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Abstract: Leaving the current 4th generation of mobile communications behind, 5G will represent a
disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity ac-
cess/metro/core optical networks, and intra-datacentre (DC) network and computational resources
into a single converged 5G network infrastructure. The present paper overviews the main achieve-
ments obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged
5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned up-
coming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G
(B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top
of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the
clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access,
metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined
Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI)
techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of
the ALLIANCE architecture includes two novel elements, namely the monitoring element providing
network and user data in real time to the KDN, and the blockchain-based trust element in charge of
exchanging reliable and confident information with external domains.

Keywords: SDN/NFV; RINA; KDN; monitoring; blockchain

1. Introduction

In recent years, the 5G paradigm has been gaining momentum with many global
research and development (R&D) initiatives launched in major economies worldwide.
Referring in particular to Europe, 5G has been recognised as the key enabler for the
digitisation of the European economy [1]. Although the current and future 5G applications
are countless, many of them share one thing in common. To provide a good user experience
is no longer enough to provide high bandwidth alone but there is a strong requirement
to increase other eight technical parameters [2], ranging from area traffic capacity (an
increase of 100× per squared-km) to network energy efficiency (100× more efficient). As
the commercial rollout of 5G continues in many countries around the world, now is the
ideal moment to identify attractive subjects and research lines for the next decade, which
will set the groundwork for B5G system.

Network infrastructure in this 5G/B5G era needs to go well beyond the evolution of
today’s transport networks and must be properly designed to support end-to-end sophisti-
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cated vertical applications as envisaged by the 5G Infrastructure Public–Private Partnership
(5G PPP) initiative [3]. In particular, 5G/B5G promises to focus on three outstanding fea-
tures not seriously considered in the previous generations, namely large-scale machine
type communication, ultra-reliable low-latency service and enhanced mobile broadband.
In summary, 5G/B5G must deliver not only a better performing network, but also one that
can become an infrastructure capable of supporting ubiquitous services, while at the same
time meeting the performance and commercial requirements of multiple stakeholders.

The research community is therefore pursuing new models to alleviate the scalability
issue of the current client-server architecture while meeting the strict requirements imposed
by 5G/B5G. For instance, solutions such as edge computing, fog computing, cloudlets,
server mesh, etc., are currently gaining momentum to this end, with SDN/NFV providing
the framework to effectively control and manage the distribution of functions across
network levels. Nonetheless, these developments considerably increase the complexity in
networking as well as in networked applications, fueling therefore the need for improved
network automation. AI approaches—in particular those based on Machine Learning (ML)
techniques—are today considered the key drivers to keep network operations simpler,
smarter, safer, and speedier.

In this direction, in 2018 we started a 45-month Spanish project called Architecting a
knowledge-defined 5G/B5G-enabled network infrastructure toward the upcoming digital
society (ALLIANCE) where several researchers with different backgrounds and skills
(e.g., physical layer experts, ML experts, protocol designers, data science specialists, etc.)
have collaborated with the aim of investigating novel network solutions for 5G/B5G.
Now that the ALLIANCE project is approaching its end, in this paper we present an
overview of our research activities. Section 2 is hence focused on presenting the ALLIANCE
network architecture and its principal building components as well as summarising the
main results and achievements compared with the state of the art. Each one of these
components has been selected and included in the ALLIANCE architecture for specific
reasons explained below.

One of the ambitious goals of the ALLIANCE proposal has been the design and
development of the KDN framework, implementing AI/ML techniques. Section 3 is hence
dedicated to describing this KDN framework, present our practical ML-based solution for
the routing problem and demonstrate its ability of supporting optimal end-to-end service
provisioning. In Section 4, we introduce the novel network-monitoring element designed in
ALLIANCE based on a combination of Deep Packet Inspection (DPI) and ML. This element
is in charge of providing accurate and relevant information from the networks and the
users to the KDN to make proper dynamic decisions based on the current and future status
of the network. In our KDN framework, decisions are taken according to the data coming
from users and networks and, with the current proliferation of untrusted and malicious
sources, it is of great importance having an efficient distributed system able to provide the
necessary confidence to these data. For this very reason, we have proposed (Section 5) a
new solution to distribute, control and authenticate routing information between different
administrative domains using blockchains as an alternative to conventional Resource
Public Key Infrastructure (RPKI).

Finally, under the umbrella of KDN, we have investigated the appropriateness of
two networking solutions for 5G/B5G: one focused on the well-established SDN/NFV
technology and the other adopting an outside the box technology called RINA. The research
activities in the SDN/NFV domain is presented in Section 6. For this domain, we have
considered an overall architecture (i.e., both the control and the optical layers) where an
IA-based orchestrator is in charge of controlling and managing an ultra-high-capacity
spatially and spectrally flexible all-optical network infrastructure. On the contrary, we
have only considered the packet layer for the RINA domain as this solution is still in
development and limited technologies is currently supported. In Section 7 we describe
our experiments and findings about its capability of offering digital services with isolated
network slices and guaranteed Quality of Service (QoS). In addition to describing the main
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conclusions of the ALLIANCE project, in Section 8 we highlight the key lessons learned
with a vision towards the future 6G.

2. Network Architecture and Project’s Main Achievements
2.1. ALLIANCE Network Architecture

Figure 1 shows an overview of the general ALLIANCE network architecture. It
consists of different main blocks. On the top side, there is the KDN-based orchestration
layer which is empowered with ML techniques (e.g., deep-learning tools) to increase the
efficiency of the management of the overall resources. On the right-hand side, the cross-
layer manager considered in ALLIANCE consists of two elements: the monitoring element
in charge of collecting users, networks and Information Technology (IT) resources data and
the trust element in charge of assuring confidence and reliability to external information.
On the bottom side, the network infrastructure can consist of any levels including access,
metro, core and DC network segments. We have considered two different network solutions
to control this network infrastructure and provide end-to-end services. An SDN/NFV-
enabled control layer has been developed to deliver network slices customised to the
requirements of the vertical services and applications. This solution focuses on an ultra-
low-latency, ultra-high-capacity optical infrastructure where both the packet and the optical
layers are considered. Studies have been carried out to improve both the physical layer
with investigations on novel modulation formats and the control layer to be able to take
autonomous and automatic decisions to keep the best possible network performance. As
an alternative solution for legacy protocols, we have also investigated the RINA network
architecture. RINA is a clean-slate recursive multi-layer architecture based on a single
type of layer and two programmable protocols. For this solution, we only focused on the
multi-layer packet network for access and metro segments.

Figure 1. The ALLIANCE network architecture.

We would like to point out that the final intention of this project was not to fully
integrate all previous introduced blocks in one single platform. On the contrary, our idea
was to investigate several network solutions addressing different problems and converge
and combine some of them when practical and convenient. Therefore, the experiment
setups and the main results presented throughout this paper are mostly related to a
single or a couple of components of the ALLIANCE reference architecture. For example,
the monitoring element fed the KDN framework with processed data containing a rich
and timely view of the network states. If the data come from external entities, the trust
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element can guarantee integrity and reliability before entering the monitoring element and,
in turn, the KDN. The approaches developed in this project to take optimal, automatic
and autonomous decisions regarding the network resources, consider the ML algorithms
investigated in the KDN framework.

2.2. Achievements

We summarise the main results and achievements of the project below. More details are
then further provided in the following sections dedicated to each of the main components
of the ALLIANCE network architecture.

2.2.1. The KDN Framework

We have proposed and evaluated a novel method that combines Deep Reinforcement
Learning (DRL) and Graph Neural Networks (GNN) to optimise the routing configuration
in a KDN-based network scenario. The evaluation shows that the proposed DRL + GNN
optimisation architecture outperforms state-of-the-art DRL agents (based on fully con-
nected neural networks) when it is applied over different networks unseen during the
training phase. This reveals an unprecedented ability of the proposed DRL + GNN agent
to generalise over networks, which is a fundamental feature to achieve practical ML-based
solutions for networking. We also extend the evaluation of our DRL + GNN agent to
136 real-world topologies of Internet Topology Zoo, again showing good generalisation
capabilities over networks and achieving an important improvement over the application
of a classic load-balancing routing policy (21.39% better performance on average).

