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Abstract: Ambient Intelligence (AmI) encompasses technological infrastructures capable of sensing
data from environments and extracting high-level knowledge to detect or recognize users’ features
and actions, as well as entities or events in their surroundings. Visual perception, particularly object
detection, has become one of the most relevant enabling factors for this context-aware user-centered
intelligence, being the cornerstone of relevant but complex tasks, such as object tracking or human
action recognition. In this context, convolutional neural networks have proven to achieve state-of-
the-art accuracy levels. However, they typically result in large and highly complex models that
typically demand computation offloading onto remote cloud platforms. Such an approach has
security- and latency-related limitations and may not be appropriate for some AmI use cases where
the system response time must be as short as possible, and data privacy must be guaranteed. In
the last few years, the on-device paradigm has emerged in response to those limitations, yielding
more compact and efficient neural networks able to address inference directly on client machines,
thus providing users with a smoother and better-tailored experience, with no need of sharing their
data with an outsourced service. Framed in that novel paradigm, this work presents a review of the
recent advances made along those lines in object detection, providing a comprehensive study of the
most relevant lightweight CNN-based detection frameworks, discussing the most paradigmatic AmI
domains where such an approach has been successfully applied, the different challenges arisen, the
key strategies and techniques adopted to create visual solutions for image-based object classification
and localization, as well as the most relevant factors to bear in mind when assessing or comparing
those techniques, such as the evaluation metrics or the hardware setups used.

Keywords: on-device; object detection; ambient intelligence; deep learning; convolutional
neural networks

1. Introduction

Today ambient intelligence (AmI) systems are experiencing an unprecedented growth
momentum essentially due to the thrust and fast development of two of their main enabling
technological forces: the so-called Internet of Things (IoT), focused on the exploitation
of networked sensor infrastructures to remotely gather data and enable data exchange
between several distributed ends and Artificial Intelligence (AI), more oriented to the use of
gathered data and the subsequent distillation of knowledge necessary to make AmI systems
adaptable and “aware” of their surroundings. Both fields, IoT and AI have experienced
outstanding progress almost side by side in the last two decades, a fact in no case fortunate,
but rather the result of a continuous interaction that is still going on nowadays.
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Methods and technologies developed within AmI under the IoT paradigm facilitate
communication and data exchange among the different devices that comprise the so-called
intelligent environments, enabling the creation and proper exploitation of new network
architectures based on connected sensing instruments and resource-constrained energy-
efficient end devices (i.e., embedded devices and mobile devices). Efforts made in that
regard have been primarily aimed both at the design and deployment of faster and more
efficient network infrastructures, as well as at the development of more accurate sensing
platforms and more powerful computing hardware, enabling the collection and storage
of large volumes of data and consequently, the support of increasingly sophisticated AI
techniques, from traditional machine learning (ML) methods, all the way to more recent
deep learning (DL) approaches.

Modern advanced algorithmic solutions can process sensed data and derive high-level
knowledge to allow intelligent computational systems to recognize and understand both
user activity and behavior, as well as the different phenomena around them to extract
context-tailored knowledge and consequently, provide more effective support. Artificial
visual perception techniques, particularly object detection methods, have emerged as some
of the most relevant enabling factors of that user-centered intelligence, providing a better
understanding of the environment and the entities in it, thus constituting a fundamental
pillar for vision tasks in the AmI context, such as object tracking [1] and human action
recognition [2,3], among others.

Despite the qualitative leap forward that the recent wide adoption of convolutional
neural networks (CNNs) brought accuracy-wise and the countless research efforts mobi-
lized in the last decade in that direction, object detection remains a highly complex problem.
CNNs, as a specialized type of DL networks, are computationally expensive [4,5] and re-
quire a large memory footprint. Although cloud platforms have shown to be scalable and
powerful enough to meet those needs, leveraging such infrastructures typically involves
deploying neural networks as remote services, demanding a virtually persistent connection
with the server-side. That usually leads to latency (network speed + processing time) and
security limitations that make those solutions unsuitable for conventional AmI scenarios
where the system response time must be as short as possible, or data privacy needs to
be ensured.

As an alternative to the cloud, many authors have focused their research on local
processing strategies in response to the limitations mentioned, resulting in a novel DL trend
called on-device machine learning. Such an approach pursues more compact and efficient
models directly deployable into IoT devices, reducing the server-side computational load,
the data traffic between endpoints, and the associated latency. Thus, it makes it possible to
incorporate a layer of intelligence into the different end devices in AmI systems and as a
result of the latter, it enables a more fluid experience better tailored to end users’ needs,
without compromising the privacy of their data.

While AmI is a mature discipline that has attracted in the last fifteen years a great deal
of attention of scientists and practitioners from various fields, such as human-computer
interaction (HCI), AI, and communication networks, the search for on-device lightweight
detection solutions is a still-emerging area of study that has barely been around for five
years. Both of them, however, have yielded a vast scientific production, as evidenced by
the important number of surveys currently present in the related literature. Specifically
concerning AmI it is possible to find a wide range of studies: (i) papers of a general nature
that overview the field, introducing key concepts, common use cases, and state-of-the-art
techniques [6–11]; (ii) works circumscribed only to a subset of relevant related matters, such
as security and privacy [12–15], sensing, computing, and networking technologies [16,17],
as well as ethical implications and social issues [18], and (iii) research focused on partic-
ular application domains (e.g., architecture [19], workplaces [20], educational environ-
ments [21,22], and smart cities [18]), with healthcare being the one that has shown greater
treatment [12,23–29]. For its part, the on-device object detection corpus is limited to litera-
ture published over the last five years (2017–2021). It encompasses (i) surveys that cover
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the on-device ML field from a generic perspective following a schema similar to the one
indicated for AmI surveys [30–34], (ii) works exclusively circumscribed to the object detec-
tion problem [35–41], and last but not least, (iii) research on problem-specific matters, such
as good-performant network architectures [37,39], appropriate training strategies [36,39],
and techniques to enhance the representational power of neural networks [40].

Beyond the works referenced, the intersection of AmI and AI has already resulted
in a substantial number of review articles [17,42–45]. They summarize the progress both
fields have experienced jointly, detailing the several approaches explored for creating
intelligent and context-aware environments (e.g., human activity and behavior recognition
techniques [44], and classification methods for more accurate disease prediction and di-
agnosis [45]). Within such body of works, although some papers can be considered part
of the on-device literature since they analyze different IoT communication architectures,
as well as hardware technologies for local data processing, there is not any equivalent
yet dealing either with the algorithmic part or, in any case, providing an overview of the
advanced sensing techniques required for the implementation of the intelligence, context
awareness, user adaptability and user privacy preservation principles that, according to
Augusto et al. [46], should drive the building process of any AmI system.

To fill that gap, this paper reviews some of the most relevant research works re-
cently produced in different AmI application areas of interest, aimed at the design and
development of efficient, compact, locally executable, and consequently, privacy- and
data security-friendly object detection frameworks. In particular, this work is exclusively
focused on CNNs, a deep learning algorithm family that has shown to be the current
state-of-the-art in relation to the target problem [36,38,39]. More specifically, the paper
analyzes and provides the reader with a structured presentation of the most salient related
approaches and techniques, giving details on both the different challenges or issues that
the authors in the field have faced and the various CNN architectures exploited for that
purpose, also discussing the specific strategies or approaches adopted and the different
configurations or frameworks used to evaluate their performance.

The scope of the study is restricted to CNN networks conceived according to the
on-device paradigm. The paradigm itself and its relatively short lifetime represent a highly
constraining filtering criterion on the source search process carried out. MobileNets’ [47]
year of publication (2017) was taken as the primary point in time reference, given that, to
the best of the authors’ knowledge, it is widely considered the very first compact CNN
architecture explicitly designed to be deployed on low-powered devices, in particular, on
mobile devices. Thus, the survey covers the major progress made in that direction in the
last five years, only considering still image processing techniques and being restricted
to application domains and use cases traditionally associated with the AmI field drawn
from existing literature, such as [42,43]. Domain names together with terms, such as
“on-device”, “object detection”, “convolutional neural networks” or its acronym “CNN”
were used as keywords in the search for pertinent resources, being such search performed
using the Google Scholar engine. The list of results originally obtained was refined later
on through an iterative process, discarding research papers outside beyond the scope
previously outlined, initially after merely reviewing the abstract and in a subsequent step,
after an in-depth reading of the work.

The rest of the document is organized as follows. Section 2 provides context by charac-
terizing the most relevant studies in the field. Section 3 analyzes the different lightweight
detection frameworks conceived, detailing the different strategies or approaches adopted,
as well as the specific challenges or typical problems addressed in such context. Section 4
discusses the factors and metrics considered when evaluating the performance of the ap-
plied solutions or comparing them with existing alternatives. Finally, Section 5 summarizes
the observations drawn from the state of the art and identifies research challenges to be
addressed in future work.
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2. On-Device Object Detection for Context Awareness in Ambient
Intelligence Systems

Following a top-down approach, we start the review by first creating a taxonomy of
the main AmI application domains where lightweight sensor-based solutions have been
recently explored for building context-aware intelligent systems. Such a type of system
can sense the environment and as a result, both acquire static images and record videos.
Thanks to an “augmented” visual perception layer (that assembles at the same level what
is traditionally known as the perception layer in IoT, together with the application layer),
they can successfully process such input data and extract the knowledge required to better
understand the surroundings, as well as to interact with the entities (including users) that
exist there in a more effective manner. The ability to detect such entities without offloading
computation in external third-party systems, endows AmI solutions with great flexibility
and versatility, as evidenced by the significant number of domains and applications where
on-device object detection has been explored, shown in Table 1.

It is possible to create a first classification in which we can distinguish, on the one
hand a number of general-scope works [48–66] and on the other hand a larger group
of publications that present domain-specific research [67–110]. The first group includes
studies that, far from focusing on a particular application area, propose more open re-
search involved in the search for efficient and lightweight detection solutions, oriented
to AmI scenarios. Overall, authors pursue advances in object detection within the on-
device paradigm, trying, in general terms, to satisfy the requirements that the imple-
mentation or deployment of state-of-the-art detection techniques in resource-limited
devices inevitably entail, but putting particular interest in, if not achieving real-time
performance [49,50,54,64,66], obtaining at least an adequate trade-off between speed and
accuracy [52,56,57,60,65]. The experimentation proposed along those lines is typically
contextualized in a given AmI scenario or application. Such contextualization, however,
has nothing to do with addressing the specificities of an AmI area or sub-field. It is used
instead for practical purposes, just as a use case for quantitatively analyzing the perfor-
mance of the algorithms and methods devised, as well as for assessing the feasibility of
their deployment given the constraints of the hardware platforms used; merely having im-
plications on the datasets (on the classes or object types considered) exploited for training,
fine-tuning, and testing the CNNs designed. There exists a prevalence in that regard, of
widespread and cross-domain AmI applications on mobile or embedded devices, such as
face detection [48,58,60–62] (biometric security, surveillance), and vehicle and pedestrian
detection (security, surveillance, autonomous vehicles, smart cities) both in cars [56,64,65]
and unmanned aerial vehicles (UAV) [49,52–55,57,59].

