
applied
sciences

Article

Scheduling of Single-Arm Cluster Tools with Residency Time
Constraints and Chamber Cleaning Operations

Jie Li 1, Yan Qiao 1,* , Siwei Zhang 1, Zhiwu Li 1 , Naiqi Wu 1,2 and Tairan Song 1

����������
�������

Citation: Li, J.; Qiao, Y.; Zhang, S.; Li,

Z.; Wu, N.; Song, T. Scheduling of

Single-Arm Cluster Tools with

Residency Time Constraints and

Chamber Cleaning Operations. Appl.

Sci. 2021, 11, 9193. https://doi.org/

10.3390/app11199193

Academic Editor:

Emanuele Carpanzano

Received: 14 August 2021

Accepted: 27 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems, Macau
University of Science and Technology, Macao 999078, China; li.jie@ikasinfo.com (J.L.);
swzhang@must.edu.mo (S.Z.); zwli@must.edu.mo (Z.L.); nqwu@must.edu.mo (N.W.);
song.tairan@ikasinfo.com (T.S.)

2 State key Laboratory of Precise Electronic Manufacturing Technology and Equipment, Guangdong University
of Technology, Guangzhou 510006, China

* Correspondence: yqiao@must.edu.mo

Abstract: To ensure wafer quality, engineers have to impose wafer residency time constraints and
chamber cleaning operations on cluster tools; this has been widely used in semiconductor manu-
facturing. Wafer residency time constraints and chamber cleaning operations make the scheduling
problem of cluster tools more challenging. This work aims to solve such a scheduling problem for
single-arm cluster tools and presents a novel method based on the use of virtual wafers. Under a
one-cyclic schedule obtained for single-arm cluster tools without chamber cleaning requirements,
virtual wafers are loaded into the tool such that when a process module (PM) processes virtual wafers,
a chamber cleaning operation is performed in practice. The key to solve this scheduling problem is to
find a wafer loading sequence with the highest performance in terms of cycle time. With this idea,
this work constructs a genetic algorithm to search for such a solution. Since the obtained solution
is a periodical wafer loading sequence based on a one-wafer cyclic schedule, it can be easily imple-
mented. Therefore, this work has high practical value to numerous semiconductor manufacturers.
Experiments were performed to show the efficiency and effectiveness of the proposed method.

Keywords: chamber cleaning; cluster tools; scheduling; semiconductor manufacturing

1. Introduction

In semiconductor manufacturing, cluster tools are important for wafer fabrication.
A modern semiconductor fabrication plant (fab) is equipped with hundreds of cluster
tools. A cluster tool is very expensive, and the cost for equipment accounts for more than
a half of the total investment for a fab. Therefore, maximizing the productivity of cluster
tools is an important means for manufacturers to ensure the return on their investment. A
cluster tool consists of a wafer handling robot, an aligner (AL), several process modules
(PMs), and two loadlocks (LLs) for raw wafer lot loading/unloading. Figure 1a,b shows
two kinds of cluster tools equipped with a one-arm or two-arm robot, called a single-arm
cluster tool (SACT) and dual-arm cluster tool (DACT), respectively. The single-wafer
processing technology is adopted for processing large-size wafers in cluster tools. By such
a technology, a PM in a tool can process only one wafer at a time. In this way, precision
processing requirements can be satisfied such that the quality of processed wafers can be
guaranteed.

Appl. Sci. 2021, 11, 9193. https://doi.org/10.3390/app11199193 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5162-0224
https://orcid.org/0000-0003-1547-5503
https://orcid.org/0000-0001-6782-458X
https://doi.org/10.3390/app11199193
https://doi.org/10.3390/app11199193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199193
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199193?type=check_update&version=2

Appl. Sci. 2021, 11, 9193 2 of 18
Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 18

Figure 1. Cluster tools: (a) single-arm robot and (b) dual-arm robot.

For a cluster tool, the robot moving time between two PMs or a PM and an LL is
much shorter than the wafer processing time at a PM in practice. Thus, the time taken for
completing a wafer at the bottleneck step determines the system cycle time. With such a
property, a tool is said to be process-bound. A backward strategy is optimal for process-
bound SACTs [1], while a swap strategy is efficient for process-bound DACTs [2].

With the increasing of wafer diameter and the shrinkage of circuit width, in order to
guarantee wafer quality, strict wafer residency time constraints (WRTCs) are imposed on
many wafer fabrication processes. They require that a wafer should be removed out of a
PM within a given time window after it is processed, otherwise the wafer may be dam-
aged by the residual chemicals, particles, and high temperature in the PM. Low pressure
chemical-vapor deposition is such a typical process. Without intermediate buffers be-
tween PMs, WRTCs definitely make the scheduling problem of cluster tools complicated.

Important efforts have been made in scheduling cluster tools with WRTCs by reduc-
ing the wafer delay time in PMs, i.e., the time a wafer is detained in a PM after it is pro-
cessed. Rostami et al. [3] and Lee and Park [4] present methods for DACTs with WRTCs
to find an optimal and feasible periodic schedule. To reduce the wafer delay time for
DACTs, a modified swap strategy is proposed in [5] such that a wafer waits on the robot
for some time during a swap operation. For SACTs, the wafer delay time at a step can be
reduced by delaying the time point of unloading a wafer at the previous step, so that the
time point of loading the wafer at the step is delayed [1,6]. Feedback control methods are
proposed in [7,8] to control wafer delays such that a feasible schedule can be found for
both SACTs and DACTs. If a conventional swap strategy cannot achieve a feasible sched-
ule for DACTs with WRCTs, a new class of robot task sequences is proposed in [9] such
that WRCTs can be met. Roh et al. [10] developed closed-form formulas for most fre-
quently used wafer flow patterns and an optimization model that computes the worst-
case wafer delay of dual-armed cluster tools. They also analyze the factors that affect the
worst-case wafer delay and their influences by experiments. By considering processing
time variation, an adaptive scheduling method is presented for cluster tools with wafer
delay constraints in [11]. With WRTCs and multiple wafer types being processed, efficient
scheduling approaches are proposed for SACTs in [12] and DACTs in [13,14].

For process-bound cluster tools, robot tasks take much less time than processing a
wafer in a PM such that the system cycle time is determined by the time taken for com-
pleting a wafer at the bottleneck step. Hence, in a cycle, the robot has idle time that can be
treated as robot waiting time. By regulating robot waiting time at the process steps, sched-
ulability conditions are established for both SACTs and DACTs with WRTCs in [15,16].
According to these conditions, if a tool is schedulable, a feasible and optimal schedule can
be found by parameterizing robot waiting time. Then, a robot idle time regulating method
can be extended to find a feasible schedule for both SACTs and DACTs with WRTCs and
bounded activity time variations as in [17-19] and [20,21].

Figure 1. Cluster tools: (a) single-arm robot and (b) dual-arm robot.

For a cluster tool, the robot moving time between two PMs or a PM and an LL is
much shorter than the wafer processing time at a PM in practice. Thus, the time taken
for completing a wafer at the bottleneck step determines the system cycle time. With
such a property, a tool is said to be process-bound. A backward strategy is optimal for
process-bound SACTs [1], while a swap strategy is efficient for process-bound DACTs [2].

With the increasing of wafer diameter and the shrinkage of circuit width, in order to
guarantee wafer quality, strict wafer residency time constraints (WRTCs) are imposed on
many wafer fabrication processes. They require that a wafer should be removed out of a PM
within a given time window after it is processed, otherwise the wafer may be damaged by
the residual chemicals, particles, and high temperature in the PM. Low pressure chemical-
vapor deposition is such a typical process. Without intermediate buffers between PMs,
WRTCs definitely make the scheduling problem of cluster tools complicated.

Important efforts have been made in scheduling cluster tools with WRTCs by reducing
the wafer delay time in PMs, i.e., the time a wafer is detained in a PM after it is processed.
Rostami et al. [3] and Lee and Park [4] present methods for DACTs with WRTCs to find
an optimal and feasible periodic schedule. To reduce the wafer delay time for DACTs, a
modified swap strategy is proposed in [5] such that a wafer waits on the robot for some
time during a swap operation. For SACTs, the wafer delay time at a step can be reduced by
delaying the time point of unloading a wafer at the previous step, so that the time point
of loading the wafer at the step is delayed [1,6]. Feedback control methods are proposed
in [7,8] to control wafer delays such that a feasible schedule can be found for both SACTs
and DACTs. If a conventional swap strategy cannot achieve a feasible schedule for DACTs
with WRCTs, a new class of robot task sequences is proposed in [9] such that WRCTs can
be met. Roh et al. [10] developed closed-form formulas for most frequently used wafer
flow patterns and an optimization model that computes the worst-case wafer delay of dual-
armed cluster tools. They also analyze the factors that affect the worst-case wafer delay
and their influences by experiments. By considering processing time variation, an adaptive
scheduling method is presented for cluster tools with wafer delay constraints in [11]. With
WRTCs and multiple wafer types being processed, efficient scheduling approaches are
proposed for SACTs in [12] and DACTs in [13,14].