2.2.2. Monitoring Element

We have carried out the design of functional and efficient solutions to collect, process,
and maintain a rich and timely view of the network state in KDN-based environments.
We started from the optic of the SDN paradigm, which offers data-plane devices with
enhanced computing and storage capabilities, and a flexible Southbound Application
Programming Interface (API)—OpenFlow, in our case– to retrieve statistics from the data-
plane (e.g., traffic measurements). As a result, a novel OpenFlow-based flow-level traffic
measurement system with good scalability properties has been proposed. Moreover, we
have presented a system that combines DPI and ML to efficiently classify the applications
generating traffic in the network. The resulting system has been carefully designed to
achieve a good tradeoff between accuracy (both in traffic measurements and application
classification), and the cost to deploy and execute it in networks.

2.2.3. Trust Element

We have investigated how to transfer routing information between different adminis-
trative domains, such as different operators. Taking into account that they do not necessarily
trust each other, we have analysed the advantages and disadvantages of blockchains as an
alternative to classical RPKI to distribute, control and authenticate this information. We
have built and evaluated two prototypes, one that acts as a distributed mapping system,
and another to perform access control.

2.2.4. The SDN/NFV Domain

SDN/NFV is one of the technology domains investigated in ALLIANCE. For this
domain, we have proposed an overall solution where an SDN/NFV orchestrator controls
an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure.
In particular, three main achievements can be highlighted:

1. The Non-Orthogonal Multiple Access (NOMA) modulation with multiband Carrier-
less Amplitude and Phase (NOMA-CAP) modulation format has been experimentally
validated for the Passive Optical Network (PON) infrastructure using Radio-over-
Fibre (RoF) technology and for split-enabled optical interconnects.
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2. To enabling an efficient Spatial Division Multiplexing (SDM), MultiCore Fibre (MCF)-
based optical infrastructure have been deeply analysed with special emphasis on the
optimal crosstalk level that optimises the aggregated capacity of MCFs.

3. Finally, we have designed and experimentally validated an AI-empowered con-
trol/management and orchestration framework allowing the automatic and au-
tonomous deliver of network slices customised to the requirements of the vertical
services and applications.

2.2.5. The RINA Domain

We have successfully deployed RINA (the other technology domain) in an emulated
network scenario consisting of a service provider network on top of an infrastructure
provider network. The overall scenario included 10 nodes spanning from end-users to DC
servers. We accomplished the following two tests:

1. The evaluation of the RINA QoS support by injecting synthetic traffic flows reproduc-
ing diverse network applications and load conditions and measuring the perceived
QoS metrics. This test proved the ability of RINA to effectively deliver packets with
the required QoS between distributed applications in a multi-layer packet network.

2. The demonstration of a real High Definition (HD) video streaming in highly congested
network scenarios, with perfect users’ Quality of Experience (QoE).

2.3. Review of Similar Projects

Recent advancements in AI have led to a new era of ML techniques. In particular,
ML applied to networks is today an established focus on the research community and
generates high expectations. Several projects started in the past few years promoting the
deployment of AI/ML in the network with the focus on minimising manual intervention,
maximising the network use and QoS/QoE, reducing the energy footprint, facilitating
the data processing, signal processing, and the integration between different network
segments, etc. Among all initiatives, we consider that the following three projects present
most similarities with ALLIANCE.

DAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks,
https://h2020daemon.eu, accessed on 20 September 2021) is a European-funded project
started in 2021. Its main argument is that AI is not the best solution for every network task
but only for those hard problems requiring inferring complex relationships from massive
data. Therefore, its goal is to provide a solid set of guidelines for the use of ML and design
tailored AI models that respond only to the specific needs of given network functions.

AI@EDGE (A Secure and Reusable Artificial Intelligence Platform for Edge Computing
in Beyond 5G Networks, https://aiatedge.eu, accessed on 20 September 2021) is another
example of European project started in 2021 focused on AI/ML for 5G/B5G. This project
aims at building a platform and tools enabling the concept of reusable, secure, and trust-
worthy AI for network automation in large-scale edge and cloud compute infrastructures.
In addition, it targets a solution for a converged connect-compute platform for creating and
managing resilient, elastic, and secure end-to-end slices capable of supporting a diverse
range of AI-enabled network applications.

5GZORRO (Zero-tOuch secuRity and tRust for ubiquitous cOmputing and connec-
tivity in 5G networks, https://www.5gzorro.eu, accessed on 20 September 2021) is a
project started in 2019, few months after ALLIANCE. The main goal of 5GZORRO is to
transform network orchestration and management into a cognitive process through which
the network can self-adapt and self-react to changing conditions with minimal manual
intervention. In addition, blockchain is proposed for implementing distributed security
and trust across the various parties involved in the 5G service chain.

All projects leverage on cutting-edge technologies such as SDN/NFV, edge/fog com-
puting, enhanced mobile broadband networks, etc. Being European projects, they are
clearly larger than ALLIANCE, their goals include many more aspects and objectives, and
in the end each one wants to deliver and demonstrate a complete global solution. On the

https://h2020daemon.eu
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contrary, in ALLIANCE we have focused on proposing solutions that point to significant
advances in different fields, which are mostly not addressed in the other projects. For
example, we have pioneered the first application of GNN (in combination with DRL) to
computer networks, allowing us to predict accurate performance metrics per flow for
known networks and produce accurate estimates for unknown networks. We have demon-
strated the potentiality of RINA as a viable solution for B5G, with its inherent ability to
support security, programmability, virtualisation and mobility by design. The focus of most
of the similar projects is on the mobile network; in ALLIANCE we have investigated new
modulation formats and new design tools for both the access and the transport segments of
a high-capacity and ultra-low-latency optical infrastructure. These are just three examples
to differentiate ALLIANCE from similar projects; other novel achievements are reported
throughout the document.

3. The KDN Framework
3.1. Background on KDN

In the last decade, the networking community has witnessed the so-called “softwari-
sation” process. As a result, networks are shifting towards increasingly programmable
control planes. At the same time, a series of breakthroughs during the last decade in the
ML field have marked the start of a new era of AI [4].

In this context, KDN [5] emerges with the goal of facilitating the deployment of AI/ML
techniques for network orchestration. To this end, KDN restates the concept of a knowledge
plane for networks, earlier proposed in [6]. As initially proposed, the knowledge plane was
a construct combining AI tools and cognitive systems to control and operate the network
efficiently (e.g., via network orchestration). In this construct, the use of AI-based solutions
was expected to achieve better-than-human network operation timescales and optimise the
resource use in complex network environments beyond existing solutions (e.g., heuristics,
analytical models).

However, despite the much interest raised by the knowledge plane among the net-
working community, no prototype of this construct was built for real network deployments,
mainly due to important technical limitations. According to the authors of KDN, one
of the main limitations to deploy AI/ML techniques in legacy networks is that they are
intrinsically distributed. Network devices have only a partial view of the network state,
and their actions have an impact only on a small portion of the network—typically on
their neighborhood. One example of this is routing in legacy networks, where forwarding
devices are limited to select the next hop based on their local state.

In this vein, KDN highlights the rise of two key technologies that may act as a catalyst
to construct a functional and efficient AI-enabled knowledge plane: (i) the SDN paradigm,
and (ii) modern network analytics techniques. First, in SDN the control plane permits
the gathering of knowledge about the network state in a logically centralised entity. This
may bring many advantages for modern ML-based network orchestration solutions, which
can leverage the global state information to make decisions over the network as a whole.
Second, data-plane devices in SDN offer improved computing and storage capabilities
with respect to traditional networking equipment [7,8]. This paves the way to develop
a new breed of monitoring techniques—also known as telemetry [9]—that enable the
maintenance of measurements in data-plane devices and collect timely information about
the network state in a centralised platform. At this point, network analytics becomes an
essential pillar to collect, structure, process, and maintain efficiently the network state
information, which in real-world networks typically turns into Big Data.