Table 1. Recent research works exploring the use of on-device object detection techniques for building AmI applications.

Work Year Application Domain Vision Task It
Supports High-Level Requirements

[48] 2017 Face detection Generic –
• Deployment in resource-limited devices

[67] 2018 Human detection Surveillance –
• Real-time execution

[68] 2018 Landing marker
detection from UAV

Intelligent
transportation – • Small target detection

[69] 2018 Vehicle detection
from UAV

Intelligent
transportation –

• Real-time execution
• Energy efficiency

[70] 2018 Object detection
using depth imaging Surveillance –

• Real-time execution
• Privacy awareness

[71] 2018 Smile detection Human emotion
recognition –

• Real-time execution
• Deployment in resource-limited devices
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Table 1. Cont.

Work Year Application Domain Vision Task It
Supports High-Level Requirements

[72] 2019 Waste detection Smart cities

• Distance to
target
estimation

• Target size
estimation

–

[49] 2019 Vehicle detection
from UAV Generic – • Real-time execution

[50] 2019 Generic object
detection Generic – • Real-time execution

[51] 2019 Face detection Generic –
• Trade-off between accuracy and model

size

[52] 2019
Vehicle and
pedestrian detection
from UAV

Generic –
• Real-time execution
• High accuracy

[53] 2019 Object detection from
UAV Generic – • Energy efficiency

[54] 2019 Vehicle detection
from UAV Generic – • Higher execution speed

[55] 2019 Object detection from
UAV Generic – • Deployment in resource-limited devices

[73] 2019 Disease symptoms
detection Healthcare – • Deployment in highly portable devices

[74] 2019 Disease symptoms
detection Healthcare – –

[56] 2019 Vehicle and
pedestrian detection Generic –

• Real-time execution
• High accuracy

[57] 2019 Object detection in
UAV imagery Generic –

• Real-time execution
• High accuracy

[75] 2019 Human detection Surveillance – • Low-cost infrastructure

[76] 2019 Fruit detection Smart farming
• Crop-load

estimation • Real-time execution

[77] 2019
Face detection +
Mobile phone
detection

Intelligent
transportation

• Driver
distraction
detection

• Robustness

[58] 2019 Face detection Generic – • Better model generalization

[78] 2019 Open and closed eyes
detection

Intelligent
transportation

• Driver
drowsiness
detection

• Real-time execution
• High accuracy

[79] 2019
Vehicle and
pedestrian detection
from large trucks

Intelligent
transportation –

• Real-time execution
• Robustness

[80] 2019 Plant disease
detection Smart farming – –

[59] 2019 Object detection in
UAV imagery Generic – • High accuracy

[81] 2019 Object detection in
indoor environment Robotics – • Robustness

[82] 2019 Vehicle detection Intelligent
transportation

• Traffic flow
estimation

• Trade-off between accuracy and
execution speed



Appl. Sci. 2021, 11, 9173 6 of 34

Table 1. Cont.

Work Year Application Domain Vision Task It
Supports High-Level Requirements

[60] 2019 Face detection Generic
• Video face

analysis
• Trade-off between accuracy and

execution speed

[83] 2019 Ship parts detection Smart logistics
• Ship’s identity

classification • Robustness

[61] 2019 Face detection Generic –
• Trade-off between accuracy and model

size

[84] 2019 Obstacle detection in
unmanned airships Defense –

• Trade-off between accuracy and
execution speed

[62] 2020 Face detection Generic – • High accuracy

[63] 2020 Ordinary object
detection Generic – • High accuracy

[85] 2020 Eye detection Intelligent
transportation

• Driver
drowsiness
detection

• Real-time execution

[86] 2020 Ship detection in
radar images Defense – • Deployment in resource-limited devices

[87] 2020 Fruit detection Smart farming
• Crop-load

estimation • Real-time execution

[88] 2020 Obstacle and object
detection Healthcare

• Distance to
target
computation

• Navigation
assistance

–

[89] 2020 Human activity
recognition Surveillance – • Real-time execution

[90] 2020 Human detection Surveillance – –

[91] 2020 Vineyard trunks
detection Smart farming – • Real-time execution

[92] 2020 Vehicle and
pedestrian detection

Intelligent
transportation –

• Real-time execution
• High accuracy

[64] 2020 Vehicle and
pedestrian detection Generic – • Real-time execution

[93] 2020 Livestock (pigs)
monitoring Smart farming

• Livestock
counting

• Abnormalities
detection

• Trade-off between accuracy and model
size

• Low-cost infrastructure

[94] 2020 Dynamic targets
detection Robotics • Visual SLAM • Real-time execution

[95] 2020 Human detection Surveillance –
• Trade-off between accuracy and model

size

[96] 2020 Vehicle detection Intelligent
transportation – • Real-time execution

[97] 2020 Wound localization Healthcare

• Wound
segmentation

• Wound
classification

–
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Table 1. Cont.

Work Year Application Domain Vision Task It
Supports High-Level Requirements

[98] 2020 Drone detection Surveillance –
• Trade-off between accuracy and model

size

[99] 2020 Barcode detection Smart logistics
• Barcode

scanning
• Energy efficiency
• High accuracy

[100] 2020 Waste detection Smart cities – • High accuracy

[101] 2020 Bus passenger
detection Smart cities

• Passenger
counting • Real-time execution

[65] 2020 Vehicle and
pedestrian detection Generic –

• Real-time execution
• High accuracy

[102] 2020 Vehicle detection Intelligent
transportation –

• Real-time execution
• High accuracy

[103] 2020 Fruit detection Smart farming
• Crop-load

estimation • Real-time execution

[104] 2020
Human action
detection from
autonomous drones

Surveillance – –

[105] 2020 Vehicle and
pedestrian detection

Intelligent
transportation –

• Real-time execution
• High accuracy

[106] 2020 Traffic sign
recognition

Intelligent
transportation – • Real-time execution

[107] 2020 Plant disease
detection Smart farming –

• Real-time execution
• High accuracy

[108] 2020 Garbage truck
supervision Smart cities – • Real-time execution

[66] 2020 Calibration of object
tracking systems Generic • Object tracking • Real-time execution

[109] 2020 Face mask
monitoring Surveillance – • Real-time execution

[110] 2021 Navigation in open
surgeries Healthcare

• 3D object
localization

• Real-time execution
• High accuracy

Furthermore, as far as domain-specific studies are concerned, it is possible to catego-
rize them into five groups, intelligent transportation [68,69,77–79,82,85,92,96,102,105,106],
surveillance [67,70,75,89,90,95,98,104,109], smart farming [76,80,87,91,93,103,107], health-
care [73,74,88,97,110] and smart cities [72,100,101,108], all of them, scenarios where constant
and real-time object detection is necessary for enabling context-awareness on end devices.
While further information on each of those domains will be incorporated into the discussion
in successive paragraphs to draw a clearer picture, it should be noted first that additional
application areas, albeit almost residually with only one or two related works identified,
have emerged in the analysis: (i) robotics [81,94], a domain where vision represents one
of the most important communication channels with the environment, and where object
detection has traditionally shown to be critical for the perception, modeling, planning, and
understanding of unknown terrains [94]; (ii) defense, where object detection constitutes a
major factor for controlling UAVs [84] and detecting ships in radar images [86]; (iii) smart
logistics, with two distinct but equally representative examples of the use of sensing tech-
nologies, one on embedded platforms (in situ detection and recognition of ships for more
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efficient port management) [83], and the second one on mobile devices (barcode detec-
tion) [99] and finally, (iv) human emotion recognition based on facial expression detection,
as reported in [71]. Once the less representative options are covered, the remainder of this
section will deal with the most common domains that have emerged in the analysis.

Intelligent transportation systems (ITS) have lately attracted considerable research
interest driven by the modernization of transportation infrastructures and the develop-
ment of autonomous driving and its supporting technologies. The reviewed AmI liter-
ature is good evidence of that. Although the works specifically identified along those
lines [64,68,69,77–79,82,85,96,102,105,106] cover only a limited subset of the broad spec-
trum of applications resulting from the technological progress in the field, they provide
good intuition on the relevance of object detection as a key factor for making both vehicles
and infrastructures safer, more efficient, comfortable and reliable. In particular, in-vehicle
ITS systems [64,77–79,85,96,102,105,106] (commonly known as Advanced Driving Assis-
tance Systems or ADAS) stand out in the analysis as the central focus of interest. Such
systems embed detection solutions conceived as safety mechanisms for monitoring both
driver operations [77,78,85], preventing distractions, and ultimately, the loss of control
of the vehicle, as well as on-road events [64,79,96,102,105,106], being the latter mainly
implemented nowadays in the form of a warning instrument triggered in situations of
potential collisions [79,96] or infractions [106], but also designed towards decision-making
support in future autonomous vehicles [64,102,105]. For its part, regarding conventional
ITS alternatives [68,69,82], the different approaches identified are aimed at road traffic
control and early response to emergencies, applications in which the use of UAVs has been
intensively explored [68,69] due to their capabilities to record and communicate informa-
tion in a non-intrusive way, as well as to recognize areas inaccessible by other means. A
key challenge in this context lies in UAVs’ built-in computing components since they have
to both process the acquired images with almost no latency to make critical navigation
decisions [68] while consuming as little power as possible to minimize its impact on the
battery life and hence on the system’s flight time [69].