For process-bound cluster tools, robot tasks take much less time than processing
a wafer in a PM such that the system cycle time is determined by the time taken for
completing a wafer at the bottleneck step. Hence, in a cycle, the robot has idle time that
can be treated as robot waiting time. By regulating robot waiting time at the process
steps, schedulability conditions are established for both SACTs and DACTs with WRTCs
in [15,16]. According to these conditions, if a tool is schedulable, a feasible and optimal
schedule can be found by parameterizing robot waiting time. Then, a robot idle time
regulating method can be extended to find a feasible schedule for both SACTs and DACTs
with WRTCs and bounded activity time variations as in [17–21].

In practice, after a PM completes a number of wafers, the processing environment
in the chamber at the PM is contaminated to some extent. Hence, for high quality wafer

Appl. Sci. 2021, 11, 9193 3 of 18

fabrication, it should be cleaned at this time. Chamber cleaning is necessary for wafer
quality, but this makes the scheduling problem more challenging. Yu et al. [22,23] present
an interesting idea of partially loading wafers into parallel PMs at a step for SACTs and
DACTs with chamber cleaning requirements. By doing so, parallel PMs can be alternately
cleaned. Their studies were conducted based on the assumption that a chamber cleaning
operation is performed for a PM after every wafer is processed in the PM, which is also
called a purge operation. However, it is also important to consider a more general case in
which a chamber in a PM is required to be cleaned after a specified quantity of wafers is
consecutively processed, which arises from practical wafer fabrication cases. For such a
case with WRTCs being considered at the same time, the existing method in [22,23] is no
longer applicable. Thus, this work aims to solve such a new and challenging problem for
SACTs with WRTCs and chamber cleaning operations by proposing a virtual wafer strategy.

The rest of the paper is organized as follows. The virtual wafer-based method is
introduced in Section 2. Then, based on the virtual wafer method, a genetic algorithm is
constructed to find an approximate solution in Section 4. Finally, extensive experiments are
described to verify the proposed method.

2. Virtual Wafer-Based Method
2.1. Robot Tasks

Assume that there are n Steps in an SACT. Each Step may have parallel PMs that are
configured to perform the same operation. Raw wafers in cassettes are loaded into the tool
through LLs one by one. Then, each wafer in a cassette should sequentially visit Steps 1–n
for being processed. After all operations are completed, they are returned to the cassette
where they come from. Let Nn = {0, 1, 2, . . . , n} and N+

n = Nn\{0}. The wafer flow pattern
in the tool can be defined as (n1, n2, . . . , nn), where ni denotes the number of parallel PMs
at Step i, i∈N+

n.
The wafer sojourn time in a PM at a step is defined as the time duration that starts

from the time point when the robot completes loading a wafer into the PM and ends at the
time point when the robot starts unloading the wafer from the PM. The wafer sojourn time
consists of the wafer processing time and the time for staying there after being processed,
named the wafer delay time. Let τi and ρi, i∈N+

n, denote the wafer sojourn time and the
processing time in a PM at Step i, respectively. WRTCs require that the wafer delay time
should be within a permitted time window. Let δi, i∈N+

n, denote the upper bound of the
wafer delay time in a PM at Step i. Thus, it is important to schedule the robot tasks such
that WRTCs are met for each step, i.e., 0 ≤ τi − ρi, ≤ δi, i∈N+

n.
The robot tasks include wafer unloading and loading, moving, and waiting. In this

work, Ui and Li are used to denote the robot tasks of unloading and loading a wafer from
and into a PM at Step i, i∈Nn, respectively. Note that we use Step 0 to represent LLs. Mij
is used to denote the robot task of moving from a PM/LL at Step i to a PM/LL at Step j.
Wi, i∈Nn, is used to denote the robot waiting before unloading a wafer from a PM at Step
i. Robot tasks take time, and the time needed for robot unloading/loading at all steps is
same. Then, α and β are used to denote the time needed for Ui and Li, i∈Nn, respectively.
The robot moving time between any two steps can be treated as the same, and µ is used to
denote the time needed for Mij with or without carrying a wafer. ωi is used to denote the
time needed for Wi, i∈Nn.

For process-bound SACTs, the backward strategy is proved to be optimal in terms of
cycle time. Thus, in this work, it is supposed that the backward strategy is adopted for
operating an SACT. Assume that in each PM in an SACT there is a wafer being processed.
Then, by the backward strategy, a robot task sequence named σ is performed as follows: Un
→Mn0 → L0 →M0(n−1) → Un−1 →M(n−1)n → Ln →Mn(n−2) → → U1 →M12 →
L2→M20→ U0→M01→ L1→M1n. In fact, σ forms a robot task cycle and it is repeatedly
performed in the following operations.

Appl. Sci. 2021, 11, 9193 4 of 18

2.2. One-Wafer Cyclic Schedule

By the backward strategy, after a wafer is loaded into a PM at Step i by the robot,
the wafer stays in the PM for being processed. When the robot comes to the PM again, it
unloads the wafer and moves to a PM at Step i + 1 for loading the wafer. Then, the robot
moves to a PM at Step i−1 for unloading a wafer. At this time, it may need to wait there
since the wafer may be not processed. After the wafer is processed, the robot unloads the
wafer and moves to the empty PM at Step i. When it arrives at the PM, it loads a wafer
into the PM again. This implies that a wafer is completed at the PM at Step i. Thus, the
time taken for completing a wafer at the PM is τi + 2α + 2β + 3µ + ωi−1. Since there are ni
parallel PMs serving for Step i, i∈N+

n, the time taken for completing a wafer at Step i is

θi = (τi + 2α + 2β + 3µ + ωi−1)/ni, i∈N+
n (1)

With WRTCs, ρi ≤ τi ≤ ρi +δi, i∈N+
n, should hold. By the backward strategy, the

robot task sequence σ is repeatedly performed, implying that the robot cycle time is the
time taken for performing σ. Let ψ denote the robot cycle time. Then, we have

ψ = (n + 1)(α + β) + 2(n + 1)µ + ∑n
d=0 ωd = ψ1 + ψ2 (2)

In Equation (2), ψ1 = (n + 1)(α + β) + 2(n + 1)µ is known in advance and ψ2 = ∑n
d=0 ωd is

determined by a schedule. This work focuses on the scheduling problem of process-bound
SACTs with WRTCs and chamber cleaning requirements. For a process-bound SACT,
the robot is not busy all the time, and has time to wait at some PMs. Thus, the key to
schedule an SACT is to regulate the robot waiting time in a cycle such that a one-wafer
cyclic schedule is obtained.

Definition 1. An SACT is operated under a one-wafer cyclic schedule if the robot waiting times
ωi, i∈Nn, in each cycle keep unchanged.

In Definition 1, if robot waiting time ωi, i∈Nn, and each cycle is unchanged, the robot
cycle time ψ must be fixed. Further, by Equations (1) and (2), if an SACT is operated by a
one-wafer cyclic schedule, we have

θi = ψ, i∈N+
n (3)

Wu et al. [15] present an efficient method to obtain a feasible and optimal one-wafer
cyclic schedule by properly regulating the robot waiting time. Readers can refer to [15]
for more details. Based on a one-wafer cyclic schedule, this work introduces a virtual
wafer-based method to deal with the chamber cleaning requirements next.

2.3. Approach to Deal with Chamber Cleaning Requirements

In order to ensure wafer quality, a chamber in a PM needs to be cleaned after a
specified quantity of wafers are consecutively processed. In this way, residual chemicals
and air particles can be removed from the chamber. Let mi, i∈N+

n, denote the maximal
number of wafers that a chamber in a PM at Step i consecutively process before the PM
is required to clean, and Ci, i∈N+

n, the required that. Note that mi ≥ 1 and Ci, i∈N+
n, are

known in advance and can be obtained by statistical experiments performed by process
engineers and data engineers.

With chamber cleaning requirements, once the robot completes unloading a wafer
from a PM at Step i, the PM can start to clean its chamber. Then, by the backward strategy,
the robot performs a sequence of robot tasks (i.e., Mi(i + 1) → Li + 1 →M(i + 1)(i−1) →Wi−1
→ Ui−1→M(i−1)i) such that it moves to the PM again for being ready to load a wafer. Note
that the robot waiting time taken by Wi−1 is determined by a one-wafer cyclic schedule in
advance. If the time needed for a chamber cleaning is too long, leading to max(α + β + 3µ +
ωi−1, Ci) = Ci, it would postpone the starting time of the subsequent robot tasks. In other

Appl. Sci. 2021, 11, 9193 5 of 18

words, the clamber cleaning operation at Step i means that the robot cannot arrive at a PM
at Step j, 1 ≤ j ≤ i−2, for unloading a processed wafer in time, leading to a long wafer
delay time, violating WRTCs. Such a long wafer delay time may cause a quality problem
to the wafer. Therefore, it is very important to develop a precise scheduling and control
method for an SACT with WRTCs and chamber cleaning operations. This work aims to
do so.

