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Abstract: In this article, we propose a deep-learning-based estimation model for rating enlarged
perivascular spaces (EPVS) in the brain’s basal ganglia region using T2-weighted magnetic resonance
imaging (MRI) images. The proposed method estimates the EPVS rating directly from the T2-
weighted MRI without using either the detection or the segmentation of EVPS. The model uses
the cropped basal ganglia region on the T2-weighted MRI. We formulated the rating of EPVS as a
multi-class classification problem. Model performance was evaluated using 96 subjects’ T2-weighted
MRI data that were collected from two hospitals. The results show that the proposed method can
automatically rate EPVS—demonstrating great potential to be used as a risk indicator of dementia to
aid early diagnosis.
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1. Introduction

Perivascular spaces (PVSs), also known as Virchow-Robin spaces, are the pial-lined
and fluid-filled cavities surrounding the walls of arteries, arterioles, veins, and venules in
the brain [1]. PVSs have a significant role in the glymphatic system and waste clearance
process [2,3] and are key to regulating immunological responses [4]. Several studies on en-
larged perivascular spaces (EPVS) in the brain indicate that their presence is an indication of
neuronal dysfunctions and that they could serve as a biomarker to diagnose brain diseases
such as dementia [5–7], multiple sclerosis [8], stroke [9–13], Parkinson’s [14], and small ves-
sel diseases [15–19]. Due to its soft tissue contrast and high-resolution features, magnetic
resonance imaging (MRI) is the most often utilized imaging tool in the assessment of EPVS.
In MRI scans, PVSs are observed as well-defined oval/rounded/tubular structures with
smooth margins. However, quantification of EPVS is challenging due to the difficulty of
discriminating them from lacunes (both lacunes and EPVS have a cerebrospinal fluid (CSF)-
like intensity on T1-weighted and T2-weighted MRI and are observed as hyperintensities
on T2-weighted MRI and hypo-intensities on T1-weighted MRI scans [20,21]).

In general, clinical studies manually count the number of EPVS presented in a region
of interest [20,22–24] (basal ganglia, hippocampus, midbrain, and centrum semiovale)
and rate the presence of EPVS on a five-point scale [20]. However, there is an intra- and
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inter-reader variability of detecting EPVS due to their tiny structures and morphological
ambiguity [20]. In brain disease diagnosis, the manual assessment of EPVS is the key step
but is challenging and time consuming due to (i) the difficulty in discriminating the EPVS
from brain lesions with similar appearances and (ii) the existence of multiple EPVS in
single scans.

Several studies have developed automatic and semi-automatic methods for EPVS
segmentation. For instance: an automated EPVS segmentation method based on Haar-like
features was proposed in [25]. The authors of [26] proposed an interactive segmentation
method based on intensity thresholding, while those of [27] used a Frangi filter to enhance
EPVS area and performed segmentation of individual EPVS. Recent studies have begun to
apply deep learning to EPVS quantification as the popularity of deep learning algorithms
have grown due to their superior performance. For example, [28] proposed a multi-channel
and multi-scale strategy approach for segmenting EPVS using 7 Tesla MRI scans, while [29]
proposed a GP-Unet model for segmenting EPVS using 1.5 Tesla MRI scans. However,
most of these methods focus on the segmentation and the detection of the EPVS, and as
a result they often lead to inaccurate EPVS rating scores due to their low segmentation
performance (existing segmentation methods do not satisfy the performance parameters).
Further, the production of the training dataset for deep learning-based segmentation
requires the medical experts to manually label EPVS as masks—a time-consuming and
laborious process. This is because as many as 20–50 EPVSs can be contained in a single
slice.

In contrast, counting the EPVS as a rating score is significantly simpler. The develop-
ment of methods for directly rating the EPVS could overcome the mentioned drawbacks
in existing segmentation methods. In particular, since clinical decisions are made based
on the rating score of EPVS, the direct measure of the EPVS rating score is a more con-
venient way—it bypasses the labor-intensive segmentation practice. Therefore, to deal
with the above problems, we propose the direct estimation model of EPVS rating without
segmentation or detection.