As with ITS, surveillance systems have similarly undergone a dramatic development,
pushed by the advancement of information and communication technologies. Like the former,
they require a real-time capacity to perform key tasks, such as monitoring and target tracking.
In this regard, the studies analyzed within the domain [67,70,75,89,90,95,98,104,109] reveal
a large body of works focused on the exploitation of efficient CNNs for human detection
in a wide range of scenarios: street monitoring in urban areas [67], home surveillance [75],
subway [95] and railway security [90], people search and rescue in natural disasters [104],
and recognition of specific human behaviors [89]. Besides low latency, there is a couple
of additional factors to be considered when designing such systems that have emerged
in the review: privacy [70] and cost [75]. Individuals’ privacy and anonymity should be
a central tenet of surveillance systems. However, RGB cameras commonly used for such
purposes are too invasive, and for that reason, we see how authors, such as Mithun et al. [70]
explore the exploitation of alternatives, such as raw depth data. Furthermore, surveillance
has traditionally been extremely important for business and home security, and while there
is a decent number of technological solutions in the market, most of them rely on expensive
proprietary cameras. Low-cost IoT hardware platforms, as suggested by [75], might be a
perfectly valid approach to building solutions tailored to more austere budgets. Surveillance
and development of low-cost systems can be also observed in smart farming literature,
the third of the five main AmI domains identified. In particular, both of those elements
are present in Seo et al.’s work [93]. Detection frameworks are devised to automate pig
monitoring, a use case where implementing solutions with low cost is tremendously
important given the potential need for large-scale deployment of such systems and the
more than likely high turnover rate due to their rapid physical deterioration. Nevertheless,
except for Seo et al.’s work, the different observed approaches are all related to activities
of the agricultural sector, a context where detection techniques stand out as an effective
method to recognize plant diseases [80,107], as well as an essential service integrated into
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the control software of agricultural robots [76,87,91,103]. Specifically regarding the last
point, leveraging mobile agricultural robots makes it possible to automate a considerable
part of traditional farmers’ tasks, eminently repetitive, such as fruit counting [87,103],
harvesting, and picking [76]. Fruit detection, as well as the detection of any other typical
element in such contexts like trunks or branches, is exploited not only for the indicated
purpose but also to provide the robot with information on the environment necessary to
successfully navigate through the crop fields [91], often irregular or located in areas where
the GPS signal is not reliable enough.

Finally, to conclude this first analysis focused on the current landscape of object-
detection-based AmI applications for low-power devices, we add to the discussion the two
application domains not covered yet from the group of five with greater representation
in the study: healthcare [73,74,88,97,110] and the so-called smart cities [72,100,101,108]. In
regard to healthcare, on-device detection techniques are shown to be effective in extending
healthcare spaces beyond the traditional scenario of closed clinical environments, bringing
the capabilities of (i) disease diagnosis [73,74], (ii) wound or injury zone delimitation [97]
and (iii) patient monitoring and support [88], (available only in typically complex and
expensive configurations until recently) to low-cost portable devices. Object detection,
however, is not the final intended application. Detection solutions are conceived instead as
enabling services for more sophisticated vision tasks, as shown in Table 1. In addition, as
far as smart cities are concerned, detection mechanisms are exploited to provide support
to more complex tasks as well, but, in this particular case, seeking more resource-efficient
management in everyday services in urban areas, such as public transportation [101] and
garbage collection [72,100,108].

3. Compact and Efficient Vision-Based Detection Frameworks

Nowadays, whether we tackle the cross-domain on-device space involving compact
and efficient solutions or more specific research focused just on the current AmI land-
scape, dealing with the design of vision-based object detection frameworks involves the
discussion of CNN architectures. While statistical classifiers, such as Support Vector Ma-
chines (SVM) [111], Random Forest [112], Adaboost [113] and classical neural networks
were for many years the computer vision (CV) standard and played a dominant role in
object detection tasks, the advent of DL techniques has unquestionably represented a step
forward compared to traditional detectors. The exploration of new approaches and the
design of new CNN architectures, capable of automating the extraction of representative
features, boosted by challenges, such as Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) [114] and Pascal Visual Object Classes (VOC) [115], has resulted in a plethora of
novel methods with increasingly higher performance in visual recognition tasks over the
last decade, producing more robust frameworks capable of addressing object localization
and classification tasks in highly complex scenarios.

Such challenges and the tremendous interest generated in the scientific community
have pushed CNNs to an unprecedented evolution. Such progress, however, has led to
increasingly complex architectures, as indicated in the introduction of the paper. Models,
such as VGG-16 (138 M parameters) [5] or RetinaNet (built on ResNet-152 [116], with 60 M
parameters) [117], while achieving high levels of accuracy, are generally based on bulky
structures and multidimensional parameter spaces, resulting in a high volume of both
computed intermediate products and output values. Towards a response to the reality
described, a fair number of investigations have been focused on producing more efficient
and effective detection frameworks during the last five years. The reduction of the computa-
tional cost of traditional detectors and the preservation of accuracy have driven the solution
search process carried out by CV experts (both scientists and practitioners), resulting in
a fair number of techniques and methods that, built upon existing restrained-complexity
CNNs (e.g., SSD [118], the YOLO family [119–122], and Faster R-CNN [123]), have shown
promising performance in detection tasks and have also proven to be applicable and rele-
vant in different disciplines, including AmI. With the support of Tables in 3, we provide an
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overview of the various detection frameworks devised within AmI along the described
lines, covering both architectural details and traditionally related challenges together with
the most relevant solutions explored.

3.1. Architectures

Intuitively, upon a first look at the data reported in Table 2, it is possible to observe
the predominance of one-stage detectors (39 out of a total of 42) over the two-stage alter-
native [83,95,99]. Two-stage and single-stage detection frameworks (the latter also called
unified detectors) are the two main categories typically considered for the classification of
modern object detection pipelines. Two-stage detectors have typically featured high accu-
racy in both target localization and classification tasks thanks to the exploitation of a Region
Proposal Network (RPN) [123] dedicated to producing Region of Interest (RoI) proposals,
i.e., candidate object bounding boxes. However, region proposal generation has shown to
be an insurmountable bottleneck when trying to produce less costly models. Therefore,
many authors have focused their research on exploring unified detection strategies, seeking
more efficient solutions. Such an approach models object detection as a single regression
problem, addressing in a single step the prediction in the form of bounding boxes of both
the areas where potentially interesting objects might be found (localization) and the various
classes they belong to (classification). The result is a simplified and smaller architecture,
conceived as a single feedforward neural network, suitable to derive high-inference-speed
detection models.

Table 2. Summary of the compact CNN-based object detection frameworks used in the research works considered.

Detector’s Name Framework
Type Baseline Backbone Pre-Training Enhancement Emphasis Used in

– One-stage Tiny YOLOv2 Darknet-19 – – [110]

– One-stage Tiny YOLOv3 Darknet-19 Detector
• Higher robustness
• Higher accuracy [58,96,97,103,108,109]

– One-stage YOLOv3 Darknet-53 Backbone – [66,77,106]

– One-stage YOLOv3 MobileNetV2 Detector
• Lower memory

overhead [107]

FRDet One-stage YOLOv3 Custom –

• Higher robustness
• Higher accuracy
• Lower memory

overhead
[105]

– One-stage SSD MobileNetV1 Detector
• Higher robustness
• Higher accuracy [63,65,72,75,78,80,88,91]

PPt-YOLOv3 One-stage Tiny YOLOv3 Darknet-19 –
• Higher robustness
• Higher accuracy [102]

– One-stage SSD MobileNetV2 Detector – [65,87,100]

M7 One-stage Tiny YOLO – –
• Lower overhead
• Lower memory

overhead
[101]

Tiny-BDN Two-stage Faster-RCNN VGG –
• Lower overhead
• Lower memory

overhead
[99]

TIB-Net One-stage Extremely Tiny
Face Detector – –

• Higher robustness
• Higher accuracy [98]
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Table 2. Cont.

Detector’s Name Framework
Type Baseline Backbone Pre-Training Enhancement Emphasis Used in

Tiny MetroNet Two-stage MetroNet SqueezeNet Backbone
• Lower overhead
• Lower memory

overhead
[95]

– One-stage YOLOv4 – – – [94]
Embedded
PigYOLO One-stage Tiny YOLO – • Higher robustness [93]

– One-stage SSDLite MobileNetV3
Small – • Higher accuracy [64]

Tiny Gaussian
YOLOv3 One-stage Tiny YOLOv3 Darknet-19 – • Higher accuracy [92]

YOLOv3-PDN One-stage YOLOv3 Darknet-53 –
• Lower overhead
• Lower memory

overhead
[90]

T-TINY-YOLO One-stage Tiny YOLO – –
• Lower overhead
• Lower memory

overhead
[89]

Lira-YOLO One-stage YOLO LiraNet – • Lower overhead [86]

Fast Eye-CPU One-stage – – – • Lower overhead [85]

Multi-Task
FaceBoxes One-stage FaceBoxes – –

• Higher robustness
• Higher accuracy [62]

NYOLO-tiny One-stage Tiny YOLOv3 Darknet-19 –
• Higher robustness
• Higher accuracy [84]

Extremely Tiny
Face Detector One-stage – – – • Higher accuracy [61]

DCNet Two-stage – – – • Higher robustness [83]

EagleEye One-stage – VGG – – [60]
Concatenated

Feature Pyramid
Network

One-stage YOLOv3 – Detector
• Higher robustness
• Lower overhead [82]

– One-stage YOLOv2 Darknet-19 Detector • Higher robustness [81]

– One-stage SSD – Detector
• Lower overhead
• Lower memory

overhead
[79]

M3 One-stage YOLO9000 – Detector • Higher accuracy [76]

Modular Feature
Fusion Detector One-stage – – – – [56]

– One-stage SSDLite MobileNetV2 –
• Lower overhead
• Lower memory

overhead
[74]

Kankanet One-stage SSD MobileNetV1 – – [73]

SlimYOLOv3-
SPP3 One-stage YOLOv3 – Detector

• Lower overhead
• Lower memory

overhead
[55]

UAV-Net One-stage SSD ZynqNet – • Higher robustness [54]
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Table 2. Cont.