In fact, by ignoring chamber cleaning requirements, a one-wafer cyclic schedule can
be found by properly regulating the robot waiting time [15]. With chamber cleaning re-
quirements, virtual wafers are introduced into SACTs based on a one-wafer cyclic schedule
such that the chambers in the tools can be cleaned in time and WRTCs are not violated.
Specifically, by a one-wafer cyclic schedule, sometimes when the robot comes to LLs for
unloading a raw wafer, it unloads a virtual wafer. Thus, after a real wafer is processed
in a PM, if the next wafer to be processed at the PM is a virtual one, it implies that the
chamber in the PM can be cleaned. Thus, when the robot task of unloading the real wafer
from the PM is performed, it triggers a cleaning task for the chamber in the PM. When
a virtual is loaded into the PM, its processing is not performed since it is a virtual one.
Instead, the chamber performs the cleaning operation. Then, by the backward strategy and
the one-wafer cyclic schedule, the robot can move to any step according to the schedule
without any delay. In this way, enough time for chamber cleaning at the PM can be ensured
and, at the same time, the starting time of any robot task in a cycle is not postponed such
that the WRTCs can be met.

However, if the required chamber cleaning time is too long, it may need to consec-
utively load more virtual wafers to provide enough time for chamber cleaning. In order
to determine how many virtual wafers should be consecutively loaded into a PM it is
necessary to know how long can be scheduled for the chamber cleaning operation if a
specified number of virtual wafers are consecutively loaded into a PM. Let Od

i denote the
scheduled time for the chamber cleaning operation of a PM at Step i, i∈N+

n, if there are d
virtual wafers being consecutively loaded into the PM.

Assume that there is no virtual wafer being processed in a PM at Step i, i∈N+
n. For

such a case, with chamber cleaning requirements, once the robot completes unloading a
wafer from a PM at Step i, the PM can start to clean its chamber. Then, by the backward
strategy, the robot performs a sequence of robot tasks (i.e., Mi(i + 1) → Li + 1 →M(i + 1)(i−1)
→Wi−1 → Ui−1 →M(i−1)i) such that it moves to the PM again for loading a wafer. When
the robot starts to perform a loading task, the chamber cleaning operation ends. Thus, for
this case, the time can be scheduled for cleaning the chamber in the PM at Step i is O0

i = α
+ β + 3µ +ωi−1.

Assume that after a real wafer is unloaded from a PM at Step i, there is a single virtual
wafer being loaded into the PM only to deal with chamber cleaning before another real
wafer is loaded into the PM for processing. For this case, when a real wafer is unloaded
from the PM, the chamber in the PM starts to clean its internal environment. Then, the robot
sequentially performs the following robot task sequence: Mi(i + 1) → Li + 1 →M(i + 1)(i−1) →
Wi−1 → Ui−1 →M(i−1)i → Li such that a virtual wafer is loaded into the PM. Note that the
time for the virtual wafer staying in the PM is τi, which is determined by the one-wafer
cyclic schedule. By the backward strategy, when the robot comes to the PM again, the robot
performs the following robot tasks: Ui →Mi(i + 1) → Li + 1 →M(i + 1)(i−1) →Wi−1 → Ui−1
→M(i−1)i such that the robot moves to the PM again carrying a real wafer. At this time,
the cleaning operation ends, and the real wafer is loaded into the PM by performing Li. In
this case, the time that can be scheduled for the chamber cleaning at a PM at Step i equals
the time needed for the following consecutive activities: Mi(i + 1) → Li + 1 →M(i + 1)(i−1) →
Wi−1 → Ui−1 →M(i−1)i → Li → the virtual wafer staying in the PM→ Ui →Mi(i + 1) → Li

+ 1 →M(i + 1)(i−1) →Wi−1 → U(i−1) →M(i−1)i. Therefore, with Equation (1), we have O1
i

= τi + 3α + 3β + 6µ + 2ωi−1 = ni × θi + α + β + 3µ + ωi−1. Similarly, if there are d virtual

Appl. Sci. 2021, 11, 9193 6 of 18

wafers being consecutively loaded into a PM at Step i, i∈N+
n, the scheduled time for the

chamber cleaning in the PM is

Od
i = d × ni × θi + α + β + 3µ + ωi−1, d ≥ 0 (4)

Expression (4) gives the time that can be scheduled for the chamber cleaning at a PM
at Step i, i∈N+

n, if there are d virtual wafers being consecutively loaded into the PM. Let
di denote the minimal number of virtual wafers to be consecutively loaded into the PM
such that there is enough time scheduled for chamber cleaning. Assume that the chamber
cleaning time at parallel PMs at Step i is same. If the exact time required for the chamber
cleaning at a PM at Step i, i∈N+

n, is given, by Equation (4) we have

di = arg min
d

(h = d× ni × θi + α + β + 3µ + ωi−1 − Ci|h ≥ 0), i ∈ N+
n, (5)

In Equation (5), θi and ωi−1 are determined by the one-wafer cyclic schedule. Now,
the question is how to obtain a schedule by introducing virtual wafers such that chamber
cleaning requirements are ensured while the throughput is maximized. In real semiconduc-
tor fabs, a periodic schedule for cluster tools is preferred since it is easy to be implemented
and WRTCs are easily met in order to avoid the quality problem. It is necessary to note
that, in this work, wafers (including both real and virtual wafers) are loaded into cluster
tools based on the one-wafer cyclic schedule defined by Definition 1. In addition, there is a
sequence of real and virtual wafers loaded into a cluster tool periodically. Thus, we have
the following definition.

Definition 2. A schedule is called a Periodical Virtual-wafer Schedule (PVS) if real and virtual
wafers are loaded into a cluster tool in a periodically repeated sequence based on a one-wafer cyclic
schedule.

This work aims to find a feasible and optimal PVS, i.e., a PVS that can achieve the
maximal throughput while meeting chamber cleaning requirements.

3. Approximation Solution Algorithm

Let xj ∈ {0, 1} represent the j-th wafer (also called Wafer-j) loaded into a cluster tool
in a cylce. If xj = 1, it represents a virtual wafer, otherwise it is a real one. Let π = (x′1, x′2,
. . . , x′q) denote a PVS for a cluster tool, x′j ∈ {0, 1}. Thus, π = (x′1, x′2, . . . , x′q) indicates a
repeated sequence of real and virtual wafers loaded into the tool, where q is the number of
wafers in a cycle and x′j represents a wafer at the j-th position in the wafer loading sequence,
j∈N+

q. Further, if x′j = 1, it represents a virtual wafer, and otherwise it is a real one. π =
(x′1, x′2, . . . , x′q) is called the wafer loading sequence for a cluster tool under a PVS.

In a cluster tool, there may be several parallel PMs serving for a step. Since π is a
repeated sequence of wafers loaded into a tool, there must exist a sequence of wafers being
repeatedly processed by a PM at a Step that is different from π. Let ki, i∈N+

n, denote the
number of wafers in a repeated sequence being processed by a PM at Step i of a cluster tool.
Then, we have

ki =

{
q
ni

, i f q
ni

is an integer
q, otherwise

, i ∈ N+
n (6)

We explain the meaning of Expression (6) as follows. Assume that a cluster tool is
operated under a PVS π = (x′1, x′2, . . . , x′q) and q/ni is an integer. After q wafers are
sequentially loaded into Step i for being processed according to the PVS, this implies that
each PM at Step i has just processed q/ni wafers since there are ni parallel PMs at the
step. Note that q is the number of wafers in a repeated wafer loading sequence under the
PVS. This means that the sequence of q/ni wafers (including virtual and real ones) being
processed at a PM forms a wafer processing sequence that is continuously repeated as the
tool operates. Therefore, ki = q/ni if q/ni is an integer for this case.

Appl. Sci. 2021, 11, 9193 7 of 18

Assume that an SACT is operated under a PVS π = (x′1, x′2, . . . , x′q) and q/ni is not
an integer. For this case, after q×ni wafers are sequentially loaded into Step i for being
processed according to the PVS, each PM at Step i has just processed q wafers since there
are ni parallel PMs at the step. Since q is the number of wafers in a repeated wafer loading
sequence under the PVS, the sequence of q wafers (including virtual and real ones) being
processed at a PM forms a wafer processing sequence that is continuously repeated as the
tool operates. Therefore, ki = q if q/ni is not an integer for this case.