Currently, only one study reports a successful segmentation-free quantification of
EPVS using a 3D regressive convolutional neural network (CNN) [30]. However, this
study used 7.0 Tesla MRI scans for its evaluation. There is a big difference in image quality
between 3T and 7T, where the EPVS are much more clearly seen in 7T. To our knowledge,
our study makes the first attempt to estimate the rating of EPVS without detection or
segmentation using a 2D image-based deep learning model trained on 3.0 Tesla MRI scans.
In this paper, we present a method for directly rating the EPVS in the basal ganglia using
T2-weighted MRI. To do this, we first apply the preprocessing procedure containing Haar-
transformation to the MRI to enhance EPVS visibility. Then, a CNN model is used with
manual rating as training labels to estimate the EPVS rating. The rating of EVPS was
formulated as a multi-class classification problem.

2. Materials and Methods
2.1. Subjects Information

A total of 96 subjects’ MRI data were collected from two hospitals, Konkuk Univer-
sity Medical Center and Hanyang University Seoul Hospital (July 2018 to August 2019).
76 subsets who reported memory complaints (in either subjective or objective form) were
categorized as ‘patients’. The remaining 20 individuals—who were younger than 45 and
had not shown clinical evidence of neurological or psychiatric symptoms—were catego-
rized as ‘normal’. The demographic information of all subjects is as described in Table 1.
Information such as diagnosis, age, gender, clinical dementia rating (CDR), CDR (SB), and
mini-mental status examination (MMSE) of all the subjects are detailed in Table 1. Neuro
psychiatric examination scores of MMSE, CDR, and neuropsychiatric battery test were
used to diagnose mild cognitive impairment (MCI) and Alzheimer’s dementia (AD) based
on the criteria suggested in [31]. Based on these criteria, all 96 subjects were classified
as: 8—AD, 4—other dementia, 47—MCI, 17—subjective memory impairment (SMI), and
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20 control subjects. In this study, the SMI subjects were considered the ‘normal’ category,
and AD and other dementia subjects were considered the ‘dementia’ category.

Table 1. The demographic information of patients (age, clinical dementia rating (CDR), CDR (SB),
and MMSE-mini-mental status examination shown as mean ± standard deviation).

Characteristics AD Other
Dementia MCI SMI Healthy

Age 76.35 ± 1.98 70.00 ± 12.72 70.21 ± 5.86 67.71 ± 9.18 31.05 ± 7.37
Male:Female 2:6 1:3 16:31 6:11 13:7

CDR 0.625 ± 0.35 0.5 ± 0.0 0.46 ± 0.14 0.29 ± 0.25 -
CDR (SB) 3.5 ± 1.96 1.375 ± 1.11 1.27 ± 0.87 0.44 ± 0.35 -

MMSE 22 ± 4.21 24.5 ± 3.70 26.26 ± 2.58 28.85 ± 1.69 -

2.2. Data

All subjects’ MRIs were acquired using SIEMENS 3.0T Skyra (20-channel coil). The pro-
tocol includes 3D T1-weighted MRI, 3D/2D FLAIR MRI, and 3D SWI. Data of 76 patients
consist of T1, T2, and FLAIR images. Data of 20 normal subjects include T2 and FLAIR im-
ages. For T1-weighted images, magnetization prepared rapid gradient echo (MPRAGE) se-
quence was used with repetition time (TR)/echo time (TE) = 2300 ms/2.98 ms;
inversion time = 900; matrix size 256 × 256 in-plane resolution = 1 × 1 mm; slice
thickness = 1 mm; number of slices = 192; and Grappa factor = 2. For T2-weighted
images, an axial turbo spin-echo sequence was used with repetition time (TR)/echo
time (TE) = 4450 ms/81 ms; flip angle = 150 degree; matrix size = 384 × 384; in-plane
resolution = 0.573 × 0.573 mm; slice thickness = 5 mm; number of slices = 28. For FLAIR im-
ages, the 3D sequences were obtained using repetition time (TR)/echo time
(TE) = 5000 ms/393 ms; inversion time = 1800 ms; matrix size = 256 × 256; in-plane resolu-
tion = 1 × 1 mm; slice thickness = 1 mm; and number of slices = 196. Parameters used to
obtain the 2D FLAIR images include: repetition time (TR)/echo time (TE) = 9000 ms/95 ms;
inversion time = 1800 ms; matrix size = 320 × 320; in-plane resolution = 0.688 × 0.688 mm;
slice thickness = 5 mm; and number of slices = 28.