As a result, KDN proposes to leverage recent advances in the AI field—and specifically
in ML [10,11]—to construct a knowledge-based layer for efficient network orchestration
in SDN-based networks. The resulting AI-empowered knowledge plane can be benefi-
cial to efficiently implement emerging networking trends based on complex high-level
operational goals, such as Intent-Driven Networking [12], or Beyond-Shannon Semantic
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communications [13]. Since it was conceived, KDN has served as a reference for a large
body of literature aiming to deploy AI/ML techniques for network automation [14–16].

3.2. Research Activity

Recent advances in ML have attracted a lot of interest from the networking community,
which has recently started to investigate how to build cost-efficient ML-based solutions to
address network-related problems, such as routing optimisation, performance prediction,
or traffic classification [10,11]. Additionally, DL models in combination with optimisation
strategies, such as reinforcement learning algorithms, have opened the possibility to
efficiently solve complex decision-making and automated control problems [17–19].

In the ALLIANCE project, we have investigated how to effectively apply modern
DRL methods to optimise the routing configuration in networks. In this context, previous
DRL-based attempts for routing optimisation have failed to achieve good results, often
under-performing traditional heuristics. In contrast to previous DRL-based solutions,
in ALLIANCE we first proposed to use a more elaborate network representation that
facilitates DRL agents to learn efficient routing strategies in optical networks [20], while
also demonstrated the possibility to apply this network representation to other optimisation
problems, such as QoS-aware routing optimisation in IP networks [21].

Second, we have proposed the use of GNNs [22] as effective tools for network mod-
elling and optimisation (e.g., network orchestration). GNN is a recently proposed family
of neural networks specifically intended to learn and generalise over graph-structured
information. These models are focused on learning the relationships between different
inter-connected elements in graphs, by exploiting the structure of the graph itself. As a
result, they show good generalisation properties when applied to different graphs not seen
during the training phase—i.e., they show strong relational inductive bias over graphs [23].
We refer the reader to [22–24] for more generic background on GNN. Earlier attempts to ap-
ply Deep Learning for network optimisation propose the use of well-known neural network
models (e.g., fully connected, convolutional, recurrent neural networks, auto-encoders),
which have been popularised for their outstanding applications in other fields (e.g., com-
puter vision, natural language processing). However, these types of neural networks are
not suitable for understanding and extracting deep knowledge from graph-structured
data and, as a result, they show poor generalisation capabilities when applied to different
network scenarios than those seen during the training phase (e.g., other topologies, routing
configurations, traffic) [25]. In this context, we argue that many fundamental components in
network optimisation problems involve data that is fundamentally represented as graphs
(e.g., topology, routing, inter-flow dependencies) [26]. This makes GNN an especially
well-suited neural network family for learning and reasoning about this network-related
information. In the networking context, GNNs can be especially beneficial for global
optimisation tasks, which often involve global graph-structured network state information
and complex high-level optimisation goals (e.g., minimise end-to-end latency, maximise
bandwidth). In general, these networking problems typically involve different network
elements (e.g., routers, links, users, traffic flows) with associated state information and
complex relationships between them that must be modelled and exploited to effectively
pursue the global optimisation goal.

In the ALLIANCE project, we have proposed RouteNet [27], a custom GNN-based
architecture for network performance evaluation. This GNN model has as input: a net-
work topology, a routing configuration, and a src-dst traffic matrix; and it produces as
output accurate predictions of flow-level QoS metrics (e.g., delay, jitter, loss). A main
advantage of this GNN model with respect to other traditional network modelling solu-
tions (e.g., queuing theory, packet-level simulators) is that it can produce very accurate
performance estimates at limited cost. This can be particularly interesting for online opti-
misation tasks, where the GNN model can be combined with an optimisation algorithm
(e.g., reinforcement learning, heuristics) to evaluate the performance of different candidate
configurations, and eventually find a configuration that meets the target optimisation



Appl. Sci. 2021, 11, 9130 8 of 26

goals [26]. In this context, we have applied RouteNet for automatic routing optimisation
in several QoS-aware optimisation use cases (e.g., minimise end-to-end delay, jitter). Our
experimental results show that unlike previous ML-based proposals, this GNN model can
operate successfully in network scenarios with different topologies, routing configurations,
and traffic never seen during the training phase [28]. Likewise, we have recently pioneered
the first network optimisation architecture that combines DRL and GNN for routing op-
timisation [25], and have applied it to a classic routing optimisation problem in optical
networks, as well as to traffic engineering in IP networks [29]. The following subsection
features some remarkable results obtained in [25], which leverages our novel DRL + GNN
agent to optimise the routing configuration in a KDN/SDN-based optical network scenario,
as the one previously introduced in Figure 1.

3.3. Evaluation of a DRL + GNN Agent for Routing Optimisation in Optical Networks

A main limitation of existing DRL-based solutions for networks is that they are not
able to generalise properly across different network scenarios (e.g., different topologies,
configurations) than those seen during the training phase. This limits their applicability to
commercial products, so that DRL agents can be trained in controlled testbeds and then
be deployed in any real-world network, regardless of its topology. The reason behind this
limitation is that existing DRL solutions for networking use standard neural networks
(e.g., fully connected, convolutional) that are not suited to learn data from computer
networks, whose information is intrinsically structured as graphs [26].

In virtue of the generalisation capabilities of GNNs to model network-related infor-
mation (structured as graphs), we argue that the integration of such models into DRL
agents may enable the building of more efficient solutions for network optimisation. In
particular, the use of GNN could help the DRL agent generalise better to different scenarios
from those observed during the training phase, which is an essential learning aspect to
achieve functional solutions for networking. In this vein, the GNN model can help the
agent acquire deeper knowledge about networks, by learning how the state of different
network elements (e.g., forwarding devices, flows) relate to a particular target optimisation
goal (e.g., maximise congestion). As a result, in the ALLIANCE project we have proposed
a novel architecture that integrates a GNN model into a DRL algorithm [25]. We show that
the resulting DRL + GNN agent can learn the complex relationships between the differ-
ent elements of the network, reason about these relationships, and optimise the routing
configuration over an Optical Transport Network scenario. In particular, we consider a
KDN/SDN-based scenario, where a centralised controller receives information of new
traffic demands to be routed {source, destination, estimated bandwidth}, and our DRL + GNN
agent—running in the controller— selects the best src-dst path for each demand, with the
ultimate goal of maximising the amount of traffic volume served by the network, which is
a classic Traffic Engineering goal.

The proposed DRL + GNN agent implements Deep Q-Network (DQN) [19] as a re-
inforcement learning algorithm, and a custom GNN model (coded in TensorFlow) that
incorporates state information from links (use) and their relations according to the network
topology and the traffic demands routed through the network. In our experiments, we gen-
erate different network optimisation episodes, which are defined by: a network topology,
and a sequence of src-dst traffic demands randomly generated that the DRL agent must
incrementally allocate on particular sequences of lightpaths (i.e., end-to-end paths). We
train the DRL agent for 1000 episodes, where each episode ends when the agent allocates
a demand to a path (i.e., sequence of lightpaths) that does not have enough available
capacity. The immediate reward is the traffic volume of the current traffic demand if it
was successfully allocated by the agent, and zero otherwise. Thus, the agent is intended
to maximise in the long-term the amount of traffic volume successfully routed. Please
note that since the generation of traffic demands is random, the agent cannot exploit any
meaningful information to predict the traffic demands that will come in the future, which
makes this problem more challenging.
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Figure 2a,b show a comparison of the proposed DRL + GNN agent [25] against a
state-of-the-art DRL solution using fully connected neural networks (SoA DRL) [30], also
presented as an earlier work within the ALLIANCE project. In Figure 2a, we can ob-
serve that when both DRL-based solutions are trained and evaluated in the same network
topology (NSFNet; 14 nodes), they achieve a similar score (i.e., amount of src-dst traffic
volume successfully routed through the network). In particular, the bloxplots show the
performance achieved across 1000 evaluations with different src-dst traffic demand sets
randomly generated. As a reference, we also show the performance achieved by a tradi-
tional Load-Balancing policy (LB). Thus, we can also observe that LB achieves ≈30% less
performance than our DRL + GNN agent if we compare the median values obtained across
all evaluations. Likewise, Figure 2b shows the results when the DRL agents are trained
in a network (NSFNet; 14 nodes) and then tested in another network unseen during the
training phase (Geant2; 24 nodes). In this case, we can observe that the state-of-the-art DRL
agent (using a fully connected NN) considerably degrades its performance, falling behind
a traditional LB policy. This is due to its lack of generalisation capability over different
networks. In contrast, the proposed DRL + GNN agent achieves a good performance level
in this new network unseen during training, which reveals the capability of this solution
to flexibly adapt to new network scenarios, by exploiting the information of networks
structured as graphs. To further evaluate the DRL + GNN agent in other networks, we
apply it over a set with 136 real-world topologies from the well-known Internet Topology
Zoo repository [31]. The plot of Figure 2c shows the improvement (%) over a LB routing
policy across all these networks (x-axis), which were not seen by the DRL agent during the
training phase. Overall, we can observe an average improvement of 21.39% in performance
compared to the traditional LB baseline, again reflecting the outstanding capability of the
DRL + GNN agent to generalise to other networks. We refer the reader to [25] for a more
extensive evaluation of this work.
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Figure 2. Evaluation of our DRL + GNN agent for routing optimisation in optical transport net-
works: (a) Training/Evaluation in the same topology (NSFNet); (b) Training/Evaluation in different
topologies (trained in NSFNet; evaluated in Geant2); (c) Evaluation of our DRL + GNN agent over
136 topologies from Internet Topology Zoo unseen during the training phase.
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4. Monitoring Element
4.1. Introduction