A solution π for the addressed problem can be treated as a bit-string. Thus, a genetic
algorithm (GA) with a binary encoding is applied to find an optimal or near optimal
solution for the addressed problem. GA is a meta-heuristic and inspired by Charles
Darwin’s theory of natural evolution. Many studies have shown that GA can achieve a
promising solution for optimization problems [24–26].

3.1. Solution Encoding and Modification

GA relies on a population of individuals to explore a search space. Each individual is
a set of chromosomes representing a candidate solution. In this work, a solution is denoted
by π. Thus, each individual (i.e., a candidate solution) in GA is encoded as a string of 1 (if
the corresponding position is a virtual wafer) and 0 (if the corresponding position is a real
wafer).

For Step i, i∈N+
n, if di = 1 obtained by Equation (5), it means that at least one virtual

wafer is required to be loaded into a PM at the step to ensure the chamber cleaning
requirement after mi real wafers are continuously processed in the PM, at most. In order to
check if the chamber cleaning requirement at Step i, i∈N+

n, with di = 1 is met, it needs to
know the type (i.e., virtual or real) of the j-th wafer processed in a PM at the step. Thus,
Algorithm 1 is developed to update xj, j > 0, based on π = (x′1, x′2, . . . , x′q).

Algorithm 1. Updating xj based on π for the case with di = 1

Input: π;
Output: xj, 1 ≤ j ≤ (mi + ki) × ni;

(1) For j = 1 to q
(2) xj = x′ j;
(3) If ki = q
(4) For j = q + 1 to ni × q
(5) For g = 1 to q
(6) If (j − g)/q is an integer
(7) xj = xg;
(8) If mi + 1 < ki
(9) For g = 1 to ni

(10) For h = 0 to mi − 1
(11) xg+h×ni+ki×ni

= xg+h×ni
;

In Algorithm 1, Statements (1) and (2) determine the type of the j-th wafer loaded into
Step i for being processed by setting xj = x′j, 1 ≤ j ≤ q. Note that, if ki = q, when each PM at
Step i has just processed ki wafers, this implies that ni × ki wafers have been loaded into
Step i for being processed. Due to π = (x′1, x′2, . . . , x′q) and xj = x′j, 1 ≤ j ≤ q, Statements
(3)–(7) obtain the type of the j-th wafer, q + 1 ≤ j ≤ ni × ki. In this way, the types of the
ni × ki wafers are determined.

If mi + 1 ≥ ki, there is at least one virtual wafer in the ki wafers being consecutively
processed at each PM at Step i, i∈N+

n. If there is no virtual wafer in the ki wafers, the
chamber cleaning requirement at the step cannot be met since ki is the number of wafers
in a repeated wafer processing sequence under a PVS. For the case with mi + 1 < ki, this
requires that there is at least one virtual wafer among any mi + 1 wafers being consecutively
processed by each PM at Step i, i∈N+

n. In this way, the chamber cleaning requirement at
the step can be guaranteed. For this case, it is necessary to know the type of the j-th wafer,
1 + ni × ki ≤ j ≤ (mi + ki) × ni, for being processed at Step i as well.

Appl. Sci. 2021, 11, 9193 8 of 18

Notice that after ni × ki wafers are processed at Step i, ki wafers are processed by each
PM at the Step. Further, the next ki wafers (including virtual and real ones) to be processed
by a PM has the same wafer loading sequence as the processed ki wafers. Thus, Statements
(8)–(11) obtain the type of the j-th wafer, 1 + ni × ki ≤ j ≤ (mi + ki) × ni, loaded into the step.

For Step i, i∈N+
n, if di = 2 obtained by Equation (5), it means that at least two virtual

wafers are required to be consecutively loaded into a PM at the step to ensure the chamber
cleaning requirement after mi real wafers are continuously processed in the PM, at most.
Then, Algorithm 2 is developed to obtain the type of the j-th wafer processed at the step,
i.e., update xj, j > 0, based on π.

Algorithm 2: Updating xj based on π for the case with di = 2

Input: π;
Output: xj, 1 ≤ j ≤ (2ki + 1) × ni;

(1)–(7) Same as the ones in Algorithm 1, respectively
(8) For g = 1 to ni
(9) For h = 0 to ki − 1

(10) xg+h×ni+ki×ni
= xg+h×ni

;
(11) xg+2ki×ni

= xg;

In Algorithm 2, Statements (1)–(7) are same as those in Algorithm 1, and are used for
setting xj, 1 ≤ j ≤ ni × ki.

Notice that, under a PVS, the wafer type sequence to be processed by a PM at Step
i is periodically repeated, and the number of wafers in such a sequence is ki obtained by
Equation (6). Then, three consecutive wafer processing sequence are named as WPS-1,
WPS-2, and WPS-3, respectively. Further, let xj, j = g + h×ni, g ∈ {1, 2, . . . , ni}, 0 ≤ h
≤ ki−1, denote a wafer in WPS-1; xj, j = g + h×ni, g ∈ {1, 2, . . . , ni}, ki ≤ h ≤ 2ki−1, a
wafer in WPS-2; and xj, j = g + h×ni, g ∈ {1, 2, . . . , ni}, 2ki ≤ h ≤ 3ki−1, and a wafer in
WPS-3. There may exist a case when only two virtual wafers are consecutively processed
by a PM in a processing sequence consisting of WPS-1 and WPS-2. In such a case, one
virtual wafer is at the ki-th position in WPS-1 (i.e., xj, j = g + h×ni, h = ki−1), while the
other virtual wafer is at the first position in WPS-2 (i.e., xj, j = g + h×ni, h = ki). These
two consecutive wafers represent a chamber cleaning operation. In order to check if the
chamber cleaning requirement can be met, how many real wafers are processed between
this chamber cleaning operation and the next one needs to be known. In this case, two
consecutive virtual wafers at the ki-th position in WPS-2 (i.e., xj, j = g + h×ni, h = 2ki−1)
and the first position in WPS-3 (i.e., xj, j = g + h×ni, h = 2ki) represent the next one. Thus, if
the number of real wafers being processed by the PM between these two chamber cleaning
operations is no more than mi, it means that the chamber cleaning requirement is met for
the PM all the time, since the wafer loading sequence, being same as WPS-1, WPS-2, and
WPS-3, is periodically repeated. Then, it is necessary to know the type of the j-th wafer, ni
× ki + 1 ≤ j ≤ (2ki + 1) × ni, to check if the chamber cleaning requirement at the step can
be met for this case. In fact, for other cases, if the type of the j-th wafer, ni × ki + 1 ≤ j ≤
(2ki + 1) × ni, is known, we can check if the chamber cleaning requirement at the step can
be met under a PVS. Then, Statements (8)–(11) in Algorithm 2 are used to determine the
type of the j-th wafer, ni × ki + 1 ≤ j ≤ (2ki + 1) × ni.

For Step i, i∈N+
n, one of Algorithms 1 and 2 can be applied to update xj, j > 0. For

different steps, the ranges of index j of xj obtained by an applied algorithm are different.
Let s = argmaxi{{ki × ni| i∈N+

n, di = 1, and mi + 1 ≥ ki}, {(mi + ki) × ni| i∈N+
n, di = 1, and

mi + 1 < ki}, {(2ki + 1) × ni| i∈N+
n, di = 2}}. Then, for Step s, the largest value j, the index of

xj obtained by an applied algorithm, is also the largest one among those for all steps. Thus,
we just need to update xj based on π for Step s by one of Algorithms 1 and 2.

Notice that an individual (solution) may result in the chamber cleaning requirement
at a step not being satisfied. Thus, three algorithms are developed to modify the individual
for different cases such that the chamber cleaning requirements at all steps are satisfied.

Appl. Sci. 2021, 11, 9193 9 of 18

For Step i with di = 1 and mi + 1 ≥ ki, i∈N+
n, Algorithm 3 is developed to modify π

such that there is at least one virtual wafer in the ki wafers that are consecutively processed
by each PM. In this way, the chamber cleaning requirement at the step can be met.