2.3. Manual Assessment of EPVS

This study defines EPVS as small, sharply delineated structures of less than 3 mm
following the movement of the perforating vessel [23] and containing CSF intensity (or
near-CSF intensity). Visual assessment of EPVS rating was carried out manually by two
neuroradiologists (one with 22 years of experience and the other with 8 years of experience)
who were blinded to the clinical diagnosis one month prior to the visual assessment session.
The two raters conducted their own analyses and reached a consensus on the final decision.
All images (T1-weighted, T2-weighted MRI, and FLAIR) were considered for manual visual
assessment. To begin, EPVS is evaluated using T2-weighted MRI. In FLAIR images, even
if surrounding hyperintensity is present, it is regarded as EPVS if it exists inside white
matter [23]. EPVS is evaluated based on the three slices that contain the basal ganglia,
which is above anterior commissure area. As suggested in [20,22], EPVS evaluation also
includes sub-insular white matter originating from perforating artery of the insular cortex
as the basal ganglia.

Both the size and shapes are critical in assessing the EPVS. When the exact count is
difficult to obtain, general impression of imaging features can aid the EPVS rating [20,22].
Thus, the general impression of each rater is also recorded to grade EPVS. Finally, we
recorded the counts of EPVS on both brains (three slices) of basal ganglia area independently
and selected the highest count for rating. In cases of asymmetrical distribution in each
anatomical region, the higher count from the two regions is selected for rating the EPVS.
The rating (five point scale [20]) was made based on the EPVS counts (Table 2). Along
with the rating score of the EPVS, the manual ratings of the dataset for all 576 images
(96 subjects) are also presented in Table 2. Agreement between the two raters (evaluated
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via intraclass correlation coefficient (ICC) using the healthy controls’ T2 images) were 88.0%
(95% confidence interval: 0.761–0.942) and 90.1% (95% confidence interval: 0.800–0.952).

Table 2. Rating score of EPVS and manual ratings of the dataset (576 images in total) in basal ganglia
region (0 (no EPVS found); 1–10 (mild); 11–20 (moderate); 21–40 (frequent); >40 (severe)).

EPVS Rating 0 1 2 3 4

Number of EPVS 0 1–10 11–20 21–40 >40
Number of images 120 150 198 90 18

2.4. Deep Learning Model for EPVS Rating Estimation

The objective of this study is to directly estimate the rating of EPVS. The proposed
framework of EPVS rating estimation comprised two steps and is as illustrated in Figure 1.
The first step, denoted by the highlighted box in Figure 1, involves preprocessing the MRI
to emphasize the EPVS region for better visibility and resizing it to accommodate the input
of the deep neural network. In step 2, which is also indicated by the highlighted box in
Figure 1, we estimate the EPVS rating using a convolutional neural network (CNN). We
describe the preprocessing methods used in this study and proposed deep neural network
for direct rating estimation of EPVS in the sections that follow.
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processing to enhance the EPVS region and the EPVS rating estimation model.

2.4.1. Preprocessing

During the preprocessing step, first the signal intensities of MRI were normalized in
the range 0–1 by dividing the maximum value for each MRI scan. Then, in three selected
MRI slices of the left and right brain, basal ganglia regions were cropped. Cropping the
basal ganglia regions was necessary because EPVS ratings were estimated solely based
on the basal ganglia region. Overall, a total of 576 images (6 images × 96 subject) were
obtained and used as a dataset. Finally, the cropped images were enhanced using a Haar-
transform-based approach [32]. The application of Haar-transform to the cropped images
resulted in emphasized images with clear visibility of EPVS. For illustration purposes, the
cropped image before and after applying Haar-transform to the selected subject is shown
in Figure 2. In Figure 2 (circled with red color), we can clearly observe that the EPVS of the
basal ganglia region has better visibility. Finally, the pre-processed images were resized to
112 × 86 before feeding to the deep neural network.
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(right) on T2-weighted MRI scans in the basal ganglia region of selected subjects (We can observe that the EPVS (circled in
red) are enhanced and have better visibility after preprocessing).

2.4.2. Deep Neural Network

As illustrated in Figure 1, the proposed deep neural network for directly estimating
the EPVS rating consists of five convolutional layers, an average pooling layer, two fully
connected layers, and a classification softmax layer. The final layer, for classification, is
composed of five nodes, representing the EPVS’ five-point rating scale. The pre-processed
image size is provided as an input for the network. Since EPVS have thin and tiny
structures, average pooling over the max pooling layer is selected after several convolutions
to maximally preserve the EPVS features.