Detector’s Name Framework
Type Baseline Backbone Pre-Training Enhancement Emphasis Used in

– One-stage SSD PeleeNet –
• Higher robustness

[52]

DupNet-Tinier-
YOLO One-stage IFQ-Tinier-YOLO – – • Higher accuracy [51]

– One-stage Tiny YOLO – Backbone
• Lower overhead
• Lower memory

overhead
[50]

ShuffleDet One-stage SSD ShuffleNet Backbone • Higher robustness [49]

– One-stage SSD VGG Detector
• Lower overhead
• Lower memory

overhead
[70]

DroNet One-stage TinyYOLO – – – [69]
LCDet One-stage YOLO – Detector – [48]

D-RFBNet300 One-stage RFBNet300 MobileNetV1 Backbone • Higher accuracy [59]

– One-stage – MobileNetV1 Backbone – [71]
LightDenseYOLO One-stage YOLOv2 LightDenseNet Backbone – [68]

The unified approach, crystallized in compact architectures considered a standard
nowadays, such as SSD [118] and YOLO in its different versions [119–122], constitute the
foundation on which modern lightweight object detection architectures have been built in
AmI [48,49,52,54,55,63,65,66,68,70,72,73,75,77–82,86–88,90,91,94,100,105–107]. Such com-
pact architectures, however, resulted from an eminently moderate structural optimization
in a first attempt to make CNNs more manageable, prioritizing accuracy preservation over
structural reduction and inference speed increase. Thus, although it is possible to state
that those detectors represented an effective evolution towards more efficient techniques,
especially if we compare them with two-stage frameworks, they were still insufficient
for running such a type of detection system on limited-resource devices mainly due to
their considerable computational complexity and size. It has not been until recently when
works within the on-device paradigm have actually delved into the compression and
simplification of detection models and their underlying architectures, achieving a more
pronounced decrease of both the number of parameters (and accordingly, the storage
required) and the inference time of the detectors produced. Such research has resulted in
significantly more efficient detection frameworks, making them directly deployable on
low-power and low-memory hardware platforms but, on the flip side, causing a dramatic
accuracy degradation. Despite the latter, these novel models, e.g., Tiny YOLO [119,120]
and SSDLite [118], are already considered standard benchmarking options when designing
new lightweight detectors in AmI [50,58,64,69,74,84,89,92,93,96,97,101–103,108–110].

The framework type constitutes the master blueprint adopted to build the detector.
The building process is driven by the different design decisions aimed at modeling and
tailoring the underlying CNN to the specific problem addressed. Such tasks can be tackled
by directly reusing an existing standard network or designing a new detection pipeline
from scratch. The utilization of off-the-shelf CNNs, whose implementation and weights
are available in ML development frameworks, such as TensorFlow [124] and PyTorch [125],
simplifies the development of new detection solutions considerably.

In this regard, pre-trained detectors can be either exploited right away or, on the
contrary, be tuned for a different second target task (typically, more specific) through
transfer learning. This transfer learning approach enables reusing already existing mod-
els [48,55,63,70,75,76,78–82,87,91,100,103,107], previously trained on public standard object
detection benchmarks, such as Pascal VOC [115] (used in [48]), and Microsoft COCO [126]
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(used in [63,75,78,80,91,107]). Still, as shown in Table 2, it is a common practice as well to
exploit not the entire detection model but merely the backbone [49,50,59,68,71,95,106,109],
being this a CNN embedded in the detection framework, responsible for extracting from
some given input images the different feature maps subsequently exploited by the deeper
layers of the detector for predicting the several classes and bounding boxes produced
as output. In any case, either globally or just circumscribed to the backbone, weights
are initialized with values taken directly from pre-trained models, and then, through a
fine-tuning process, the detector is re-trained on an application-specific dataset in order to
adjust it to the specific use case to be addressed.

As reflected in the “Baseline” column of Table 2, leaving aside some few
works [56,61,83,85] that have alternatively explored the creation of new architectures
from scratch, the most common approach along those lines involves, however, using an
existing architecture as a baseline and then either replacing the backbone [49,52,54,86]
or introducing changes on the detector’s architecture or the training process parame-
terization [55,58,62,69,84,89,90,93,96,98,99,101,104,108,110]. Such tweaks and their focus,
as seen if the “Baseline” and “Enhancement Emphasis” columns are analyzed jointly,
are closely related to the very nature of the detection framework adopted as a refer-
ence. Both the “classical” moderate single-stage detection frameworks and the mod-
ern on-device models constitute a valuable starting point that simplifies and speeds
up the creation of the new detectors. However, overall, they do not represent proper
solutions for developing real-world AmI applications in austere technological environ-
ments. In particular, the more accuracy-preserving approaches, as just pointed out, fall
short when it comes to optimizing the underlying network architecture and therefore,
require efforts mainly aimed at minimizing the memory and computational resources
demanded [48,55,70,79,82,85,86,90,107]. For its part, lightweight detectors are the result of
more aggressive compression and optimization strategies. A two-fold effort is required to
move towards a better speed-accuracy trade-off, on the one hand exploiting techniques
capable of mitigating the accuracy degradation caused by the use of compact architectures,
and on the other hand with approaches producing more expressive networks with greater
detection capacity [51,58,59,62,64,76,84,92,93,96–98,102,103,108,109].

Furthermore, in addition to the dual path of improvement indicated, there is a third
line of further refinement that has pursued the creation of more robust
detectors [49,52,54,58,62,63,65,72,75,78,80–84,88,91,93,96–98,102,103,105,108,109] no mat-
ter what their nature is. Overall, CNNs have typically shown limitations in generalizing
their predictions beyond the training domain or the distribution of the used dataset. Con-
sequently, tasks considered reasonably straightforward for humans, such as detecting faces
in the wild (with different head poses and face expressions), might be very challenging
for vision-based detectors. Generalization and robustness against variations have been
traditionally relevant in object detection, but they have shown to be even more sensitive
for on-device detection solutions conceived for AmI. On the one hand as made explicit
in Section 2, AmI is a domain that covers a fair number of applications where a bad-
performant detector can have actual implications or impact on the physical integrity, safety,
and wellbeing of the users (e.g., in autonomous driving [92,102,105]), and even on their
personal finances (e.g., in smart farming [76,80,87,91,93,103,107]); for that reason, detection
systems must ideally ensure consistency in their behavior. On the other hand, on-device
detection solutions are, by definition, lightweight DL models directly deployable on hard-
ware platforms with limited resources, a category where we can find portable devices, such
as smartphones and machinery with mobility, such as robots and UAVs. Those devices
have been reportedly used and proved to be helpful in different real-world scenarios where
there are good chances of having dynamic and challenging conditions that might alter how
targets look, contributing in that way to higher intra-class variability.

Below we list, in decreasing order of occurrence, the various factors pinpointed in
the AmI papers analyzed as usual obstacles against detection robustness: (i) illumina-
tion [58,65,75,78,80,81,83,103,105,109], that has an impact on images at the pixel level,
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altering object colors and even producing sense of occlusion in shadowed areas; (ii) total
or partial target occlusion [58,80,81,83,103], including also object overlapping and trun-
cation [102]; (iii) viewpoint [63,65,75,80,84], which makes a single object look completely
different depending on the angle of view; (iv) weather conditions [83,84,105,109], that
lead to illumination variations in the scene, also encompassing phenomena (e.g., fog and
rain) that cause distortion or blurring effects on the acquired image; (v) object pose and
orientation [58,78,109], usually upward in the real world, but not necessarily so in im-
plementations, such as mobile augmented reality applications [63], and (vi) background
complexity [65,83,98], which usually arises in crowded or cluttered scenes and makes it
difficult to separate targets located in the foreground from non-relevant objects located in
the background.

3.2. Challenges and Explored Approaches

Environment variation is still one of the common challenges that need to be addressed
when developing detectors, and so they are when addressing the object detection problem
within AmI while pursuing more efficient and compact solutions, as we have just seen.
Although a fair number of such conditions have been successfully modeled by gathering
representative samples as part of the datasets used for training the detection models, it is
impossible to anticipate all the conditions that can potentially occur in the wild. Those con-
text variations represent, however, only one of the various challenges observed in the AmI
literature reviewed. Table 3 presents all the challenges resulting from the analysis, together
with the different strategies or methods also noted. As far as the challenges are concerned,
it is possible to categorize them into three distinct groups: AmI-related challenges, a group
that comprises the environment-variation-specific issues we mentioned early on, but also
both intra-class variation and scale variation challenges; performance objectives inherent
to the on-device paradigm, such as model size and computational load decrease, as well as
accuracy boost and finally, data-specific issues, including scarcity and low quality, both of
them classical DL challenges that arise when dealing with specific applications or domains.
In addition, concerning the various solutions reported, we can group them into four cate-
gories or approaches: (i) design of novel CNN-based architectures, (ii) model compression
and acceleration, (iii) improved ad hoc datasets creation, and (iv) hyperparameter tuning.
Below we discuss those categories in greater detail, providing information on the specific
techniques and methods explored, putting the focus on the potential benefits that have
contributed to addressing the challenges previously mentioned effectively.

Table 3. Summary of the challenges faced in the reviewed studies and the explored strategies when developing on-device
detection frameworks.

Model Size Computational
Burden Accuracy Environment

Variation Scale Variation
Intra-
Class

Variation

Data
Scarcity

Low
Quality

Data

Lighter backbone [49] [49] – – – – – –
More efficient

operations [60,67,101] [49,60,67,82,101] – – – – – –

Smaller conv kernel
size [95] [95] – – – – – –

Multiple conv kernel
sizes – – – – [95] – – –

More efficient
modules [95,105] [95,105] – – – – – –

FC layers replaced
with conv layers [95] [95] – – – – – –

Smaller input size [50,90] [50,90] – – – – – –
Larger input size – – [69,102] – [102] – – –
Fewer channels [53,86,90] [53,86,90] – – – – – –

Higher # channels – – [102] – – – – –
Fewer kernels [50,69,89,95] [50,69,89,95] – – – – – –

Shallower network [76,79,82] [76,79,82] – – – – – –
Deeper network – – [84,96,107] – – – – –

Early downsampling [60] [60] – – – – – –
Late downsampling – – [56] – – – – –
Residual connections – [86] [49,105] – – – – –

Feature fusion – – [98] – [53,56,57,62,64,
68,82,98,102–105] – – –
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Table 3. Cont.