Algorithm 3: Individual modification for the case with di = 1 and mi + 1 ≥ ki

(1) For g = 1 to ni
(2) R = 0;
(3) For h = 0 to ki−1
(4) If xg+h×ni

= 0
(5) R = R + 1;
(6) Else If xg+h×ni

= 1
(7) R = 0;
(8) If R = ki
(9) j = random [0, ki−1];

(10) xg+j×ni = 1;
(11) For f = 1 to q
(12) If (g + j×ni − f)/q is a non-negative integer
(13) xf = 1;
(14) xf

′ = xf;
(15) Perform one of Algorithms 1 and 2 for Step s;

In the algorithm, R is used to record the number of real wafers to be consecutively
processed by a PM. By performing Statements (4)–(7), the value of R is updated. When
the value of R equals ki, one real wafer of the ki wafers is selected by Statement (9) and
replaced by a virtual wafer by Statement (10) to meet the chamber cleaning requirement.
Note that random[0, ki−1] in Statement (9) is used to generate an integer randomly in the
range [0, ki−1]. Furthermore, π is modified according to Statements (11)–(15). Then, based
on the modified π by Statement (14), xj should be updated by one of Algorithms 1 and 2
for Step s as well by Statement (15). Thus, by Algorithm 3, an individual is modified such
that for Step i with di = 1 and mi + 1 ≥ ki, i∈N+

n, the chamber cleaning requirement is met.
For Step i with di = 1 and mi + 1 < ki, i∈N+

n, Algorithm 4 is developed to modify π so
there is at least one virtual wafer among any mi + 1 wafers being consecutively processed by
each parallel PM. In this way, the chamber cleaning requirement at the step can be met. In
the algorithm, Statements (4)–(7) are the same as those in Algorithm 3. For the (g + h×ni)-th
wafer, if it is a real one (i.e., xg+h×ni

= 0) and R = mi + 1 obtained by performing Statements
(4)–(7), the wafer is replaced by a virtual one and at the same time R is updated to zero
by performing Statements (9) and (10). In this way, it prevents mi + 1 wafers from being
consecutively processed by a PM. Then,π is modified according to Statements (11)–(15).
Based on the modified π, xj is updated by one of Algorithms 1 and 2 for Step s as well by
performing Statement (15). Thus, by Algorithm 4, an individual is modified such that for
Step i with di = 1 and mi + 1 < ki, i∈N+

n, the chamber cleaning requirement is met.

Appl. Sci. 2021, 11, 9193 10 of 18

Algorithm 4: Individual modification for the case with di = 1 and mi + 1 < ki

(1) For g = 1 to ni
(2) R = 0;
(3) For h = 0 to ki−1 + mi
(4) If xg+h×ni

= 0
(5) R = R + 1;
(6) Else If xg+h×ni

= 1
(7) R = 0;
(8) If R = mi + 1
(9) xg+h×ni

= 1;
(10) R = 0;
(11) For f = 1 to q
(12) If (g + h×ni − f)/q is a non-negative integer
(13) xf = 1;
(14) xf

′ = xf;
(15) Perform one of Algorithms 1 and 2 for Step s;

For Step i with di = 2, Algorithm 5 is developed to modify π so that at least two
virtual wafers are consecutively loaded into a PM for being processed after no more than
mi real wafers are continuously processed by the PM. In this way, the chamber cleaning
requirement can be met.

Note that in the algorithm symbol V is used to record the number of virtual wafers to
be consecutively processed by a PM. Notice that there must exist at least two virtual wafers
to be consecutively processed by a PM during two adjacent wafer loading sequences to
meet the chamber cleaning requirement for the PM. Thus, V0 is used to record if there exists
two such virtual wafers being consecutively processed. By performing the algorithm, the
type of wafers processed by each PM at the step is checked. Then, there are two cases: (1) a
wafer represented by xg+h×ni

is a real one, i.e., xg+h×ni
= 0; and (2) a wafer represented by

xg+h×ni
is a virtual one, i.e., xg+h×ni

= 1.
In Case (1), R and V are updated by Statements (7) and (8), respectively. At this time,

if the number of real wafers to be consecutively processed by a PM is greater than mi (i.e.,
R > mi), the wafer represented by xg+h×ni

should be replaced by a virtual wafer such that
xg+h×ni

= 1. Statement (10) is performed to do so. In addition, R is updated by performing
Statement (11). Similar to Statements (11)–(15) in Algorithms 3 and 4, Statements (12)–(16)
in Algorithm 5 are performed to modify π and xj.

In Case (2), V is updated by Statement (18). At this time, if V = 2, it means that
two virtual wafers are consecutively loaded into a PM such that the chamber cleaning
requirement is met. Next, if a real wafer is loaded into the PM, R and V should be updated
to be one and zero, respectively. Thus, if V = 2 holds after Statement (18) is performed, R
and V are updated by Statements (20) and (21), respectively. In addition, V0 is updated to
be one by Statement (22). By Statement (23), if V0 = 0, it means that there does not exist two
virtual wafers to be consecutively processed by a PM during two adjacent wafer loading
sequences so as to meet the chamber cleaning requirement for the PM. Thus, two adjacent
wafers (represented by xg+(ki−1)×ni

and xg+ki×ni
) are replaced by virtual wafers if they are

real wafers. Then, similar to Statements (12)–(16), Statements (25)–(29) and (32)–(36) are
performed to modify π and xj for the cases if xg+(ki−1)×ni

= 0 and xg+ki×ni
= 0 checked by

Statements (23) and (30), respectively. In this way, an individual is modified such that for
Step i with di = 2 and i∈N+

n, the chamber cleaning requirement is met.

Appl. Sci. 2021, 11, 9193 11 of 18

Algorithm 5: Individual modification for the case with di = 2

(1) For g = 1 to ni
(2) R = 0;
(3) V = 0;
(4) V0 = 0;
(5) For h = 0 to 2ki
(6) If xg+h×ni

= 0
(7) R = R + 1;
(8) V = max(V−1, 0);
(9) If R > mi

(10) xg+h×ni
= 1;

(11) R = max(R−1, 0);
(12) For f = 1 to q
(13) If (g + h×ni − f)/q is a non-negative integer
(14) xf = 1;
(15) xf

′ = xf;
(16) Perform one of Algorithms 1 and 2 for Step s;
(17) If xg+h×ni

= 1
(18) V = V + 1;
(19) If V = 2
(20) R = 0;
(21) V = 0;
(22) V0 = 1;
(23) If V0 = 0 and xg+(ki−1)×ni

= 0;
(24) xg+(ki−1)×ni

= 1;
(25) For f = 1 to q
(26) If (g + (ki−1)×ni − f)/q is a non-negative integer
(27) xf = 1;
(28) xf

′ = xf;
(29) Perform one of Algorithms 1 and 2 for Step s;
(30) If V0 = 0 and xg+ki×ni

= 0;
(31) xg+ki×ni

= 1;
(32) For f = 1 to q
(33) If (g + ki×ni − f)/q is a non-negative integer
(34) xf = 1;
(35) xf

′ = xf;
(36) Perform one of Algorithms 1 and 2 for Step s;

3.2. Selection, Crossover, and Mutation Mechanism

For the selection mechanism, a much simpler and faster selection scheme, called
n-tournament, is adopted in this work. For n-tournament selection, n individuals are
randomly selected from the population where n is determined in advance. Then, an
individual among the selected ones wins the tournament according to their fitness values
and is finally selected. Note that this work aims at maximizing the number of real wafers
in π. Thus, the fitness value of an individual can be obtained by the following expression.

Fπ =
(
∑q

j=1

(
1− xj

))
/q (7)

In Algorithm 2, Fπ is the fitness value of an individual represented by π. Thus, for n-
tournament selection, an individual with the highest fitness value in the randomly selected
ones wins the tournament in this work.

For the selected individuals (parents) by the n-tournament selection mechanism,
crossover operations are applied to generate new offsprings. After crossover operation
between two individuals, their chromosomes are combined to create a new offspring. Since
a single-point crossover operator is simple and can be easily implemented, it is adopted in
this work and illustrated in Figure 2. For two individuals, a crossover point in the array of

Appl. Sci. 2021, 11, 9193 12 of 18

bits is randomly selected, and exchanging then takes place between them such that their
two offsprings are generated. Further, in order to avoid the premature convergence in the
searching process, single-point mutation operations are adopted on the offsprings obtained
by crossover operations. Specifically, a position of an offspring individual is randomly
selected. If the chromosome at the position is one/zero, then it is changed to be zero/one.
Single-point mutation operations are illustrated in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 18

Figure 2. Crossover and mutation operations.

3.3. Procedure of Designed GA
In this work, GA is applied to solve the addressed problem. The population consists

of γ individuals, and they are randomly generated for the initial population. Each indi-
vidual represents a candidate solution denoted by π = (x′1, x′2, …, x′q), i.e., a periodically
repeated sequence of real and virtual wafers loaded into the tool. In order to check if the
chamber cleaning requirement at Step i, i∈N+n, is met, the type (i.e., virtual or real) of the
j-th wafer processed by a PM at the step needs to be known. Thus, for each individual,
one of Algorithms 1 and 2 is applied to update xj, j > 0. Then, one of Algorithms 3–5 is
applied to modify the individual such that it is a feasible candidate solution. When all
individuals are modified to be feasible ones, explorations are performed by selection,
crossover, and mutation operations such that a new generation is obtained. Each individ-
ual in the new generation is modified to be feasible by Algorithms 1–5 accordingly. After
that, selection, crossover, and mutation operations are performed to generate new off-
spring individuals again. Such a searching process is repeatedly performed until the ter-
mination condition is met. At this time, an optimal or near optimal solution can be ob-
tained.