Training: The proposed network was trained in an image-by-image manner. We
divided the 576 images from 96 subjects into 462 training images from 77 subjects and
114 test images from 19 subjects for training and testing purposes. We used cross-entropy
loss function for loss function. Additionally, for another loss function, we trained our
model with mean square error (MSE). Adam optimizer with the learning rate of 0.001 was
used. The network was trained for 300 epochs. To increase the diversity of the data and for
better generalization of the trained network, data augmentation was performed using 2D
rotation and flipping (each axis was rotated −30 and 30 degrees). The proposed method
was implemented on TensorFlow 1.14 using a PC equipped with four GPUs (NVIDIA
Geforce RTX 2080Ti).

Testing: During the testing phase, six images per subject were fed into the model and
we obtained six EPVS ratings (EPVS rating score at image level). Finally, the highest score
among the six images was selected for the EPVS rating estimation.

2.5. Evaluation for Deep Learning Model

We assessed our model’s accuracy at the image and subject levels. In terms of method-
ology, since we trained our deep learning model in a slice-by-slice manner, we reported the
accuracy of our model at the image level. However, because one subject was evaluated
using several MRI slices in a clinical setting, we used majority voting to report the accuracy
of our model at the subject-level.

The training and testing data were carefully selected to evenly include all groups,
i.e., dementia (AD and other dementia), MCI, and normal (SMI, healthy) subjects. Using
five-fold cross validation, the average estimation score is reported as the model accuracy.
Furthermore, the performance of the model for individual groups (dementia, MCI, and
normal) was also analyzed and reported. Finally, the correlation between the model
estimation and ground truth results (both image level and subject level) were analyzed
using Spearman’s correlation coefficient.
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3. Results

Using the data split as described previously, the proposed model was trained with
77 subjects and tested with 19 subjects. Table 3 summarizes the model’s performance at the
image and subject levels. A training accuracy of 88.1% at image level and 83.6% at subject
level was observed. Overall, an accuracy of 87.7% at image level and an accuracy of 80.2%
at subject level were achieved. The performance of the model for individual groups are
also tabulated in Table 3. In the case of dementia, the model achieved an accuracy of 91.7%
at both image and subject level. In case of MCI, we obtained an accuracy of 83.0% at image
level and 80.9% at subject level. For healthy subjects, we observed an accuracy of 92.3% at
image level and 75.7% at subject level.

Table 3. Performance of EPVS rating estimation model on whole data and for individual groups
(testing and training accuracy is reported as mean ± standard deviation).

Accuracy (%)
Whole Data For Individual Groups

Loss Training Testing Dementia MCI Healthy

Image level Cross-entropy 88.1 ± 0.6 87.7 ± 1.6 91.7 83.0 92.3
MSE 87.1 ± 0.9 87.6 ± 2.7 88.7 83.1 90.3

Subject level Cross-entropy 83.6 ± 1.5 80.3 ± 6.6 91.7 80.9 75.7
MSE 82.9 ± 2.9 80.1 ± 4.5 87.9 78.9 76.5

Spearman’s correlation coefficient between the estimated rating and ground truths at
both image level and subject level were evaluated and are as shown in Figure 3. A corre-
lation coefficient of 0.9169 (p-value < 0.0001) at subject level and 0.9335 (p-value < 0.0001)
at image level shows the reliability of the estimated values. Subject wise prediction of all
subjects considered in this study are also analyzed and the results are as shown in Figure 4.
In Figure 4, the estimated rating score of each subject, along with the ground truth, is pre-
sented. Figure 4a depicts all subjects who were correctly predicted and Figure 4b depicts
all subjects who were incorrectly predicted. In the case of correctly predicted subjects, the
prediction was correct despite the differences presented in the image-wise predictions. In
the case of incorrectly predicted subjects, the prediction scores of most of the subjects were
lower than the manual score (ground truth). This is because the numbers of EPVS were
close to the critical numbers of the decision boundaries (for instance, when the number
of EPVS is 11 or 21, the model tends to estimate the EPVS rating score as 1 or 2 instead of
2 or 3).
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Table 4 summarizes the findings of an ablation study (an experiment with and without
the pre-processing step). In pre-processing, the Haar transformation-based approach was
applied to enhance the EPVS in MRI images. When the pre-processing step is included,
estimation performances are increased by 10% at the subject level and 11% at the image
level. This experiment result demonstrates that pre-processing for EPVS enhancement
results in a more robust estimation model.