Presently, network monitoring encompasses a combination of efficient network mea-
surement techniques and Big Data processing methods that, in SDN, are intended to
provide a rich view of the network state to the centralised control plane. This eventually
enables the automation and improvement of network control and management tasks, such
as adapting the network configuration (as the use case previously presented in Section 3.3),
predicting traffic and application trends, or preventing potential problems (e.g., perfor-
mance degradation, security breaches).

The huge scale and diversity of presently’ networks makes it difficult to measure
and maintain accurate and timely statistics of the network state. In this context, the
SDN paradigm offers the advantage of a data-plane populated by devices with enhanced
computing and storage capabilities, as well as a centralised control plane that permits
the collection of all the state information maintained in data-plane devices. For instance,
OpenFlow [7] offers support to maintain flow-level traffic measurements in forwarding
devices (e.g., traffic volume, flow duration) and provides an API to report this information
to SDN controllers.

However, despite SDN solves some classic problems of network measurement in
distributed environments, it brings new challenges to address. The decoupling of the
control and data planes adds new implications that need to be identified and considered for
the design of efficient network analytics solutions. For example, this separation introduces
a latency in the communication between the control and data planes (i.e., between SDN
controllers and forwarding devices). Thus, this latency is not only affected by the delay of
the connection itself, but also by other factors such as the current workload of the devices
and their availability. Likewise, the fact that SDN controllers are centralised entities that
typically manage many forwarding devices, makes them prone to become bottlenecks.
This adds the need to avoid possible scalability issues by carefully selecting the tasks that
are processed in controllers and those that may be devolved to data-plane devices.

In addition, the use of modern ML and Big Data processing techniques enables the
provision of a deep insight about all the information collected from the network. In
this vein, one application that may be particularly beneficial for network operation is
to classify the traffic by applications. This can be done using supervised ML methods,
such as decision trees, Support Vector Machines, or Deep Neural Networks, which can be
trained with labeled data to then classify the applications from a limited set of network
measurements. For instance, some works leverage basic flow-level traffic measurements
(e.g., traffic volume) to discover —with ML—the applications in the network [32,33].

4.2. Research Activity

In the ALLIANCE project, we have investigated the design of efficient traffic mea-
surement tools in the context of KDN. Network monitoring becomes a more and more
complex task considering that the state information collected from the data-plane involves
an ever-increasing massive amount of data (i.e., Big Data) in real network deployments.
We have analyzed the main aspects to consider when measuring and classifying traffic in
KDN/SDN environments (e.g., scalability, accuracy, cost). As a result, we propose a practi-
cal solution that generates flow-level traffic measurement reports in SDN environments,
similar to those of NetFlow/IPFIX [34] in traditional networks. The proposed system uses
only functions supported by OpenFlow, which is among the most popular standards in
SDN, and allows the efficient maintenance of traffic statistics on network devices with
basic characteristics (e.g., switches, routers), to finally send them to the control plane in an
asynchronous way. In [35] we propose a monitoring platform that integrates the previous
measurement system with a novel traffic classification module, also proposed as part of
the ALLIANCE project, combining DPI and ML (decision trees), to efficiently identify the
applications that generate traffic in the network.
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Likewise, in [36] we have investigated the use of ML-based techniques (Support Vector
Machines, Decision Trees) for detecting cryptocurrency mining activity in the network,
using only basic information from the measurement reports offered by Network/IPFIX,
which is a widely deployed standard in real-world networks presently. This can be espe-
cially useful to detect potential cryptojacking attacks, which are becoming more and more
common presently. In particular, this type of attack consists of compromising machines
within a network to exploit their resources for cryptocurrency mining, which is often a
high power-consuming process.

4.3. Implementation and Evaluation of the Proposed Monitoring Platform

The monitoring platform proposed in [35] keeps updated traffic measurements in
a distributed manner in the switches, while devices send asynchronously summaries of
these measurements to the control plane. Moreover, we have proposed a novel classifi-
cation system on top of the previous measurement system to identify the applications
that generate traffic in the network. Presently, it is more and more common to find very
diverse applications specifically under web-based services and encrypted traffic (e.g., VoIP,
cloud storage, video streaming), which may have very different networking requirements
(e.g., low delay, high bandwidth). This makes it particularly interesting to identify the
applications generating traffic under this type of traffic (e.g., HTTP, HTTPS, SSL/TLS). In
this context, the proposed classification system combines ML and DPI techniques, with
special attention to the identification of applications that generate web and encrypted
traffic [37]. In particular, this system first uses a decision tree-based classifier (c5.0 decision
tree [38]) to discover the application-level protocol of traffic flows (e.g., HTTP, HTTPS, SSH,
SMTP, DNS), and then applies more specific DPI techniques on web and encrypted flows to
identify the application names within this type of traffic (e.g., Netflix, YouTube, Dropbox).
Please note that these latter DPI techniques—that leverage functionalities from the open-
source nDPI [39] and Bro IDS [40] tools—are applied only over the first few packets of web
and encrypted flows. In particular, they use information at the beginning of HTTP sessions
(e.g., from the HTTP GET header) and the initial handshakes of SSL/TLS connections
(Server Name Indication field in certificates), thus incurring in limited processing overhead
for the proposed monitoring platform.

We have implemented a prototype of this network-monitoring platform in the Open-
Daylight controller [41]—which is well known in the SDN domain—and evaluated this
prototype in a test environment with Open vSwitch [42]. Our evaluation results, using
real traffic from three different networks, show that the proposed system achieves good
accuracy levels for both measuring and classifying traffic; while maintaining a reasonable
execution cost. As an example, Table 1 shows the accuracy achieved by the proposed
classification system over several well-known web-based applications. These results were
obtained through experiments with real-world traffic from a 10 Gbps access link of a large
Spanish university network [37]. Applications are identified by their domain names, ex-
tracted either from HTTP headers or SSL/TLS certificates at the beginning of connections
(packets transmitted during the first 40 ms of web and encrypted flows). We refer the
reader to [35,37] for a detailed analysis on the tradeoff between accuracy and cost in the
proposed monitoring platform. Finally, our prototype was integrated with a commercial
network visibility platform to showcase its usefulness in a practical demonstration using
real-world traffic [43].
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Table 1. Per-application accuracy achieved by the proposed classification system (processing only
packets transmitted in the first 40 ms of web and encrypted flows). Summary of experimental results
from [37]

Domain Name Application Accuracy (%)

drive.google.com Google Drive 95.4 %
mail.google.com Gmail 94.7 %

netflix.com Netflix 97.3 %
web.whatsapp.com WhatsApp web 89.2 %

youtube.com YouTube 87.8 %

5. Trust Element
5.1. Introduction

In some situations, network operators need to exchange different kinds of information
among them. For example, in the context of 5G networks, operators may want to exchange
the locations of 5G subscribers in their respective networks, to locate roaming user de-
vices [44,45]. Another example is some SDN deployments that leverage overlay networks
that must maintain a database of overlay addresses to underlay addresses (usually called
Mapping System [46,47]). In addition, this information can be more complex, such as access
control policies or QoS information.