Let Pc and Pm be the probability of crossover and mutation, respectively, and rand
[0,1] denote a randomly generated real number in [0,1]. Further, assume that γ = 2γ1 with
γ1 being a positive integer. Then, the proposed GA is given in Procedure 1.

Procedure 1: The proposed genetic algorithm is summarized as follows.
Step 1. Initialization: Randomly generate a population with γ individuals;

Step 2. Individual Modification:

1) Update xj, j > 0, for each individual by one of Algorithms 1 and 2; and

2) Modify each individual by one of Algorithms 3–5.

Step 3. Fitness value calculation: For each individual, its fitness value is obtained by (7).

Step 4. Selection: The n-tournament selection is performed for γ times such that γ selected

individuals form a new population.

Step 5. Crossover (Obtain a new generation):

1) γ individuals of the new population obtained by Step 4 are divided into γ/2

groups, and

2) For each group, if Pc > rand[0,1], a single-point crossover operation is per-

formed to generate two new individuals which are put in the new genera-

tion, and otherwise the two individuals in the group are directly put into

the new generation.

Step 6. Mutation: For each individual, if Pm > rand[0,1], a single-point mutation operation

is performed.

Figure 2. Crossover and mutation operations.

3.3. Procedure of Designed GA

In this work, GA is applied to solve the addressed problem. The population consists of
γ individuals, and they are randomly generated for the initial population. Each individual
represents a candidate solution denoted by π = (x′1, x′2, . . . , x′q), i.e., a periodically repeated
sequence of real and virtual wafers loaded into the tool. In order to check if the chamber
cleaning requirement at Step i, i∈N+

n, is met, the type (i.e., virtual or real) of the j-th
wafer processed by a PM at the step needs to be known. Thus, for each individual, one of
Algorithms 1 and 2 is applied to update xj, j > 0. Then, one of Algorithms 3–5 is applied to
modify the individual such that it is a feasible candidate solution. When all individuals
are modified to be feasible ones, explorations are performed by selection, crossover, and
mutation operations such that a new generation is obtained. Each individual in the new
generation is modified to be feasible by Algorithms 1–5 accordingly. After that, selection,
crossover, and mutation operations are performed to generate new offspring individuals
again. Such a searching process is repeatedly performed until the termination condition is
met. At this time, an optimal or near optimal solution can be obtained.

Let Pc and Pm be the probability of crossover and mutation, respectively, and rand
[0,1] denote a randomly generated real number in [0,1]. Further, assume that γ = 2γ1 with
γ1 being a positive integer. Then, the proposed GA is given in Procedure 1.

Procedure 1: The proposed genetic algorithm is summarized as follows.

Step 1 Initialization: Randomly generate a population with γ individuals;
Step 2 Individual Modification:

(1) Update xj, j > 0, for each individual by one of Algorithms 1 and 2; and
(2) Modify each individual by one of Algorithms 3–5.

Step 3 Fitness value calculation: For each individual, its fitness value is obtained by (7).
Step 4 Selection: The n-tournament selection is performed for γ times such that γ selected

individuals form a new population.
Step 5 Crossover (Obtain a new generation):

(1) γ individuals of the new population obtained by Step 4 are divided into
γ/2 groups, and

(2) For each group, if Pc > rand[0,1], a single-point crossover operation is
performed to generate two new individuals which are put in the new
generation, and otherwise the two individuals in the group are directly
put into the new generation.

Appl. Sci. 2021, 11, 9193 13 of 18

Step 6 Mutation: For each individual, if Pm > rand[0,1], a single-point mutation operation
is performed.

Step 7 Same as Step 2.
Step 8 Same as Step 3.
Step 9 If the termination condition is met, then output an individual with highest fitness

value in the current population, else go to Step 4.

4. Experiments
4.1. Parameter Setting

To test the performance of the proposed method in this work, numerical experiments
are carried out. The GA presented in Procedure 1 is coded in MATLAB and runs on a
laptop with eight Intel(R) Core(TM) i7-10750H CPU @2.60 GHz. In order to select a better
group of parameters (including γ, n-tournament, Pc, and Pm) for the GA, experiments were
performed with different parameter settings for 20 cases. Let Γ1 = (n1, n2, . . . , nn), Γ2 = (m1,
m2, . . . , mn), and Γ3 = (d1, d2, . . . , dn). Note that n is the number of steps in a cluster tool.
These 20 cases are shown in Table 1.

Table 1. The 20 cases used for experiments.

1: n = 2; Γ1 = (1, 1);
Γ2 = (3, 2); Γ3 = (1, 1); 2: n = 2; Γ1 = (1, 2);

Γ2 = (6, 4); Γ3 = (1, 1); 3: n = 2; Γ1 = (2, 2);
Γ2 = (8, 8); Γ3 = (1, 1); 4: n = 2; Γ1 = (3, 2);

Γ2 = (8, 10); Γ3 = (1, 1);

5: n = 2; Γ1 = (1, 3);
Γ2 = (7, 8); Γ3 = (1, 1); 6: n = 2; Γ1 = (1, 4);

Γ2 = (5, 10); Γ3 = (1, 1); 7:
n = 3; Γ1 = (1, 2, 2);

Γ2 = (5, 5, 7); Γ3 = (1, 1,
1);

8:
n = 3; Γ1 = (1, 1, 2);

Γ2 = (7, 6, 9); Γ3 = (1, 1,
1);

9:
n = 3; Γ1 = (1, 2, 3);

Γ2 = (7, 8, 7); Γ3 = (1, 1,
1);

10:
n = 4; Γ1 = (1, 2, 2, 1);

Γ2 = (6, 6, 8, 8); Γ3 = (1, 1,
1, 1);

11: n = 2; Γ1 = (1, 1);
Γ2 = (6, 8); Γ3 = (1, 2); 12: n = 2; Γ1 = (2, 1);

Γ2 = (5, 5); Γ3 = (2, 1);

13: n = 2; Γ1 = (2, 2);
Γ2 = (8, 9); Γ3 = (2, 2); 14: n = 2; Γ1 = (3, 2);

Γ2 = (8, 10); Γ3 = (2, 2); 15: n = 2; Γ1 = (1, 3);
Γ2 = (7, 10); Γ3 = (1, 2); 16: n = 2; Γ1 = (1, 4);

Γ2 = (5, 10); Γ3 = (1, 2);

17:
n = 3; Γ1 = (1, 2, 2);

Γ2 = (5, 7, 8); Γ3 = (1, 2,
2);

18:
n = 3; Γ1 = (3, 1, 2);

Γ2 = (10, 8, 6); Γ3 = (2, 1,
2);

19:
n = 3; Γ1 = (1, 2, 3);

Γ2 = (7, 8, 7); Γ3 = (1, 2,
1);

20:
n = 4; Γ1 = (1, 3, 2, 2);

Γ2 = (4, 7, 5, 5); Γ3 = (1, 1,
1, 2);

In this work, π = (x′1, x′2, . . . , x′q) denotes a PVS for a cluster tool. Furthermore, each
individual in the GA represents a candidate solution denoted by π. From the perspective
of scheduling and control, it is not desired to operate a cluster tool under a PVS with a
large value of q since a cluster tool may frequently switch from processing one wafer type
to another in a modern semiconductor fab. Thus, in this work, the upper bound of q is set
to be 100. Note that, if q equals one, for the 20 cases with the chamber cleaning requirement,
π can be obtained by setting x′1 = 1. This implies that the cluster tool always processes
virtual wafers and such a PVS is meaningless. Thus, the lower bound of q is set to be two.
Then, for each case, GA with a group of parameters as shown in Table 2 is performed for
99 times to find a better π. Note that the termination condition of GA is that when the
iteration time reaches 200. Therefore, we have totally performed 20 × 99 × 45 = 89,100
experiments in order to select a group of parameters for GA with good performance.

Appl. Sci. 2021, 11, 9193 14 of 18

Table 2. Experimental results of the presented GA with different parameter settings.