Model Size Computational
Burden Accuracy Environment

Variation Scale Variation
Intra-
Class

Variation

Data
Scarcity

Low
Quality

Data

Attention
mechanisms – – [62,98] – [98] – – –

Larger receptive field – – [60,79] – [79] – – –
Various receptive

field sizes – – – – [55,59] – – –

Pruning – [50,54,55,70,90,93,
99,101] – – – – – –

Quantization [48,87,99] [48,87,99] – – – – – –
Knowledge
distillation – [64] – – – – – –

Ad hoc dataset – – –
[50,64,68,77–

80,84,86,91,95,
98,100,103,109]

–

[50,64,68,
77–80,84,
86,91,95,
98,100,

103,109]

– –

Data augmentation – – – – – –

[48,50,52,53,
57,60,61,64,
70,71,73,74,
76,81,84,85,
87,97,98,100,

106]

[64]

Anchor box filtering – [79] – – – – – –
Anchor box

sizing strategy – – – – [60,95] [95] – –

Loss function
formulation – – [92,105,107] – – – – [53,60,64]

3.2.1. Design of Novel Lightweight CNN-Based Architectures

The design of novel lightweight CNN architectures stands out in the review as the
dominant line of work, represented by the first 20 rows out of the 29 in Table 3. As
its name suggests, this approach aims primarily at creating more compact and efficient
network architectures (as reflected by the number of cells resulting from the intersection
of the corresponding row in Table 3 with the first two columns), but it also seeks to
improve accuracy in order to achieve an appropriate trade-off between speed and accuracy.
Size and latency reduction go hand in hand. The more model weights, the higher the
number of operations involved and consequently, the computational complexity and
inference time required. Leaving aside a few exceptions in [49,82,86], in the AmI research
analyzed, several strategies can be observed that pursue in the first place the reduction
of the number of parameters, but that also affects the computational cost of the detector.
In particular, it is possible to distinguish among them techniques eminently focused
on the internal configuration of the layers in the network, as well as methods that, on
the contrary, address global-scope factors focused on the organization of the layers or
building blocks within the architecture. More specifically, within the first group, two
different types of approaches have been observed: (i) a set of practices dealing with
properties at the convolution kernel level (kernel number decrease, whether this is network-
wide [69,95] or more selective [50,89]; size reduction in the spatial dimensions [95], and
channel number decrease, applied, again, both indiscriminately to all the layers in the
network [53], and particularly to specific stages [86] or layers [90]) and (ii) a second
subset of works exploring the use of less expensive operations [49,60,67,82,95,101], focused
primarily on finding lighter alternatives to standard convolution operations, such as
point-wise convolutions [95], depth-wise separable convolutions [60,67,101], and grouped
convolutions [49].

For its part, with regard to the group dealing with higher-level matters, we find a
greater heterogeneity of approaches that includes: (i) the design and integration into an
existing architecture of building blocks, such as two-way dense connection modules [86],
based on residual shortcut connections, or the so-called Fire modules [95,105], consisting
of a compression layer and a expansion layer, jointly capable of reducing the number of
parameters of the models produced while preserving accuracy; (ii) the replacement of
heavyweight backbones, such as VGG [5] by lighter networks, such as Shufflenet [49]; (iii)
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the replacement of costly layers, such as fully connected layers, in which each neuron
of a given layer is connected to each of the neurons in its preceding, by alternatives
with fewer connections and weights, such as convolution layers [95]; (iv) shallow layer
subsampling (reduction of spatial dimensions) [60], by using convolution layers with a
stride value greater than 1 instead of utilizing pooling layers which result in a higher loss
of detailed information. Finally, it also identified in this group more simplistic techniques,
such as reducing the input dimensions of the network [50,90] or eliminating some of its
layers [76,79,82].

Regarding detection accuracy, an additional fair number of approaches can be ob-
served in the literature analyzed. They are methods and techniques that pursue better
object classification performance but, eminently, go after a detection accuracy boost, es-
pecially when dealing with multiscale or tiny targets. Thus, two distinct strategies can
be distinguished along those lines: broader-scoped CNN-related methods addressing
classification-related concerns and object-detection-specific techniques primarily aimed at
achieving higher localization accuracy. In particular, the first group encompasses solutions
devised to increase the representational capacity of the networks, improving both the net-
work’s learning capacity and the accuracy yielded. Although most of the actions reported
in that direction, such as increasing networks’ depth [84,96,107] and input size [69,102],
late subsampling (i.e., reducing deep layers’ size to obtain or maintain large receptive
fields, thus enabling the coding of a higher volume of information [60,79]), or increasing
the number of channels in convolution kernels [102], may seem misplaced within the
on-device landscape, their underlying philosophy remains entirely pertinent for the search
of lightweight solutions aimed at mitigating accuracy degradation. Furthermore, those
methods are presented in the AmI body of works complemented by the exploitation of
more versatile techniques, such as the utilization of residual shortcut connections, a build-
ing block that has proven to be effective at enabling a better information flow throughout
the network, thus mitigating the vanishing gradient problem [49,105], and the exploitation
of both convolution kernels [95] and receptive fields [55,59] with multiple sizes, aimed
explicitly at achieving higher detection accuracy when targeting multiscale objects.

Target scale variation poses a challenge that commonly requires the fusion of low-level
high-resolution features and high-level semantic features to obtain greater semantic rich-
ness. Data reported in this respect through Table 3, draw a scenario where the fusion of mul-
tiscale feature maps constitutes the dominant approach [53,56,57,62,64,68,82,98,102–105],
with this substantiated in a considerable variety of strategies: channel concatenation [53],
which provides a “trainable” way of fusing feature maps from different stages in the net-
work; the exploitation of the pyramidal hierarchy naturally shaped by the characteristic
size-descending feature maps in CNNs [102–104]; the use of 1 × 1 convolution kernels
right after larger convolutions [56], which is equivalent to the linear combination of the
corresponding pixels along the channels in the kernel, and the exploitation of Feature
Pyramid Networks (FPN) [68,105], or any other variant, such as Deep Feature Pyramid Net-
work (DFPN) [57], FPNLite [31], or Concatenated Feature Pyramid Network (CFPN) [82],
as part of the detection framework, fusing semantic information from multiscale feature
maps through an architecture comprised of an upstream and a downstream path, and the
downstream path being responsible for building higher resolution feature maps using a
semantically rich map as a starting point. Lastly, in addition to the several techniques just
mentioned, a secondary approach has been noted in this respect, focused on investigating
novel blocks or architectural elements to facilitate information transfer throughout the
network underlying the detection framework. More specifically, the analyzed studies
report using the Squeeze-and-Excitation blocks [62], which explicitly model channel re-
lationships and interdependencies and include a form of self-attention on channels, and
spatial attention blocks [98], which can emphasize smaller targets’ features, thus capturing
more important information and filtering out noise.
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3.2.2. Model Compression and Acceleration

While architectural-tweak-based techniques and methods for designing more compact
object detection frameworks have been widely studied in the on-device literature, they
do not always lead to solutions suitable for austere environments. Depending on how
those techniques perform, but also on the target hardware platform’s capabilities, they
might produce models too costly to be deployed in such environments. In this context,
CNN compression has proven to be an effective approach orthogonal to lightweight CNN
architecture design, accelerating and reducing the size of already existing networks. This
approach, shown in Table 3 as the second one with more occurrences, encompasses three
distinct observed techniques: pruning [50,54,55,70,90,93,99,101], quantization [48,87,99],
and knowledge distillation [48,87,99].

Pruning consists of a typically incremental process that compresses a trained model,
eliminating redundant or non-informative elements of the network, being these either
individual neural connections or larger structures within the network itself. It commonly
entails three distinct stages: evaluating how important the parameters considered are,
trimming the less relevant ones, and finally, finetuning the resulting model to recover part of
the accuracy lost. Although this pipeline remains unchanged in the reviewed investigations,
it is possible to observe in those studies two different pruning modalities: unstructured [99]
and structured [50,54,55,70,90,93,101]. Unstructured pruning eliminates connections with
lower-valued weights. Although conceptually intuitive, it results in network architectures
that present an irregular structure, potentially unsuitable for exploitation in practical
applications. Structured pruning, on the other hand is capable of producing more formal
standard network structures as output, resulting in a structured sparsity, particularly
beneficial for saving computational resources. In this modality, in turn, two types of
methods are observed in the collection of papers reviewed: kernel pruning [50,54,70,93]
and channel pruning [55,90,101]. Particularly concerning kernel pruning, three different
techniques have been identified. Two of them, motivated by the intuition that kernels
with lower-valued weights tend to produce feature maps with weaker activations, assess
the relevance of every kernel present in each layer by computing the absolute sum of its
weights [50,54], while the third one leverages a kernel clustering algorithm to get rid of
the kernels in the network that extract similar features [93]. For its part, as far as channel
pruning is concerned [55,90,101], as its name suggests, it is an approach that reduces
the number of channels in convolutional kernels, thus accelerating convolutions. Each
channel is assigned a scale factor representing its relevance in the first place, being the
network trained later on in a sparse manner to delete channels with weight values below a
given threshold.

The second main compression technique identified, data quantization, reduces the
number of bits used to represent network parameters, reducing the size and computational
complexity of the model, but resulting in a significant accuracy loss. In particular, 8-bit
quantization, a standard practice in on-device ML, is exploited in three of the AmI research
works analyzed [48,87,99]. Parameter conversion, from 32-bit floating-point precision to
8-bit precision, is shown to be a mechanism effective for compressing DL models, as well
as necessary to obtain an implementation suitable for modern hardware accelerators, such
as DSPs [48]. Specifically, in [87], quantization is applied to both kernel weights and data
in the activation functions, [48] the authors report the application of quantization directly
on the pre-trained model.

Finally, while both parameter pruning and quantization address the inherent pa-
rameter redundancy in DL models by deleting the less critical or relevant parameters,
knowledge distillation is a training strategy able to generate compact neural networks but
capable of producing an output similar to the one provided by more complex networks.
This latter approach, represented in Table 3 by a single paper [64], goes beyond a mere
compression technique in the strict sense of the word, producing lightweight models with
better performance. Instead of training a compact network from scratch, it relies on a
refinement strategy in which a lightweight model, namely the “student”, is trained guided
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by a more complex and sophisticated “teacher” model, resulting in a transfer of knowledge
between the two through the matching of certain statistics.

3.2.3. Improved Ad Hoc Datasets

Datasets represent a key factor when conceiving DL-based detection frameworks. The
exploitation of datasets is an unavoidable consideration for model training and evalua-
tion, as well as for comparing different algorithmic alternatives. Indeed, the access to
massive collections of annotated images and videos through the Internet has certainly
played a significant role in the development of those models. The widespread availability
of the so-called big data and the ubiquitous nature of modern information access technolo-
gies have enabled the compilation of extensive datasets, such as the well-known Pascal
VOC [115] or Microsoft COCO [126], representative of a fair number and diversity of
objects, boosting object detection in the direction of increasingly complex problems and
more sophisticated solutions.

Such a scenario responds, however, only to general-purpose object detection. In
domains, such as AmI, where object detection is applied to specific problems, the reality
differs significantly from the one described in the previous paragraph. Overall, mainstream
datasets are unable to capture the singularities of the distinct class instances considered for
particular use cases (especially when they are very numerous or similar), and they are not
able either to do the same with the context or environment where they can commonly be
found. Particularly in AmI, as seen in Section 2, there is a fair number of paradigmatic use
cases that have been extensively studied, where, consequently, well-known and widely
proved public databases can be found, e.g., KITTI [127] for autonomous detection systems,
VisDrone [128] for object detection on images taken from UAVs, or WIDER FACE [129]
for face detection. However, they do not cover in any case the broad spectrum of existing
related applications in the field, and overall, they lack proper size and quality, especially
when compared to general-purpose detection benchmarks.