However, exchanging this information between networks in different administrative
domains requires trusting external networks (Figure 3). In other words, network A has
to accept information from the external network B that can potentially influence routing
behavior in network A. Hence, this situation is sometimes judged inappropriate by some
operators [48].

Trust Domain BTrust Domain A

Mapping 

System A

Network A Network B

Mapping 

System B

Figure 3. Exchange of routing information between two networks in different administrative domains.
The Mapping System is a server that stores overlay-to-underlay mappings, and other network metadata.

The current solutions to transfer this information are usually complex to operate,
e.g., in the area of Mapping Systems LISP-TREE [49] is similar to the DNS in configuration
complexity. In addition, if we want to add security properties to such systems, such as
confidentially or authentication, we must leverage centralised systems, i.e., Certification
Authorities (CAs) to manage digital certificates. Although CAs are extremely convenient
for single administrative domains, their centralisation is not convenient for a scenario
with multiple administrative domains, because a single party can change the status of
the database. There exist some distributed alternatives to centralised CAs, but they re-
quire complex configuration or do not scale well, such as cross-certification or bridge CA
certificates [50,51].

On the other hand, blockchains have a decentralised trust architecture. Each partici-
pant of the blockchain has full control of its database entry, and it cannot be modified by
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youtube.com
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the other participants. Taking this into account, we have proposed leveraging the inherent
decentralisation of blockchains to exchange information between different trust domains in
a decentralised way (Figure 4). Thanks to the properties of blockchains, we can provide a
shared database among a set of cooperating network operators that do not necessarily trust
each other. At the same time, the data from each operator is protected from modification
by the other operators.

Trust Domain BTrust Domain A

Mapping 

System A

Network A Network B

Mapping 

System B

Blockchain

Domain B dataDomain A data

Figure 4. A blockchain can serve as a shared database between networks from different trust domains
to share network metadata.

5.2. Research Activity

In the context of the ALLIANCE project, we have investigated how to leverage
the properties of blockchains to share information between different trust domains, and
the advantages and disadvantages of such system. We focused on two scenarios: first,
recording the allocations and delegations of public IP addresses, as well as bindings of IP
prefixes to Autonomous System Numbers (ASN) in a blockchain. Second, storing access
control policies for networks belonging to different enterprises.

Regarding the allocation of IP addresses, we have proposed storing IP prefixes in a
blockchain similarly to cryptographic coins in financial blockchains, such as in Bitcoin [52].
This way, participants can exchange, transfer and split blocks of IP addresses as in a
financial blockchain. As we mentioned, this approach does not rely on centralised CAs,
and decentralises trust: users do not depend on the actions of the CAs, since each IP prefix
is tied to the public–private keypair of the operator. In addition, we can add metadata to
each transaction. Since these metadata are included with the blockchain transaction, they
are cryptographically verifiable. Two metadata are especially interesting: Autonomous
System Numbers (ASN) and IP addresses. In the first case, since we are binding an IP prefix
to an ASN, we can use these data to validate BGP messages in the context of interdomain
routing security. In other words, we can verify if an IP prefix should be originated by the
legitimate ASN, or has been modified along the path. This approach is an alternative to the
RPKI [53], the current system to perform such validation, which is based on centralised
CAs [54,55]. In the second case, we are binding an IP prefix to an IP address. This can be
interpreted as a mapping of an overlay address to an underlay address, such as the ones
used in mapping systems for SDN-based overlay networks. As we mentioned earlier, this
mapping system can be used to share the location of 5G subscribers across networks from
different operators.
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With respect to access control policies, we focus on a scenario of different enterprises
that want to allow access to some of their resources among them. The different enterprises
leverage a blockchain to write their access control policies, and the routers query the
blockchain to allow or deny connections. Since data in the blockchain is controlled by the
associated private key owner, each enterprise can revoke any of their access policies at
any moment. Moreover, we argue that a system based on a blockchain scales better than
PKI-based alternatives such as cross-certification. A detailed evaluation of the scalability of
this proposal can be found in [56].

5.3. Open-Source Prototypes

We built and evaluated two prototypes for the aforementioned use cases, and open-
sourced their code. Table 2 summarises the prototypes we built, as well as some parameters
of the experiments. The first prototype is a distributed mapping system for overlay net-
works [57]. It performs the basic functions of any blockchain: create and send transactions,
run the consensus algorithm, create new blocks, etc. More specifically, it is engineered to
support IP prefixes in its transactions: it allows recording, transferring, and splitting an
IP prefix, as well as adding metadata to it. In addition, it enforces the basic rules for these
transactions, such as verifying that new transactions reference an existing IP prefix, or that
the issuer of a new transaction actually owns the IP prefix. This prototype (Public v1 in
Table 2) leverages Proof of Stake (PoS) as a consensus algorithm, but relies on a centralised
random beacon to select the block signers. We have carried out an experiment to allocate
150k IP prefixes among 9 nodes that yielded a throughput of 6 transactions per second. We
built a second version of this prototype to select the block signer in a distributed way. To
this end, we have based the consensus algorithm in the DFINITY blockchain [58]. This
second prototype is configured with a block time of 40 s, block size of 2 MB, and can reach
a throughput of 10 transactions per second. A detailed evaluation can be found in [55].

Table 2. Summary of the different blockchain prototypes and experiment results. tps stands for transactions per second.

Prototype Consensus Algorithm Chain size Number of prefixes Throughput Nodes

Public v1 PoS—centralised 1 GB 150k 6 tps 9random beacon

Public v2 PoS—decentralised 2.5 GB 350k 10 tps 2random number generation

Private Hyperledger endorse-all 40 MB 5k ∼625 tps 8and SOLO ordering

Finally, Private is a blockchain prototype built on top of the Hyperledger Fabric
blockchain platform [59]. We have chosen this platform because it is designed for enterprise
use cases, and it allows controlling the participants in the blockchain. This property aligns
well with this use case, since the enterprises want to share data among them, but it is
not necessary that the access control data are public. We have defined several objects in
the Hyperledger blockchain, such as users, departments, or resources, and configured it
with a global constraint so that only the enterprise that owns the object can modify it. In
addition, we have included a command line to make it easier to manage these objects. We
have used Hyperledger’s consensus algorithm that is based on Byzantine Fault Tolerant
algorithms. Since Hyperledger is a permissioned blockchain, it can provide significantly
higher transaction throughput than the public prototypes. The code of this prototype is
also available on GitHub [60].

6. The SDN/NFV Domain

The need to deploy different services, each with their quality requirements on the same
physical/logical infrastructure has fueled the introduction of concepts such as “Network
slicing”. It basically involves splitting the physical and logical resources of the network to



Appl. Sci. 2021, 11, 9130 15 of 26

isolate the resources used to support a specific service, while guaranteeing the provision of
said services. In this sense, the progress of novel technologies such as SDN and NFV has
opened the possibility of providing such services. Indeed, the underlying physical network
of an infrastructure operator/owner can now be abstracted, combining the resulting
elements into complete and self-contained virtual infrastructures (slices).

In this section, we discuss the investigations carried out in ALLIANCE related to
SDN/NFV-controlled optical networks. In this domain, we have considered both the
packet and the optical layers, meaning that we have proposed an overall solution where an
SDN/NFV orchestrator controls an ultra-low-latency and ultra-high-capacity spatially and
spectrally flexible all-optical network infrastructure. In particular, our research activities
to improve the optical layer are first introduced in Sections 6.1 and 6.2, with special
emphasis on advanced modulation formats for both access and transport networks. Therefore,
we present the proposed control layer based on an SDN/NFV orchestrator enhanced with
our KDN vision and fed with the data collected by the monitoring element in Section 6.3.
The overall solution enables the automatic and autonomous deliver of network slices
customised to the requirements of the vertical services and applications while optimising
the use of both the IT and the optical layer resources.

