on the hard-
ware, Chen et al. [25] proposed Firmadyne, a large-scale full-system emulation platform
for Linux-based firmware. By modifying the kernel and drivers to add hardware support
to realize the full-system emulation. This work completed the decompression of 9486
firmware and tests of 74 exploit scripts. On this basis, Costin et al. [21] conducted testing
on the web interfaces of IoT devices and found 45 unknown vulnerabilities. Chen et al. [33]
resorted to APPs of IoT devices. Through reversing an APP, rich protocol information like
URLSs, commands, encryption algorithms will be analyzed, which helps generate valid
test cases to detect vulnerabilities. Furthermore, it finally detected 15 types of memory
corruption vulnerabilities in eight devices. However, this work is limited to IoT devices
with APPs and suffered from the low throughput of physical devices.
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7. Discussion

Although FirmHunter could resolve the dependency problem using our message-state
queue and accelerate the vulnerability detection process with the help of introspection-
driven scheduling, there still exist some limitations in our framework.

7.1. Limitation on IoT Firmware Emulation

The emulation platform in FirmHunter is implemented on the basis of FirmAE which
is limited by the CPU architecture and operating system of a firmware image. For now, it
only supports three CPU architectures: mipsel, mipseb, and armel. Furthermore, it can only
run a POSIX-compatible OS (e.g., Linux). This limitation stems from the system emulation
tool and we need to enlarge the range of applicable IoT firmware images. We will improve
the emulation capability to support more CPU architectures as well as non-POSIX programs
for future work.

7.2. Limitation on Protocol Types for Fuzzing

For now, we only fuzz IoT devices via their web interfaces using the HTTP protocol.
However, IoT devices not only use HTTP protocols but also provide services via SOAP,
HNAP, ftp, or other protocols. We expect that FirmHunter can fuzz IoT through multiple
protocols in the future.

8. Conclusions

We have proposed an automated stateful and introspection-driven grey-box fuzzer to-
wards Linux-based firmware images. It utilizes the message-state queue to satisfy authenti-
cation, intra-message, and inter-message dependencies; it implements introspection-driven
scheduling to collect system execution information and thus ranks test cases based on that
information. The evaluation on eight firmware images indicates that message-state queue
can help FirmHunter detect vulnerabilities other tools cannot and introspection-driven
scheduling can provide an average 42% acceleration. FirmHunter outperforms other tools
on vulnerability detection has the capability to find unknown vulnerabilities.
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