The study revealed two different approaches devised in response to the noted data-
related shortcomings: the creation of ad hoc datasets for the problem
addressed [50,64,68,77–80,84,86,91,95,98,100,103,109], and data augmentation [48,50,52,53,57,
60,61,64,70,71,73,74,76,81,84,85,87,97,98,100,106]. As shown in Table 3, both solutions have
been widely adopted by the authors, a fact quite surprising considering the substantial effort
typically required to address the various tasks involved in creating new datasets (image and
video acquisition and homogenization, but fundamentally, the creation of annotations). In
particular, the creation of customized datasets is featured in 15 of the 62 works reviewed,
proving to be highly effective in dealing with the variations among the different objects within
the same class and the changing environmental conditions that might affect their visual ap-
pearance. For its part, data augmentation is reported to be used in 22 studies, supplementing
datasets by directly increasing their number of samples, thus avoiding classical problems in
DL, such as model overfitting and class imbalance.

Newly created AmI-specific datasets reportedly aggregate contents to cover as many
variations as feasible (see a detailed list of common variations in AmI domains at the
end of Section 3.1). The majority of those datasets are image sets created from scratch,
either by actively taking pictures in real-world scenes [50,77,80,84,86,91,98,100,103,109]
or by extracting frames from previously recorded videos [64,95] but there are also three
exceptions that reuse images already present in other existing datasets [68,78,79]. As far
as the covered domains are concerned, intelligent transport stands out in the study as
the one where the creation of ad hoc datasets has aroused the most significant interest,
with datasets covering both the surroundings [64,79] and the passenger compartment of
vehicles [77,78]. Complementarily, data augmentation techniques have also been exten-
sively exploited, extending datasets with additional samples produced in a straightforward
manner thanks to relatively effortless transformations on the original images. In this re-
gard, in the AmI literature reviewed, it has been reported that a fair number of operations
can be classified into two distinct groups: operations at the pixel level and geometric
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transformations. The pixel-level category involves operations that affect image pixel
values, producing alterations in some properties, such as hue [50,53], saturation [50,53],
contrast [76], brightness [76], exposure [50,53], color [60,61,64,76,85], even incorporating
into images noise [76], or blurring [64,97], while geometric transformations includes prac-
tices, such as image scaling [48,71,76,85,100,106], translation [81], horizontal and vertical
flipping [53,57,60,61,64,71,73,74,76,81,84,85,87,97,98,100], random cropping [50,52,53,60,61,
73,74,85,100], target-centered cropping [48,106], rotations [50,53,70,74,76,81,84,87,97,100],
resizing [76], and perspective warping [76].

3.2.4. Hyperparameter Tuning

This fourth and last approach encompasses a set of methods that, although barely
observed in the body of works studied, has traditionally had a significant impact on
ML and DL-based solutions, pursuing the proper parametrization of certain attributes
either of the underlying network architectures or the specific algorithms exploited for
training in order to yield a more comprehensive performance improvement of the models
produced. Particularly in AmI, it has been reported in this regard, on the one hand
two different approaches that involve the configuration of the anchor boxes used for the
prediction tasks performed by object detection frameworks [60,61,79,95] and on the other
hand a better-represented approach that explores more appropriate or representative loss
functions [53,60,64,92,95,105,107].

Anchor boxes or “priors” represent a concept intrinsic to modern CNN-based object
detection frameworks. Thus, for every image provided as input, detectors typically produce
a broad sample of anchor boxes, adopted as candidate regions examined by the algorithm
to determine whether or not they contain any of the objects of interest considered, with
this decision being made according to the overlapping of the anchor boxes themselves
with the ground-truth boxes (a metric known as Intersection over Union, IoU). That said, a
particular case is assumed to be positive when the computed overlap value is greater than
a predefined threshold, triggering the refinement of the candidate region boundaries to
fit the enclosed object better and thus, provide a more accurate prediction of the output
bounding box. In that sense, although each feature map in the underlying CNN is likely
to have several candidate regions, potentially only a small percentage of them actually
contains objects, leading to a clear imbalance between positive and negative samples and
consequently, to a waste of resources. Anchor box filtering [79] addresses this problem
by using an object-priority-based labeling mechanism to filter out a significant chunk
of the negative samples. Hence, it reduces the object search space considerably, also
mitigating the detector’s computational overhead. Furthermore, anchor boxes’ dimensions
and their aspect ratio largely determine the size and shape of the objects a detector is able
to detect, to the point that if the priors do not match the different objects in the exploited
dataset (for instance, because they are tiny of irregularly shaped), the detector might omit
them. Motivated by this issue, two research works exploring different anchor box scaling
mechanisms were identified in the analysis of on-device detectors within AmI: [59] which
proposes a multiscale-box-based strategy for predicting targets with different scales and [95]
that explores the utilization of small anchors to detect small and partially occluded targets.

Lastly, with regards to the loss function, which drives the learning process of deep
neural networks (DNN) and so it does with CNN-based object detection frameworks, it
is a well-known element that has shown a significant impact on the accuracy level of the
predictions produced by such algorithmic solutions. In particular, when it comes to the
object detection frameworks studied, several enhancement strategies have been observed
on two different types of loss: the classification loss, necessary to train detectors on object
class prediction tasks, and the localization loss, required as well, to do the same, in this
case, with bounding box regression. It is precisely concerning the latter, the location loss,
that we find various specific optimization techniques within the AmI space. Three of them
pursue a better performance in terms of accuracy, exploring possible loss factors more
representative of the particular problems addressed [92,105,107]. Both in [92] and [105],
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unlike the deterministic-regression-based approach usually employed in mainstream object
detection frameworks, authors opt to introduce uncertainty in localization prediction by
modeling bounding box vertices using Gaussian parameters, while in [107] they explore a
metric alternative to the standard IoU with better capability for representing two-object
overlapping. Furthermore, accuracy boost aside, a more suitable definition of the loss
function has proved to effectively mitigate the class imbalance problem. In particular, rep-
resenting this line of action, we can find in Table 3, three works [53,60,64] that incorporate
a focal loss factor into the loss function, filtering in that way simple samples automatically
and thus, increasing the weight of complex samples.

4. Study and Evaluation

To conclude the present revision of research on the design of on-design object detection
solutions in the context of AmI, it is necessary to provide a brief overview of the most
significant aspects involved in the evaluation and comparison of such techniques. The
study and evaluation of the models, in the same way as, for example, the design, coding,
tuning, or training of the networks, constitute an unavoidable step when implementing
a DL or ML solution. Creating a robust and reliable test setup is a fundamental task,
not only to ensure the adequate performance of the detection framework conceived but
also to guide the iterative refinement or improvement typically involved in the design of
such complex models. It is, therefore, necessary to present, even if only briefly, the main
factors or elements to consider both when creating a test setup and when analyzing the
results obtained (besides the detector or the several detectors of interest and the various
datasets selected for benchmarking). Accordingly, Table 4 collects the several hardware
platforms commonly used in the considered context of the study, a fundamental decision
when assessing the performance of the solutions in real-world scenarios with memory and
computational constraints, together with the main aspects or values representing detection
frameworks’ performance, as well as the most widely used associated metrics.

Table 4. Summary of evaluation frameworks used for assessing on-device HAR models’ performance in the
reviewed studies.

Work Test Device Hardware
Acceleration Accuracy Speed Model Size Computational

Complexity Real Time

[48] –
• DSP • TPR • FPS • Weight

FLOPS Yes

[67]
• RSPB 3 B

No
• FPR
• FNR • FPS • Weight – No

[68] • ANDRD –
• P
• R – – – Yes

[69]
• XU4
• RSPB 3 B No

• TPR
• P • FPS – – No

[70]
• NVD

TX1 • GPU • mAP • FPS • Params
• Weight – No

[71]
• NVD

TX2 • GPU
• ACC
• AUC-

ROC
• FPS • Params FLOPS Yes

[72] • RSPB – – – – – –

[49]
• NVD

TX2 • GPU – • FPS – FLOPS Yes

[50]
• NAO • No • mAP

– – FLOPS –
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Table 4. Cont.

Work Test Device Hardware
Acceleration Accuracy Speed Model Size Computational

Complexity Real Time

[51] – –
• DR

–
• Weight

FLOPS –

[52]
• NVD

TX1 • GPU • mAP • FPS – – No

[53]
• NVD

TX2 • GPU • mIoU • FPS • Params FLOPS Yes

[54]
• NVD

TX2 • GPU • mAP • FPS • Params
• Weight – Yes

[55] –
• Desktop

GPU

• P
• R
• F1-S
• mAP

• FPS
• IT

• Params
• Weight FLOPS Yes

[73] • ANDRD – – – – – –

[74] • ANDRD • No • mAP • IT • Params MAdds No

[56]
• NVD

TX2 • GPU • mAP • IT • Weight – No

[57]
• NVD

TX2 • GPU • mAP • FPS – – Yes

[75]
• RSPB 3
• UP2

• VPU
(NCS)

• FPGA
• mAP • FPS – – No

[76]
• NVD

TX2 • GPU • F1-S • FPS – – Yes

[77]
• NVD

TX2 • GPU • ACC
• FP • IT – – Yes

[58] • DSKTP – • mAP – – – –

[78]
• RSPB 3
• ANDRD • No • mAP • FPS – – No

[79] • DSKTP – • mAP • FPS – – Yes

[80] • ANDRD –
• mAP
• F1-S – – – –

[59] • DSKTP • GPU • AP • IT – – Yes

[81] – – – – – – –

[82]
• NVD

TX2 • GPU • mAP • FPS – – Yes

[60]
• RSPB 3

B+
• No • mAP • FPS

• Params
• Weight
• Memory

Footprint
FLOPS Yes
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Table 4. Cont.