6.1. Transmission Layer

Today, the push towards 5G services and applications that require, among others, low
latency and high capacity, poses new technological challenges. For example, the increased
use of streaming, edge and cloud applications popular at portable devices requires archi-
tectural changes to satisfy the 5G/B5G mobile network specifications. Especially in Cloud
RAN (C-RAN) optical fibre-based mobile fronthaul, provides the required flexibility, low
latency and high capacity [61]. This context, Open Base Station Standard Initiative (OBSAI)
and Common Public Radio Interface (CPRI) are common transmission techniques in 4G
fronthaul networks, though inadequate for massive 5G/B5G services. Later, Ethernet-
based CPRI (e-CPRI), digitalizing the RF signal is commonly used in 5G fronthaul network
rollouts, due to its flexibility, efficiency and low quantisation resolution required [62–64].

Despite all these benefits, e-CPRI requires important Digital Signal Processing (DSP)
resources in the Remote Radio Head (RRH) that increases the system power consump-
tion. RoF technique has recently proposed as provides the required bandwidth while
simplifies the interface of the RRHs [65–68]. NOMA-CAP modulation has recently been
investigated as a promising B5G modulation format candidate to increase the capacity and
flexibility of future mobile networks. In the framework of the ALLIANCE project, we have
experimentally demonstrated the convergence of a NOMA-CAP wireless waveform with a
single-carrier wired signal in a PON scenario using RoF technology [69]. Figure 5 shows the
reference scenario for this work where the Pulse Amplitude Modulation 4-level (PAM4) has
been used for legacy systems and NOMA-CAP for the future B5G fronthaul. Two NOMA
levels (strong and weak) have been considered per each CAP band [69]. We have also
first experimentally demonstrated NOMA-CAP as a modulation format for split-enabled
optical interconnects with a capacity of up to 630 Gb/s using 7-core MCF and requiring
an electrical bandwidth of 25 GHz. More details about this experiment and results can
be found in [70]. In addition, we have provided an optical power budget enhancement
in 50–90 Gbps IM-DD PONs with NOMA-CAP using Semiconductor Optical Amplifier
(SOA)-based amplification [71]. Finally, this technique has also been used to provide a flex-
ible resource provisioning for polarisation independent coherent PONs thanks to NOMA
and multiCAP modulation, increasing at the same time the data-rate, up to 20 Gbps, and
providing flexible reach among and existing PON, 20 km to 40 km, and a new extended
nested PON, extra 20 km to 70 km, and users, from initial 32–64 to more than 380 users [72].
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Figure 5. Conceptual diagram of a converged B5G fronthaul and PON architecture.

6.2. Multicore Fibres and Constellation Shaping

One of the challenges of B5G systems is how to provide such a huge bandwidth
increase in the transport networks. The easiest solution would be installing more fibres.
However, this is an obsolete technology and would have the biggest economic impact in the
long run. Another alternative would be increasing the capacity of the installed fibre plant.
This requires a more efficient spectrum usage (spectral efficiency) and/or expanding the
available optical bandwidth (multiband communications). This is the preferred solution
for the operators in the midterm. A more disruptive technology would be replacing the
old fibre plant by a new optical fibre technology. Several candidates are being evaluated
such as hollow-core fibres, multimode fibres or MCF. MCF is much more mature than the
other alternatives and is much less demanding in terms of digital signal processing than
the multimode counterpart.

In the framework of ALLIANCE project, it has been found that there exists an optimum
multicore crosstalk level of about -55 dB/km which optimises the aggregate capacity of
MCF [73] (see Table 3). This level sets the maximum number of cores that can be deployed
in a given cladding diameter. This finding simplifies dramatically the design of MCFs to be
used in future applications.

Table 3. Summary of experimental results from [73]. (Diameter: cladding diameter. Reach: trans-
mission distance. SE: maximum aggregate spectral efficiency. XT: optimum aggregate multicore
crosstalk. Cores: optimum number of cores.)

Diameter Reach SE XT Cores

125 microns
100 km 75 b/s/Hz −63 dB/km 4

1000 km 50 b/s/Hz −63 dB/km 4
10,000 km 25 b/s/Hz −63 dB/km 4

200 microns
100 km 220 b/s/Hz −55 dB/km 13

1000 km 130 b/s/Hz −55 dB/km 14
10,000 km 50 b/s/Hz −58 dB/km 14

260 microns
100 km 400 b/s/Hz −50 dB/km 24

1000 km 230 b/s/Hz −52 dB/km 26
10,000 km 85 b/s/Hz −58 dB/km 27

On the other hand, we have experimentally demonstrated that a single transponder
can operate at any distance, from DCs to transoceanic communications, using tunable
probabilistic constellation shaping (PCS) [74] (see Figure 6). This proves the potential for
PCS to adapt to any rate/reach requirement using the same hardware platform.
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Figure 6. Experimental data from [74] for probabilistically shaped M-QAM signals. Symbols corre-
spond to measured points. Dashed lines correspond to a linear interpolation

6.3. Control/Management/Orchestration Architecture

In ALLIANCE, a complete SDN/NFV-based control/management/orchestration
architecture has been designed to deliver network slices customised to the requirements of
the vertical services and applications [75–77]. The major challenge in this regard is that the
provisioning of network slices may affect multiple SDN-controlled segments/technologies
(optical access networks, metro, core and DCs). Moreover, special attention must be
dedicated to the quality maintenance of the slices during their runtime. Since slices are
employed to support several services on top, it becomes essential to monitor selected
Key Performance Indicators (KPIs) of the slices to identify situations in which the current
quality of services could be compromised. This way, the maintenance of slice QoS as well
as the quality experienced by the user (i.e., QoE) can be achieved.

The proposed architecture has been inspired by the approach known as the MAPE
cycle (Monitoring, Analysis, Planning and Execution): the four steps of this approach
allow the automatic and autonomous management of the optical networks and the DCs
resources. The first step (monitoring) is based on the collection of the different metrics that
can be collected through sensors. The second step (analysis) consists of the analysis of the
data collected to determine the need for actions to maintain the quality of the supported
slices/services. Taking into account the enormous volume of data collected, the application
of ML techniques can detect in advance possible failures in the infrastructure. The third
step (planning) is required in the case of detecting the need for reconfiguration of the
network to continue providing the service with the same quality. In particular, it refers
to defining the actions to be enforced, thus determining the fourth step (execution) that
represents the implementation of the defined reconfigurations.

In the context of the application of the MAPE approach for the maintenance of qual-
ity of the deployed network slices, end-to-end QoS-based monitoring tools have been
designed and implemented. The designed architecture also enables reception of a direct
QoE input that can provide valuable information on the service state as perceived by the
user/vertical. In particular, a Mean Opinion Score (MOS) value is constantly collected.
In our approach, both types of parameters (Qos and QoE) are constantly monitored, and
upon a negative user feedback, a new architectural component, i.e., the QoE optimiser, has
been introduced, being in charge of maintaining awareness of the user QoE to guarantee
the correct service operation.

We have experimentally assessed the overall architecture using a three-segment net-
work scenario, based on the interconnection between (cloud and/or edge) DCs through
wide-area networks [75]. In particular, each network segment is connected to its Open-
DayLight (ODL)-based SDN controller, while each DC is managed by a single OpenStack
entity. Each DC hosts a single virtual machine and network connectivity is delivered
across the three network segments. The QoS metric for the deployed slice is the packet
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loss ratio (PLR) experimented by the data flows across the Virtual Network Functions
(VNFs). Hence, we have implemented a policy stating that as a result of a PLR greater
than a pre-defined threshold, the configured slice network bandwidth must be increased to
suitable levels. In particular, we have validated that once the PLR reaches the threshold,
the policy is activated increasing the bandwidth of the provisioned network resources and
successfully dropping PLR to a negligible value. In summary, we have proved that the
proposed architecture can maintain the desired QoS levels over the time under dynamic
conditions that may affect the quality of the delivered services.