Population
Size n-Tournament Pc Pm No. TIi, i ∈ {1, 2, . . . ,

45}
ϕi, i ∈ {1, 2, . . . ,

45}

10 5

0.1

0.05 1 441 44.35

0.15 2 583 30.35

0.25 3 734 21.50

0.3

0.05 4 452 43.30

0.15 5 604 30.20

0.25 6 732 19.85

0.5

0.05 7 447 42.55

0.15 8 627 29.10

0.25 9 741 18.80

20

5

0.1

0.05 10 513 39.60

0.15 11 682 24.70

0.25 12 834 12.40

0.3

0.05 13 531 36.55

0.15 14 721 21.60

0.25 15 833 12.25

0.5

0.05 16 534 35.75

0.15 17 721 20.40

0.25 18 872 9.25

10

0.1

0.05 19 525 39.55

0.15 20 667 22.15

0.25 21 815 12.40

0.3

0.05 22 513 38.85

0.15 23 719 24.95

0.25 24 850 10.10

0.5

0.05 25 548 36.40

0.15 26 713 22.40

0.25 27 890 8.30

30

5

0.1

0.05 28 558 34.30

0.15 29 772 19.90

0.25 30 909 6.85

0.3

0.05 31 576 32.40

0.15 32 770 14.65

0.25 33 931 4.95

0.5

0.05 34 596 28.85

0.15 35 763 13.70

0.25 36 970 6

10 0.1

0.05 37 552 32.90

0.15 38 759 19.55

0.25 39 906 7.45

Appl. Sci. 2021, 11, 9193 15 of 18

Table 2. Cont.

Population
Size n-Tournament Pc Pm No. TIi, i ∈ {1, 2, . . . ,

45}
ϕi, i ∈ {1, 2, . . . ,

45}

0.3

0.05 40 587 32

0.15 41 746 17.45

0.25 42 936 6.3

0.5

0.05 43 581 31.70

0.15 44 816 14.65

0.25 45 963 3.8

One way to measure a group of parameter settings of GA is introduced as follows. Let
Fπ(i, j, q) denote the fitness value obtained by GA with the i-th group of parameters for
Case j under a PVS in which the number of wafers in a repeated wafer loading sequence
is q, i ∈ {1, 2, . . . , 45}, j ∈ {1, 2, . . . , 20}, and q ∈ {2, 3, . . . , 100}. Let I(u1, u2) = 1 if u1 = u2,
and otherwise I(u1, u2) = 0. Then, Ii(max(Fπ(i, j, q)|i ∈ {1, 2, . . . , 45}), Fπ(i, j, q)) is used to
record if GA with the i-th group of parameters achieves the best solution among the 45
groups of parameter settings under the given j and q. Let TIi denote the total number of
best solutions that GA with the i-th group of parameters achieves among the 45 group of
parameter settings under different j and q. Thus, we have

TIi = ∑20
j=1 ∑100

q=2 Ii(max(Fπ(i, j, q)|i{1, 2, . . . , 45}), Fπ(i, j, q)), i ∈ {1, 2, . . . , 45} (8)

TIi reflects the capability of GA with the i-th group of parameters to search a better
solution among the 45 different parameter settings to some extent. For a given group of
parameters and a case, the capability of GA to search for a good solution may decline as the
value of q increases since increasing the value of q enlarges the solution space. In fact, as
the value of q increases, the value of Fπ of a local optimal solution (i.e., an optimal solution
under a given q) obtained by (7) is much closer to that of a global optimal solution. This
implies that the trend of Fπ’s value becomes stable as the q’s value increases. Thus, the
stability of GA to search a good solution is used to measure a group of parameter settings
as well, and introduced next.

Let Ψ1(i, j) represent the stability of GA with the i-th group of parameters to search
for a solution if q varies from two to 100 for Case j, i ∈ {1, 2, . . . , 45} and j ∈ {1, 2, . . . , 20}.
Then, Ψ1(i, j) is obtained as

Ψ1(i, j) =
(

∑100
q=2 [max(Fπ(i, j, q)|q ∈ {2, 3, . . . , 100})− Fπ(i, j, q)]2

)
/99,

i ∈ {1, 2, . . . , 45}andj ∈ {1, 2, . . . , 20}
(9)

Further, Ψ2(i, j) records the ranking value of the i-th group of parameters among the
45 groups of parameter settings according to Ψ1(i, j) for a given Case j. Specifically, for Case
j (i.e., the value of j is determined), if Ψ1(i, j) is the f -th smallest one of all values of Ψ1(i, j)
for all i ∈ {1, 2, . . . , 45}, value f is given to Ψ2(i, j). In this way, Ψ2(i, j) can be obtained, i ∈
{1, 2, . . . , 45} and j ∈ {1, 2, . . . , 20}. Further, ϕi is used to record the average ranking value
of the j-th group of parameter settings for the 20 cases. Then, we have

ϕi =
(
∑20

j=12
(i, j)

)
/20, i ∈ {1, 2, . . . , 45} (10)

Note that for the i-th group of parameters, the smaller the value of ϕi is, the more
stable GA is to explore a good solution even if the solution space is enlarged, i.e., the
value of q increases. Then, TIi and ϕi are used to measure a group of parameter settings.
After 89,100 experiments with different parameter settings and the data analysis according

Appl. Sci. 2021, 11, 9193 16 of 18

to Expressions (8)–(10), experimental results are summarized in Table 2. It follows from
Table 2 that the parameter setting of the 36th group has the largest value of TIi for all i ∈ {1,
2, . . . , 45} and at the same time the value of ϕi is quite small. Thus, the parameter setting
of the 36th group is selected for the presented GA in this work.

4.2. Performance Evaluation

To test the performance of the presented GA, for the 20 cases in Table 3, comparisons
are made between GA and the upper bound of the average number of wafers being
produced in each robot cycle. Let UB denote such an upper bound. For Step i with di = 1,
i∈N+

n, a PM at the step has to process one virtual wafer after no more than mi real wafers
being processed. This means that in every mi + 1 robot cycles, mi real wafers are processed
at most since each robot cycle completes one wafer only. Thus, the upper bound of the
average number of real wafers being produced at the step is mi/(mi + 1) in each robot
cycle. Similarly, at Step i with di = 2, i∈N+

n, the upper bound of the average number of real
wafers being produced is mi/(mi + 2) in each robot cycle. Then, we have

UB = min({mi/(mi + 1)| di =1, i∈N+
n }, {mi/(mi + 2)| di = 2, i ∈ N+

n}) (11)

Table 3. Comparison results.

Case No. UB
GA

Results Running Time GAP-G-U

1 0.6667 0.6667 17.71 s 0

2 0.8000 0.8000 28.30 s 0

3 0.8889 0.8889 27.68 s 0

4 0.8889 0.8889 54.97 s 0

5 0.8750 0.8750 51.38 s 0

6 0.8333 0.8276 78.58 s 0.68%

7 0.8333 0.8000 28.69 s 4%

8 0.8571 0.8571 28.50 s 0

9 0.8750 0.8571 56.43 s 2.05%

10 0.8571 0.8571 28.53 s 0

11 0.8000 0.7500 18.13 s 6.25%

12 0.7143 0.7143 31.28 s 0

13 0.8000 0.8000 31.84 s 0

14 0.8000 0.7500 65.52 s 6.25%

15 0.8333 0.8182 59.47 s 1.81%

16 0.8333 0.7955 90.39 s 4.54%

17 0.7778 0.7241 32.13 s 6.91%

18 0.7500 0.7188 66.84 s 4.16%

19 0.8000 0.7500 51.95 s 6.25%

20 0.7143 0.7143 53.46 s 0

Average: 45.09 s 2.15%

In Table 3, GAP-G-U is the gap between the results obtained by GA and UB. It follows
from the comparison results in the table that for Cases 1–5, 8, 10, 12, 13, and 20, the values
of GAP-G-U equal zero, implying that GA finds the optimal solutions for these cases. For
Cases 6, 7, 9, 15, 16 and 18, the values of GAP-G-U are less than 5%; while for Cases 11, 14,

Appl. Sci. 2021, 11, 9193 17 of 18

17, and 19, all values of GAP-G-U are between 6% and 7%. Furthermore, the average GAP-
G-U of the 20 cases is 2.15%, that is acceptable from the perspective of real applications.
Moreover, the average time to find a solution by the constructed GA is just 45.09 s which is
quite short. Therefore, the proposed method in this work can be put into practice.

5. Conclusions

This work deals with a scheduling problem for SACTs with WRTCs and chamber
cleaning operations which are commonly seen requirements in real semiconductor manu-
facturing. Different from the studies on scheduling SACTs with purge operations in [22],
this work focuses on a more general case in which a chamber at a PM may process more
than one wafer before a cleaning operation is required. To do so, this work presents a
virtual wafer-based method such that a PM processes either a real wafer or a virtual wafer
at a time. Then, based on an optimal one-wafer cyclic schedule that can be obtained by the
method in [15], by the proposed virtual wafer-based method, a genetic algorithm is devel-
oped to find an optimal or near optimal solution. Extensive experiments are conducted to
verify the proposed method. Based on the experimental results, GA can be used to find
a high-quality solution within reasonable time. Furthermore, the obtained solution is a
periodical wafer loading sequence based on a one-wafer cyclic schedule that can be easily
implemented. Therefore, it has a high practical value in semiconductor manufacturing.

In practice, the PMs in cluster tools are prone to failure [27,28]. Such a PM failure may
result in a deadlock such that the WRTCs in PMs are violated. It is necessary to establish
real-time failure response policies to deal with PM failures in different situations. Thus,
our future work should deal with PM failures for cluster tools with WRTCs and chamber
cleaning operations.