Work Test Device Hardware
Acceleration Accuracy Speed Model Size Computational

Complexity Real Time

[83]
• NVD

TX2 • GPU • mAP • FPS
– – Yes

[61] • DSKTP • GPU • mAP • FPS • Params MAdds –

[84] – – • mAP • FPS – – Yes

[62] • DSKTP • No • AP • FPS • Params – Yes

[63] • ANDRD – • AP – – – No

[85] • DSKTP • No • AP • FPS • Params FLOPS Yes

[86] • DSKTP • GPU • mAP – • Weight FLOPS –

[87] • ANDRD • No
• TPR
• FNR
• FDR

• IT • Weight – No

[88] – – – – – – –

[89]
• NVD

TX2 • GPU
• mAP
• R
• P

– – – Yes

[90] – – • AP • IT • Params FLOPS No

[91]
• NVD NN
• DSKTP –

• AP
• F1-S • IT – – Yes

[92]
• NVD

AGX • GPU • mAP • FPS – FLOPS Yes

[64] – – • mAP • IT • Weight FLOPS Yes

[93]
• NVD

TX2
• NVD NN

• GPU • AP • FPS – – Yes

[94]
• NVD

TX2 • GPU – – – – –

[95] • RK3399 • GPU • FNR • IT • Params – Yes

[96] – –

• P
• R
• F1-S
• mAP

• IT – – No

[97] – –

• P
• R
• F1-S
• mAP

– – – –

[98] – –
• mAP • IT • Weight

– No
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Table 4. Cont.

Work Test Device Hardware
Acceleration Accuracy Speed Model Size Computational

Complexity Real Time

[99]
• IOS • No

• P
• R
• mAE –

• Params
– No

[100]
• RSPB 3

B+
• VPU

(NCS V2) • AP • IT
• FPS

• Params
• Weight – No

[101] – – • AP • IT
• FPS • Weight – No

[65] • NVD NN • GPU
• P
• R
• ACC

• IT – – No

[102] – –
• P
• R
• mAP

• FPS • Weight – Yes

[103]

• RSPB 3
B+

• NVD NN
• NVD

AGX

• VPU
(NCS
V1/V2)

• GPU

• P
• R
• mAP

• FPS – – Yes

[104] – – • mAP – – – –

[105]
• NVD

AGX • GPU • mAP • FPS • Weight FLOPS Yes

[106]
• NVD

AGX • GPU • P
• R • FPS – – Yes

[107] – –
• F1-S
• mAP • FPS • Weight – Yes

[108]
• RK3399

pro • NPU – – – – Yes

[66]
• NVD

TX2 • GPU • F1-S • IT – – No

[109] • DSKTP –

• P
• R
• F1-S
• mAP

• FPS • Params
• Weight FLOPS Yes

[110]
• MS

HLENS No • AP – – – No

Abbreviations: RSPB, Raspberry Pi board; ANDRD, Android smartphone; XU4, Odroid XU4 board; NVD TX1, Nvidia Jetson TX1; NVD
TX2, Nvidia Jetson TX2; NAO, NAO robot; UP2, Up Squared board; NCS, Intel Neural Compute Stick; DSKTP, Desktop system; NVD
NN, Nvidia Jetson Nano; CORAL USB, Google Coral USB Accelerator; NVD AGX, Nvidia Jetson AGX Xavier; RK3399, RK3399 Rockchip
board; IOS, iOS smartphone; MS HLENS, Microsoft HoloLens; DSP, Digital Signal Processors; GPU, Graphics Processing Unit; TPU, Tensor
Processor Unit; VPU, Vision Processing Unit; NPU, Neural Processing Unit; TPR, True Processing Rate; FPR, False Positive Rate; FNR,
False Negative Rate; P, precision; R, recall; mAP, mean Average Precision; ACC, accuracy; AUC-ROC, area under the ROC curve; DR,
detection rate; mIoU; F1-S, F1 score; FP; AP, Average Precision; FDR, False Detected Rate; mAE, mean Area Error; FPS, Frames Per Second;
IT, inference time; FLOPS, Floating Point Operations Per Second; MAdds, Multiply-Adds operations.
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4.1. Hardware Platforms

In the last few years, a plethora of new cutting-edge mobile and embedded devices
have appeared in the market as potential AI-supporting hardware platforms suited for the
implementation and continuous improvement of on-device DL models due to their ever-
increasing computational power and modest energy consumption compared to the more
traditional server or desktop alternatives. In particular, mobile SoCs (System on a Chip),
adopted in today’s mass-produced embedded devices, such as mainstream single-board
computers, have been and still are, definitely, one of the main drivers of the recent on-device
trend. Their physical design based on the tight integration of computing, memory, and
communication components in a single integrated circuit not only optimizes the internal
communication among components and maximizes energy efficiency but also minimizes
chips’ waste heat, as well as their die area, enabling the miniaturization of the devices built
on its basis.

Table 4, in particular, the field tagged as “Test device”, lists the several devices used
in the AmI research analyzed for evaluation purposes. It is possible to classify those
devices into three different groups: high-performance single-board computers [49,52–
54,56,57,65,66,70,71,75–77,82,83,89,91–94,103,105,106,108], low-power single-board com-
puters [60,67,69,72,75,78,95,100,103], and mobile devices [63,68,73,74,80,87,99]. This cat-
egorization, however, does not contemplate papers where the hardware setup used for
model deployment is not properly detailed or detailed at all [48,51,55,64,81,84,88,90,96–
98,101,102,104,107], nor the ones that report using desktop systems for that purpose [58,59,
61,62,79,85,86,109]. Moreover, in addition to those omissions, there are two punctual inves-
tigations also excluded from the previous classification where authors propose detectors
specially designed for specific-purpose hardware: humanoid robots programmed to play
soccer [50], and a mixed reality headset used to overlay virtual information [110] on the
real world.

The group of high-performance single-board computers includes low-energy em-
bedded devices designed specifically for accelerating ML applications through a dedi-
cated built-in processor. As the data presented in Table 4 reflect, this category is mo-
nopolized by Nvidia’s Jetson family. Up to 23 of the 47 papers detailing the evalua-
tion hardware setup exploited report using at least one device belonging to the Jetson
hardware platform for AI processing on edge, being the latter a distributed computa-
tion paradigm based on an intermediate layer of resource-constrained devices located
physically closer to data source where computation is partially offloaded, thus mitigat-
ing latency and reducing response times comparing to the cloud alternative. In par-
ticular, the specific devices observed in this respect, listed in ascending order accord-
ing to their computational power, are: Nvidia Jetson Nano [65,91,93,103], Nvidia Jetson
TX1 [52,70], Nvidia Jetson TX2 [49,53,54,56,57,66,71,76,77,82,83,89,93,94] and Nvidia Jetson
AGX Xavier [92,103,105,106]. All of them are based on CPUs with ARM architecture, rang-
ing from four cores in the Jetson Nano and Jetson TX series to eight cores in the Nvidia
Jetson AGX Xavier. However, their actual AI processing capability lies in the powerful
GPUs they embed, delivering performance equivalent to desktop graphics chipsets of
recent past years. Their physical design, based on a fair number of cores (128 in the Jetson
Nano, 256 in the Jetson TX1 and Jetson TX2, and 512 in the Jetson AGX Xavier), makes it
possible to parallelize repetitive operations and thus perform matrix computation more
efficiently than general-purpose CPUs. They present, however, more limited memory
than their desktop counterparts, insufficient for unrolling and converting convolution
operations into matrix operations. For that reason, as a rule of thumb, models trained using
desktop GPUs must be converted into models suitable for mobile GPUs, transforming
matrix multiplications into dot product operations.

Still, within the high-performance single-board computers group, two alternatives to
the Nvidia devices have been observed: the RK3399 pro [108] and Up Squared [75] boards.
Although more modest than the Jetson series as far as CPU and GPU are concerned, the
RK3399 pro integrates, unlike them, a Neural Processor Unit (NPU) as the primary AI
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inference acceleration component. Those NPUs, as we will see for other devices, depending
on the manufacturer, can present different commercial names, such as Tensor Processing
Unit (TPU), Neural Network Processor (NNP), Intelligence Processing Unit (IPU), or Vision
Processing Unit (VPU). They all refer to specialized circuits that implement all the control
logic and arithmetic necessary to execute ML algorithms. In the particular case of RK3399
pro’s SoC, the CPU embeds an NPU with power enough to support both 8-bit and 16-bit
data, yielding a computing performance of up to 3.0 TOPS (Tera Operations per Second),
at the cost of power consumption, according to the manufacturer, of only 1% of that of
the GPU. For its part, the Up Squared board is the only device with an x64 architecture
among all the ones identified in the review, standing out because it integrates an FPGA,
an acceleration solution that, although less costly than NPUs or GPUs, has shown more
potential than the latter in DL tasks, with higher flexibility to operate with different types
of data (binary, ternary and even customized), and strong capacity to deal with the usual
irregular parallelism that characterizes sparse DNN-based algorithms.

In the second category of hardware platforms exploited for evaluation, we find single-
board embedded devices again, but, in this case, governed by more modest SoCs, embed-
ding general-purpose mobile CPUs and GPUs with significantly lower cost and power
consumption. Raspberry Pi (in its different versions) [60,67,69,72,75,78,100,103], Odroid
XU4 [69], and the standard version of the RK3399 board [95], the three representative
devices observed in the AmI literature analyzed, show, in general terms, limited hardware
capabilities, especially if we compare them with the typically demanding requirements of
DL tasks, yielding a performance far from the pursued real-time. Hence, with the end goal
of compensating to some extent such shortcomings, some plug-and-play ML-accelerating
devices have recently emerged on the market, which, typically connected to the host device
through a USB port, act as a dedicated coprocessor, enabling a high-speed ML inference
on a wide range of conventional systems. The Intel Neural Compute Stick, in its two
versions, is shown in Table 4 as the most popular alternative [75,100,103]. Built on Intel’s
Movidius Myriad X VPU, it incorporates the inference capability of 16 programmable
shaving cores and a dedicated neural computation engine into the end device. Still, if we
take as a reference the data collected in Table 4, it can be stated that its use remains merely
testimonial, and its impact on the resulting final performance obtained is not sufficient yet.

Finally, the third group includes only mobile devices, in the strict sense of the term.
Android systems practically monopolize this last category (there is only one iOS device [99]
in the eight papers where smartphones are used for evaluation), with Qualcomm and
its Snapdragon SoC [68,74,78,87] being the preferred hardware configuration. Essentially
through its 8 series, Snapdragon has not only led the “flagship” smartphone market in
recent years but has also been one of the main spearheads of the technological development
in the mobile world, progressively incorporating in the last few years new components
specialized in AI: from the Qualcomm Hexagon DSP (Digital Signal Processor) introduced
in the Snapdragon 835 [68], all the way to the recent and more sophisticated Qualcomm AI
Engine embedded in the Snapdragon 865 [87], where the Qualcomm Hexagon Tensor Accel-
erator DSP, capable of performing 15 trillion operations per second, is jointly exploited with
the Adreno GPU and the Kryo CPU cores as a comprehensive acceleration solution. DSPs
can perform part of the computations involved in ML and DL processes with high efficiency,
alleviating the workload of the other cores and thus reducing power consumption.