7. The RINA Domain
7.1. Basic Concepts

Current 5G approaches still model the network as a flat collection of physical devices
forwarding data between interfaces, hiding the underlying complexity via overlays. This
suffers of scalability issue on the one side and still maintain the complexity of managing
the network infrastructure on the other side. A completely different focus has been taken
in RINA.

RINA is a back-to-basics approach learning from the experience with TCP/IP, which
reminded us that from the earliest days, networking was viewed as Inter-Process Com-
munication (IPC) [78]. Thus, RINA starts from the premise that networking is IPC and
only IPC. In particular, networking provides the means by which application processes
on separate systems communicate, generalising the model of local IPC. In contrast to the
fixed, five-layer model of the Internet, where each layer provides a different function,
RINA is based on a single type of layer, implementing only two protocols called Error and
Flow Control Protocol (EFCP), and Common Distributed Application Protocol (CDAP),
which is repeated as many times as required by the network designer. The layer is called a
Distributed IPC Facility (DIF), which is a distributed application that provides IPC services
over a given scope to the distributed applications above (which can be other DIFs or
regular applications). These IPC services are defined by the DIF Application Programming
Interface (API), which provides operations to: (i) allocate flows to other applications by
specifying an application name and a set of characteristics for the flow (such as delay, loss,
capacity), (ii) read/write data from/to the flows, and (iii) deallocate flows and free the
resources associated with them.

A key characteristic of RINA is its design based on the separation of all functions in
mechanisms and policies, which dramatically simplifies networking. Although all DIFs
implement the same two protocols (EFCP and CDAP), the specific operation of each DIF
can be customised to its particular scope via programmable policies. In this way, the
routing or packet forwarding policies configured in a backbone DIF can differ from those
in a DC DIF, as their topological characteristics and dynamicity of the supported traffic can
differ significantly.

To succeed in our endeavor, in ALLIANCE we used several open-source implemen-
tations and tools made available by previous research projects and by the RINA research
community such as the IRATI RINA Stack (an open-source implementation of RINA for
OS/Linux systems) and iporinad (a daemon program which is able to tunnel IP traffic over
a RINA network) [79,80].

7.2. Research Activity

We started collaborating in RINA development back in 2014. Recently, we extended
the concept of Degradation of Quality (∆Q) [81] proposed for IP networks and designed the
new Quantitative Timeliness Agreement Multiplexor (QTA-Mux) scheduling policy [82]
for RINA. In contrast to simpler QoS differentiation solutions, where QoS services are
provided in a priority order, QTA-Mux provides a way for an application and a network
to negotiate performance in terms of bandwidth, urgency and cherish. The QoS class
(called QoS Cubes in RINA) differentiation is enforced by a Cherish/Urgency (C/U) matrix
which enables an inter-flow resource contention based on both losses and delay and by
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a Policer/Shaper module which addresses the intra-flow contention. Since a common
API is enforced between the DIFs, specific QoS Cubes can be requested by an IPC to the
underlayer DIF during the flow allocation.

In ALLIANCE, our goal was to evaluate in a prototype the RINA QoS support by
means of this QTA-Mux scheduler. Therefore, we set up a RINA network infrastructure
shown in Figure 7a, consisting of 10 nodes in total, spanning from the end-user terminal to
the server where applications run in a DC. This scenario is composed by 2 Internal Routers
(IRs) interconnecting 3 Provider Edge (PE) routers, one of them providing connectivity to
two Home Routers (HRs), another one to the DC where the VLC VideoLAN server runs,
and a last one providing connectivity to another Service Provider.

Figure 7b depicts the configuration of DIFs. An Ethernet Shim DIF has been configured
over the Ethernet links interconnecting the physical nodes, allowing the use of RINA over
this legacy communication technology. On top of these Shim DIFs, a Metro Provider
Network (MPN) DIF interconnecting PE routers has been configured, as well as a Service
Provider Network (SPN) DIF extending the communication between HRs and the DC
BR, a DC Network (DCN) DIF inside the DC, a Home DIF inside the end-user home, and
an upper-level Video Streaming Application DIF supporting the delivery of the video
streaming sessions to end-users across the VLC VideoLAN Server, the DC BR and the HRs.
As VLC VideoLAN is an application that runs over IP, iporinad is required on the video
streaming session endpoints, to create IP point to point tunnels over the RINA network.

Two sets of experiments were conducted. The goal of the first experiment was to
evaluate the ability of RINA to guarantee QoS-specific requirements between the layers and
compare it with a case where it cannot be provided as in TCP/IP. The second experiment
focused on demonstrating a successful transmission of a HD video streaming in highly
congested network with perfect users’ QoE. More detailed explanation of these experiments
and the results obtained are reported in [83].

(a) (b)

Figure 7. The RINA experiment network: (a) The 10-node infrastructure; (b) The configuration of
the DIFs

7.3. QoS Support Evaluation

In this experiment, we compared two cases: in the first one, we have RINA with QoS
support in all layers (called full RINA); in the second one, the application-specific QoS
requests cannot cross layers, meaning the MPN layer is not able to allocate SPN flows with
given QoS differentiation (called TCP/IP-like).

In full RINA, QTA-Mux is thus available at both SPN and MPN DIFs. Four QoS
Cubes (A1, A2, B1, B2) have been considered in the MPN DIF, according to the 2 × 2
Cherish/Urgency (C/U) matrix depicted in Figure 8 (right). Please note here that the
C/U matrix describes the operation of the C/U multiplexer within the QTA-Mux policy,
able to enforce a bi-dimensional relative QoS Cube differentiation based on delay and loss
requirements. For instance, flows over the MPN DIF assigned to QoS Cube A1 will be
prioritised with respect to losses (i.e., they will be more cherished) and delay (i.e., they will
be served with higher urgency) requirements. In contrast, flows assigned to QoS Cube B1,
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for example, will still be prioritised with respect to losses, but un-prioritised with respect
to delay (i.e., they will experience, and thus should tolerate, higher delays).

Moving up to the SPN DIF, one additional QoS Cube has been considered to better dif-
ferentiate among heterogeneous application flows (i.e., with finer granularity). Specifically,
the five QoS Cubes offered here are: Gold, Silver, Bronze, Sensitive Best Effort (BE) and BE,
as described in the 3 × 2 C/U matrix depicted in Figure 8 (left). It is important to remark
here that flows assigned to QoS Cubes in the SPN DIF will have to be transmitted over A1,
A2, B1 and B2 flows across the MPN DIF. Therefore, an adequate mapping of SPN DIF to
MPN DIF QoS Cubes becomes crucial to provide the expected QoS to end-user applications.
In the ERASER scenario, both Gold and Silver flows in the SPN DIF are mapped to A1
flows in the MPN DIF, Sensitive BE flows to A2 ones, Bronze flows to B1 ones and, finally,
BE flows to B2 flows in the MPN DIF.

Figure 8. QoS Cubes defined in the SPN (left) and MPN (right) DIFs for full RINA scenario.

For the TCP/IP-like case, QoS class differentiation is available at the SPN layer only.
Therefore, five different QoS classes are still offered to the application layer but only one
class is available at the MPN layer, i.e., all five QoS classes are mapped to a single class in
the MPN layer, which performs a First-In First-Out (FIFO) default scheduling policy.

To compare these two scenarios, we injected synthetic application traffic with 5 differ-
ent specific flow characteristics specified in Table 4. In particular, we injected 5 flows of
each type between PE3 and HR2, thus allocating 25 bidirectional flows in total over the
SPN DIF. Finally, we set the total amount of these traffic to occupy an average of 70%, 80%
or 90% of the capacity of the IR1-IR2 link.

Table 4. Synthetic application traffic flow characteristics and QoS class assignment.