Author Contributions: Conceptualization, J.L. and Y.Q.; methodology, J.L., Y.Q. and S.Z.; validation,
J.L. and S.Z.; investigation, T.S.; writing—original draft preparation, J.L.; writing—review and editing,
Y.Q., Z.L. and N.W.; supervision, Y.Q., Z.L. and N.W.; funding acquisition, N.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by National Natural Science Foundation of China (NSFC),
grant number 61803397 and in part by Science and Technology development fund (FDCT), Macau
SAR (File Nos: 0017/2019/A1, 0018/2021/A1, and 0083/2021/A2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, T.-E.; Lee, H.-Y.; Shin, Y.-H. Workload balancing and scheduling of a single-armed cluster tool. In Proceedings of the 5th

APIEMS Conference, Gold Coast, Australia, 12–15 December 2004; pp. 1–15.
2. Venkatesh, S.; Davenport, R.; Foxhoven, P.; Nulman, J. A steady state throughput analysis of cluster tools: Dual-blade versus

single-blade robots. IEEE Trans. Semicond. Manuf. 1997, 10, 418–424. [CrossRef]
3. Rostami, S.; Hamidzadeh, B.; Camporese, D. An optimal periodic scheduler for dual-arm robots in cluster tools with residency

constraints. IEEE Trans. Robot. Autom. 2001, 17, 609–618. [CrossRef]
4. Lee, T.-E.; Park, S.-H. An extended event graph with negative places and tokens for timed window constraints. IEEE Trans.

Autom. Sci. Eng. 2005, 2, 319–332. [CrossRef]
5. Kim, J.-H.; Lee, T.-E.; Lee, H.-Y.; Park, D.-B. Scheduling analysis of timed-constrained dual-armed cluster tools. IEEE Trans.

Semicond. Manuf. 2003, 16, 521–534. [CrossRef]
6. Xiong, W.Q.; Pan, C.R.; Qiao, Y.; Wu, N.Q.; Chen, M.X.; Hsieh, P.H. Reducing wafer delay time by robot idle time regulation for

single-arm cluster tools. IEEE Trans. Autom. Sci. Eng. 2020. [CrossRef]
7. Jacob, R.; Amari, S. Output feedback control of discrete processes under time constraint: Application to cluster tools. Int. J.

Comput. Integr. Manuf. 2017, 30, 880–894. [CrossRef]
8. Kim, C.; Lee, T.-E. Feedback Control of Cluster Tools for Regulating Wafer Delays. IEEE Trans. Autom. Sci. Eng. 2016, 13,

1189–1199. [CrossRef]

http://doi.org/10.1109/66.641483
http://doi.org/10.1109/70.964662
http://doi.org/10.1109/TASE.2005.851236
http://doi.org/10.1109/TSM.2003.815203
http://doi.org/10.1109/TASE.2020.3014078
http://doi.org/10.1080/0951192X.2016.1224391
http://doi.org/10.1109/TASE.2015.2404921

Appl. Sci. 2021, 11, 9193 18 of 18

9. Lim, Y.; Yu, T.S.; Lee, T.E. A new class of sequences without interferences for cluster tools with tight wafer delay constraints. IEEE
Trans. Autom. Sci. Eng. 2019, 16, 392–405. [CrossRef]

10. Roh, D.H.; Lee, T.G.; Lee, T.E. K-cyclic schedules and the worst-case wafer delay in a dual-armed cluster tool. IEEE Trans.
Semicond. Manuf. 2019, 32, 236–249. [CrossRef]

11. Lim, Y.; Yu, T.S.; Lee, T.E. Adaptive scheduling of cluster tools with wafer delay constraints and process time variation. IEEE
Trans. Autom. Sci. Eng. 2020, 17, 375–388. [CrossRef]

12. Wang, J.; Pan, C.; Hu, H.; Li, L.; Zhou, Y. A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and
residency time constraints. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1373–1386. [CrossRef]

13. Ko, S.G.; Yu, T.S.; Lee, T.E. Wafer delay analysis and workload balancing of parallel chambers for dual-armed cluster tools with
multiple wafer types. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1516–1526. [CrossRef]

14. Wang, J.; Hu, H.; Pan, C.; Li, L.; Zhou, Y.; Li, L. Scheduling dual-arm cluster tools with multiple wafer types and residency time
constraints. IEEE/CAA J. Autom. Sin. 2020, 7, 776–789. [CrossRef]

15. Wu, N.Q.; Chu, C.B.; Chu, F.; Zhou, M.C. A Petri net method for schedulability and scheduling problems in single-arm cluster
tools with wafer residency time constraints. IEEE Trans. Semicond. Manuf. 2008, 21, 224–237. [CrossRef]

16. Wu, N.Q.; Zhou, M.C. A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer
residency time constraint based on steady schedule analysis. IEEE Trans. Autom. Sci. Eng. 2010, 7, 303–315.

17. Pan, C.R.; Qiao, Y.; Wu, N.Q.; Zhou, M.C. A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with
wafer residency time constraints and activity time variation. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 805–818.

18. Qiao, Y.; Wu, N.Q.; Zhou, M.C. Petri net modeling and wafer sojourn time analysis of single-arm cluster tools with residency time
constraint and activity time variation. IEEE Trans. Semicond. Manuf. 2012, 25, 432–446. [CrossRef]

19. Qiao, Y.; Wu, N.Q.; Zhou, M.C. Real-time scheduling of single-arm cluster tools subject to residency time constraints and bounded
activity time variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 564–577. [CrossRef]

20. Wu, N.Q.; Zhou, M.C. Modeling, analysis and control of dual-arm cluster tools with residency time constraint and activity time
variation based on Petri nets. IEEE Trans. Autom. Sci. Eng. 2012, 9, 446–454.

21. Wu, N.Q.; Zhou, M.C. Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint
and activity time variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 203–209.

22. Yu, T.S.; Kim, H.J.; Lee, T.E. Scheduling single-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng.
2018, 15, 705–716. [CrossRef]

23. Yu, T.S.; Lee, T.E. Scheduling dual-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng. 2019, 16,
218–228. [CrossRef]

24. Abderrabi, F.; Godichaud, M.; Yalaoui, A.; Yalaoui, F.; Amodeo, L.; Qerimi, A.; Thivet, E. Flexible job shop scheduling problem
with sequence dependent setup time and job splitting: Hospital catering case study. Appl. Sci. 2021, 11, 1504. [CrossRef]

25. Park, J.-S.; Ng, H.-Y.; Chua, T.-J.; Ng, Y.-T.; Kim, J.-W. Unified genetic algorithm approach for solving flexible job-shop scheduling
problem. Appl. Sci. 2021, 11, 6454. [CrossRef]

26. Zou, P.; Rajora, M.; Liang, S.Y. Multimodal optimization of permutation flow-shop scheduling problems using a clustering-
genetic-algorithm-based approach. Appl. Sci. 2021, 11, 3388. [CrossRef]

27. Qiao, Y.; Wu, N.Q.; Pan, C.R.; Zhou, M.C. How to respond to process module failure in residency time-constrained single-arm
cluster tools. IEEE Trans. Semicond. Manuf. 2014, 27, 462–474. [CrossRef]

28. Qiao, Y.; Pan, C.R.; Wu, N.Q.; Zhou, M.C. Response policies to process module failure in single-arm cluster tools subject to wafer
residency time constraints. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1125–1139. [CrossRef]

http://doi.org/10.1109/TASE.2018.2815157
http://doi.org/10.1109/TSM.2019.2910399
http://doi.org/10.1109/TASE.2019.2930046
http://doi.org/10.1109/TASE.2018.2878063
http://doi.org/10.1109/TASE.2021.3061140
http://doi.org/10.1109/JAS.2020.1003150
http://doi.org/10.1109/TSM.2008.2000425
http://doi.org/10.1109/TSM.2012.2199338
http://doi.org/10.1109/TASE.2012.2192476
http://doi.org/10.1109/TASE.2017.2682271
http://doi.org/10.1109/TASE.2017.2764105
http://doi.org/10.3390/app11041504
http://doi.org/10.3390/app11146454
http://doi.org/10.3390/app11083388
http://doi.org/10.1109/TSM.2014.2340858
http://doi.org/10.1109/TASE.2014.2312823

	Introduction
	Virtual Wafer-Based Method
	Robot Tasks
	One-Wafer Cyclic Schedule
	Approach to Deal with Chamber Cleaning Requirements

	Approximation Solution Algorithm
	Solution Encoding and Modification
	Selection, Crossover, and Mutation Mechanism
	Procedure of Designed GA

	Experiments
	Parameter Setting
	Performance Evaluation

	Conclusions
	References