4.2. Evaluation Metrics

The analysis of on-device models goes beyond the mere evaluation of detector per-
formance (typically modeled in terms of accuracy and speed), additionally covering cost-
specific aspects (i.e., model size and computational complexity), which are fundamental
to assessing the feasibility of such solutions in resource-limited devices. Although cost is
a concern that can be considered inherent to the on-device paradigm, that premise is not
reflected in the data presented in Table 4. Instead, they largely omit information regard-
ing the size [49,50,52,57–59,63,65,66,68,69,72,73,75–84,88,89,91–94,96,97,103,104,106,108,110]



Appl. Sci. 2021, 11, 9173 26 of 34

and complexity of the models produced [52,54,56–59,62,63,65–70,72,73,75–84,87–89,91,93–
104,106–108,110], with no values in those respect reported in more than half of the pa-
pers. On the contrary, speed and accuracy are addressed in virtually all the AmI studies
analyzed [48,52–57,59–62,64–67,69–71,74–79,82–85,87,90–93,95,96,98,100–103,105–107,109],
revealing a trend consistent with the experimentation traditionally conducted for evaluating
conventional ML and DL techniques.

As far as accuracy is concerned, the related metrics that emerge in Table 4 as the
most popular options are average precision (AP) and its variant, the mean average preci-
sion (mAP) [50,52,54–64,70,74,75,78–80,82–86,89–93,96–98,102–105,107,109,110], distantly
followed by precision (P) [55,65,68,69,89,96,97,99,102,103,106,109], recall (R) [55,65,68,89,
96,97,99,102,103,106,109], and F1 score [55,66,76,80,91,96,97,107,109]. AP is computed by
selecting the 11 best predictions produced by a detection framework for a single object.
Specifically, given the number of true positives (TP), for each of the 11 selected predictions,
both precision (P) and recall (R) values are calculated, being TP every correct detection
present in the ground truth, represented as a bounding box. For its part, precision is the
ratio between the number of TP and the total number of detections, representing the ability
of a model to identify only the relevant objects, while recall is the percentage of TPs over
the total number of detections present in the ground truth, being the result indicative of
the model’s ability to find all relevant cases (all ground-truth bounding boxes). Lastly, the
F1 score is computed as the weighted average of precision and recall, resulting in a value
between 0 and 1, where 1 represents the highest precision.

Furthermore, the object detection framework’s speed is the time it requires to pro-
cess a given image or video frame to output the various bounding boxes representing
the location of the objects of interest together with the labels identifying the class that
objects are associated with. Such inference speed is usually denoted as the number of
frames processed per second [48,49,52–55,57,60–62,67,69–71,75,76,78,79,82–85,92,93,100–
103,105–107,109], although, as shown in the “Speed” column of Table 4, there are a good
number of authors who choose to directly report the average time spent in the inference
process [55,56,59,64–66,74,77,87,90,91,95,96,98,100,101] (typically measured in milliseconds).

Accuracy and speed are closely related to the complexity of the trained model: a supe-
rior model representation capacity makes it possible to produce more accurate predictions,
but, on the flip side, it generally results in a longer inference time. Such complexity, as done
by a fair number of authors, might be intuitively evaluated in terms of model size, reporting
the results produced either in the form of the number of
parameters [53–55,60–62,70,71,74,85,90,95,99,100,109], their weight [48,51,54–56,60,64,67,
70,86,87,98,100–102,105,107,109], or their memory footprint [60]. The number of parameters
responds to the number of model weights learned during the training process, essentially
considering in that respect the parameters in convolution and fully connected layers.
Weight, in turn, stands for the size of the parameters counted, while the memory footprint,
although sometimes erroneously used as a synonym of the former, corresponds to the
estimation of the space in main memory required by the model at runtime, thus constituting
the measure that best characterizes the requirements of such nature.

Model size, particularly the number of parameters and their weight, are straightfor-
ward metrics capable of providing a first intuition on its resource requirements at a glance.
However, when discussing an algorithmic solution’s computational complexity in a more
rigorous fashion, it is necessary, especially within the on-device paradigm, to know the way
computations are carried out and their cost in terms of demanded resources. In this regard,
despite the scarcity shown in the AmI works reviewed, it is possible to observe additional
representative metrics, commonly reported in DL studies to supplement the accuracy
and inference information provided, denoting a model’s computational complexity by
the number of operations involved, either directly as MAdds (number of multiplication-
addition operations) [61,74], or indirectly as FLOPS (number of floating-point operations
per second) [48–51,53,55,60,64,71,85,86,90,92,105,109].
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5. Conclusions and Future Work

This paper reviews the more relevant ambient intelligent recent research focused on
the study and exploitation of lightweight object detection frameworks capable of address
the inference process locally, thus ensuring more robust data security and better user
privacy within intelligent environments. Specifically, the study carried out provides a
comprehensive analysis of such frameworks, discussing in an organized and schematic
way (i) the application domains where those techniques have proven to be particularly
useful, (ii) the various CNN architectures designed explicitly for devising more efficient
and compact detection systems, (iii) the challenges associated with the design process of
such systems, together with (iv) the different approaches explored in response to them,
and lastly, (v) the hardware setups and metrics adopted by researchers and AI practitioners
for assessing the solutions proposed.

Ultra-compact detectors, such as Tiny YOLO in its different versions or SSDLite,
emerge in the reviewed literature as the most salient on-device options among the several
lightweight detectors exploited in AmI. Adopting a unified-detection-pipeline-based archi-
tecture or model as a starting point, primarily oriented towards higher inference speed,
alongside the integration of a more refined and simplified network model as the backbone,
makes it possible to build fast detection systems. Such an approach, however, delivers pro-
cessing times that fail to achieve real-time performance in many scenarios and what is even
worse, it derives in a dramatic accuracy loss in comparison with existing state-of-the-art
alternatives. In that sense, most of the research efforts observed have been aimed, overall,
at finding mechanisms and strategies for a better accuracy-speed trade-off, focusing on
accuracy or speed depending on the nature of the architecture or model adopted as a
baseline, but also depending on the particular application pursued.

Networks resulting from more aggressive compression and optimization approaches
have proven to fall short in use cases where accuracy is crucial (e.g., autonomous driving,
and robotic systems for task automation), thus demanding methods capable of producing
more expressive CNNs, either through richer feature hierarchies, such as the fusion of
features extracted at different levels of the network, deeper network architecture or the
exploitation of building blocks, such as the attention mechanism. On the other hand,
detection frameworks based on compact networks but more conservative in terms of the
accuracy provided typically feature an excessive size and resource consumption, which,
while not hindering their deployment in austere systems or execution environments, do
weigh down their performance significantly by degrading response speed. Therefore,
they require optimization efforts to reduce the size of the models produced, as well as
the computational power and memory space required for their execution. In this regard,
architecture-tweaking approaches, such as exploiting more efficient convolution operations
or decreasing the number of convolution kernels per layer constitute today’s mainstream
practices. However, techniques such as pruning and quantization have shown to be
complementary widespread improvement options.

In addition to speed- and accuracy-specific challenges and solutions, both closely
related to object detection on low-power end devices, a collection of domain-specific issues
arise when developing AmI applications. The reuse of models previously trained on large
public data sets leads in the first instance to general-purpose solutions that, overall, do
not fit the specificities of the AmI scenarios observed, resulting in less accurate and robust
detectors. In this regard, transfer learning has proved to be effective in dealing with that
gap, successfully tailoring a given model to a particular use case by further training it on a
new dataset more representative of the new target task. Creating such datasets involves,
however, a tedious and costly process, typically based on manual annotation and thus
prone to human error. That usually results in datasets that, on the one hand are not big
enough for DL training, and on the other hand present quality deficiencies, such as class
imbalance. Furthermore, a fair number of authors have focused part of their research
efforts on acquiring and annotating images representative of the actual context where the
resulting detection systems would be used. Many produced datasets have been reportedly
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insufficient to cover the typical highly-changing environmental conditions in the wild
(e.g., brightness, viewpoint and weather) or deal with the intra-class variance problem, no
matter the latter is due to the very nature of the targets (e.g., different facial expressions in
face detection, and different clothing and poses in human detection[109]) or to alterations
caused either by the environment itself or by the rest of entities present in it (e.g., total or
partial occlusion).

The selection of a proper lightweight detection framework, jointly with the imple-
mentation of improvement tweaks eminently oriented to both the reduction of size and
complexity of the underlying CNN network and the creation of a more robust and ade-
quately sized dataset, have yielded promising results as can be seen in the data presented
in the column tagged as “Real-time” in Table 4. Nevertheless, although some works con-
firm the feasibility of real-time detection solutions on mobile and embedded devices in
AmI contexts, an overwhelming majority of them either fail to achieve such efficiency or
present important gaps in the evaluation report that degrade the robustness of the results.
In particular, with respect to the latter point, the table reveals (i) research that did not
consider execution speed as an evaluation metric and that only report accuracy values;
(ii) studies that omit information about the materials used for testing the models’ perfor-
mance on inference tasks, reporting in many of those cases only the hardware setups used
for training and (iii) works that report achieving real-time performance, but on high-end
GPU-powered desktop systems far from the strong memory and computational limitations
that characterize the on-device paradigm.

Future research should address the deficiencies mentioned above, dealing with the
computational complexity of the solutions devised, and also addressing hardware-specific
concerns that may affect their final performance, generalizing the study of energy con-
sumption (approached punctually in [53,57,83]), as well as other interesting related matters,
such as the proper use of parallelism strategies or how to exploit jointly modern multi-core
architectures and AI acceleration hardware in a proper way. Likewise, in order to overcome
data scarcity, it will be necessary to either explore techniques to alleviate or streamline the
dataset creation process (e.g., synthetic data generation based on Generative Adversarial
Networks [130,131], or image and video acquisition in simulated environments [132]), or
devise DL alternatives that demand a smaller volume of data (e.g., the so-called few-shot
learning techniques [133,134]). Finally, although the body of works considered in the study
represents a broad spectrum of applications within ambient intelligence, it does not cover
paradigmatic scenarios in the field, such as workplaces, educational centers, or smart
homes. Vision-based methods and techniques, such as those presented, featuring offline
solving capabilities, will undoubtedly push forward the implementation of intelligent sys-
tems in such contexts, where data security and individuals’ privacy are hard requirements.
It will, however, be necessary to approach the specificities of each of them in order to
maximize the performance of the proposed solutions.
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