Application
Type

Traffic
Distribution

Details Requirements QoS Class

HD video
call

CBR CBR bitrate: 1.5 Mbps No delay
No losses

Gold

Online
gaming

ON-OFF ON-OFF periods: 4 s–2 s
CBR bitrate during ON: 4 Mbps

Avg. delay
No losses

Silver

VoIP ON-OFF ON-OFF periods: 3 s–3 s
CBR bitrate during ON: 64 kbps

No delay
Tolerant to losses

Sensitive BE

File
sharing

ON-OFF ON-OFF periods: 2 s–1 s
CBR bitrate during ON: 5 Mbps

Tolerant to delay
Avg. losses

Bronze

Interactive
traffic

Poisson Avg. bitrate: 2 Mbps No requirements BE

Table 5 presents all latency (minimum, maximum, average) and packet loss mea-
surements collected in both cases. Due to the lack of space, only measurements under
90% offered load are shown. First and foremost, full RINA seems to properly enforce
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QoS differentiation based on delay. Indeed, outcomes perceived by most urgent synthetic
traffic flows (HD Video Call, Online Gaming and VoIP) become quite constant, which does
not happen for the least urgent ones (File Sharing and Interactive traffic flows). As for
the experienced packet losses, full RINA allows for an effective differentiation, reaching
a maximum value of 1.42% for Interactive traffic. Packet losses are significantly lower,
around 0.00064%, for file-sharing traffic, with the same Urgency but a higher Cherish level.

In contrast, configuring the TCP/IP-like case neither succeeds in providing QoS
differentiation in terms of end-to-end latency nor in terms of packet losses. In fact, although
the applications may be able to request a given QoS differentiation at the edge of the
network (i.e., SPN), it cannot be guaranteed at the core (i.e., MPN). The final result is that
all types of applications experience similar loss and latency levels under every offered
load scenario.

Table 5. Latency and packet loss at 90% offered load.

Scenario Traffic Type Min. Latency
(ms)

Max. Latency
(ms)

Avg. Latency
(ms)

Avg. Packet
Loss

full RINA

HD video call 0.190095 1.0508 0.51765 0

Online gaming 0.195035 1.0397 0.51995 0

VoIP 0.184455 1.0033 0.51845 0

File sharing 0.18789 217.07 15.419 0.000643

Interactive 9.196455 198.04 14.492 1.418555

TCP/IP-like

HD video call 0.16851 245.21 18.3975 0.073067

Online gaming 0.17064 239.18 18.5635 0.102037

VoIP 0.155495 245.145 18.112 0.084521

File sharing 0.144350 240.945 18.232 0.101328

Interactive 0.15236 245.89 20.9095 0.094567

7.4. HD Video Streaming Demonstration

For this demo, we have injected the same synthetic application flows in the network
between PE3 and HR2, measured the carried average traffic between IR1 and IR2, and
limited the capacity of this link reproducing a 90% load scenario.

In this congested network scenario, we have established a HD video streaming session
over UDP from server node S to the client node C, transmitting a 1080p HD video file using
VLC VideoLAN v3.0.1. Setting up an IP tunnel interface using iporinad, we have been
able to transmit the IP traffic of the video streaming session over the HD Video Streaming
Application DIF.

In full RINA scenario, we have been able watch it with perfect QoE, highlighting the
adequacy of the RINA QoS support. In the TCP/IP-like case, QoE of the received client has
been significantly worse, observing that it starts and stops constantly (video stuttering),
also skipping a substantial number of frames each time it starts playing again. Both effects
seem caused by the high congestion existing in the bottleneck link between IR1 and IR2
nodes in the 10 node RINA scenario. In fact, the video streaming session increases previous
congestion even more, as this traffic around 10 Mbps was not considered when limiting
link capacity to reproduce the 90% offered load scenario.

8. Final Discussion and Conclusions

In this paper, we have reviewed the main achievements obtained in the ALLIANCE
project, a 45-month Spanish-funded national project started in 2018 and currently ap-
proaching its end. We have presented the novel architecture composed by 5 key blocks:
the monitoring element, the trust element, the SDN/NFV cross-layer domain, the RINA
domain, and the KDN orchestration layer. This project has focused on providing several
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solutions to different networking problems in this 5G/B5G era. Results obtained in each of
these blocks show superior performance with respect to the state of the art and motivate us
to continue with these solutions in our future activities.

For instance, we have investigated new modulation formats and new design tools for
both the access and the transport segments of a high-capacity and ultra-low-latency optical
infrastructure. We have proposed an enhanced fixed mobile convergence using a NOMA-
CAP wireless waveform with a single-carrier wired signal in a PON scenario. Although
in its infancy, RINA has showed the potentiality to be a viable solution for B5G. Security,
programmability, virtualisation and mobility are inherent part of the architecture by design,
largely simplifying the control and management tasks between different network segments
and operators. Indeed, we have showed in this work how it is possible in RINA to control
and guarantee the application-specific QoS requirements between different providers.

Although recent advances in AI have led to a new era of ML techniques and the
application of ML to networking is today a consolidated focus on the research community,
it has not fulfilled its high expectations yet. In fact, existing state-of-the-art proposals seem
unable to meet and outperform traditional approaches. In ALLIANCE, we have presented
our KDN framework, which provides a suitable and practical environment for large-scale
communications, as the network can learn from data by itself and provides efficient and
automatic answers to most of the possible events, in a simpler, smarter, safer, and speedier
way. For example, we have pioneered the first application of GNN to computer networks
enabling the prediction of precise per-flow performance metrics for known networks
and producing accurate estimates for unseen networks, outperforming state-of-the-art
schemes in terms of accuracy and cost. Another example is the MAPE approach, which
can autonomously maintain the desired QoS levels of the deployed services over the time,
even under adverse dynamic conditions. These noteworthy contributions pave the way for
an intelligent network knowledge plane which, making use of accurate and trusted data,
can provision end-to-end services, with QoS guarantees, across one (or several) underlying
Network Service Providers (NSPs).

Our future works will continue in this direction aiming at investigating new ways
to accelerate GNN inference via software and hardware techniques. The new intelligent
network knowledge plane based on accelerated GNNs will orchestrate and deliver service-
aware end-to-end network services across different NSPs with the capability to self-evolve
upon changes in the underlying programmable domains. In turn, NSPs also incorporate
AI within their domains, allowing automation of specific network functions (such as
self-orchestration) and the provisioning of intra-NSP services and resources as desired.

Regarding the SDN/NFV domain, we will investigate distributed AI functions at
network nodes and MEC elements to enforce self-optimisation and self-configuration
capabilities, as well as the new concept of AI-supported generic transceiver to adapt and
control the working conditions towards an optimal performance under diverse application
scenarios. Regarding the RINA domain, in future works we will focus on further improving
its capability of providing QoS guarantees by modelling the characteristics of the DIF layers
and feed GNNs with this information to obtain accurate performance metric predictions.
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AI Artificial Intelligence

ALLIANCE
Architecting a knowledge-defined 5G-enabled network infrastructure
toward the upcoming digital society

ASN Autonomous System Number
B5G Beyond 5G
BGP Border Gateway Protocol
C-RAN Cloud RAN
CA Certification Authority
CPRI Common Public Radio Interface
DL Deep Learning
DPI Deep Packet Inspection
DRL Deep Reinforcement Learning
DSP digital signal processing
e-CPRI Ethernet-based CPRI
GNN Graph Neural Network
HD High Definition
KDN Knowledge-Defined Networking
MCF Multicore Fibre
MEC Multi-access Edge Computing
ML Machine Learning
MPN Metro Provider Network
NFV Network Function Virtualisation
NOMA Non-orthogonal multiple access
NOMA-CAP NOMA with multiband Carrierless Amplitude and Phase
OBSAI Open Base Station Standard Initiative
PCS Probabilistic Constellation Shaping
RPKI Resource Public Key Infrastructure
PON Passive Optical Network
PoS Proof of Stake
PPP Public–Private Partnership
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Networks
RINA Recursive Inter-Network Architecture
RoF Radio-over-Fibre
RPKI Resource Public Key Infrastructure
RRH Remote Radio Head
SDN Software Defined Networking
SPN Service Provider Network
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