Table 4. Results of an ablation study on the performance of the EPVS rating estimation model with and without pre-
processing with the Haar transformation approach (testing and training accuracy is reported as mean ± standard deviation;
cross-entropy was used for loss function during training).

Accuracy (%)
Whole Data For Individual Groups

Training Testing Dementia MCI Healthy

Image level No pre-processing 78.3 ± 0.9 76.2 ± 1.7 80.2 72.3 80.6
Proposed procedure 88.1 ± 0.6 87.7 ± 1.6 91.7 83.0 92.3

Subject level No pre-processing 72.9 ± 1.9 70.2 ± 7.2 79.1 63.9 72.5
Proposed procedure 83.6 ± 1.5 80.3 ± 6.6 91.7 80.9 75.7
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We compared our model to the automatic method of EPVS quantification using Haar-
like features and random forest as a baseline approach (see [25]). The compared method is
a traditional approach that is one of the most represented techniques for the quantification
of EPVS. We trained and tested the baseline method with the same dataset used in our
estimation model. Compared to the other study, our estimation model has ~17% increased
accuracy at both image and subject level (the baseline approach showed 69.73 ± 0.5%
accuracy at image level and 63.02 ± 1.4% accuracy at subject level for our dataset).

4. Discussion

In this study, we proposed a framework to directly estimate the EPVS rating from
T2-weighted MRI without using either detection or segmentation of EVPS. The overall
accuracy of 87.7% at image level and 80.2% at subject level with the proposed method
shows that the EPVS rating can be directly estimated from T2-weighted MRI images. We
implemented our method following the same procedure as radiologists do. In clinical
practice, radiologists choose the EVPS score based on the highest number of EPVS across
multiple slices of MRI. As a result, we implemented this decision process as a majority vote
using the results of image-level predictions. Since we used majority voting in the subject
level prediction, the performance of the model at subject level was less accurate when
compared to its performance at image level. We observed this decrease in performance
because the correct prediction at the image-level in the presence of a low EPVS score could
not be considered at the subject-level prediction.

Individual analyses of each subject’s EPVS rating prediction reveals that for incorrectly
predicted subjects the prediction score was lower than the manual score in most subjects
(15 out of 19). One possible explanation is that the number of subjects presented in the
range of [0, 2] is higher than the number of subjects presented in the range of [3, 4]. Another
reason may be that many of the EPVS numbers were close to the critical number of the
decision boundary and may have caused under-rating.

We can see from the result analysis of each group that the predictions of all groups
at image level are like the predictions at subject level, except for normal subjects (92.3%
at image-level, and 75.7% at subject-level). This discrepancy was caused by the strict
criteria of rating at zero level (zero means that there are no EPVS in any of the images
corresponding to a particular subject. Additionally, we used majority voting from the six
images and predicted the score at the subject level). More sophisticated methods of voting
could nullify this gap between subject level and image level.

This study has a limitation for comparison with other state-of-the-art methods due
to its different labeling scheme. We labeled the EPVS as the score (weak labeling), but for
comparison with segmentation networks we must label the EPVS as masks of MRI slices
(strong labeling), in which there are 20–50 EVPS (About 50% or more of the total data) in
one slice. Moreover, one existing method for EPVS quantification is 3D modeling, but in our
case we used a 2D model. We followed Potter et al.’s method [20] for making the labeling
as widely applicable to clinical practice as possible and this means using 2D slice-based
measurements of portions of the basal ganglia region in MRI images. The existing 3D
models use the whole basal ganglia region of MRI images. Therefore, we simply compared
our model with the traditional method as a baseline approach and of the two our model
gave significantly better performance.

While doing manual ratings of EPVS, we first identified EPVS on T2-weighted MRI
images and then confirmed this with T1-weighted MRI and FLAIR scans. However, the
study includes only the T2-weighted MRI in the analysis. This is due to the variations in
the acquisition parameters such as direction of acquisition, image matrix, FOV, and slice
thickness. Though the T1-weighted MRI and FLAIR could provide additional features
and improve the accuracy further, it is not convenient to apply the image registration
between T1-weighted, T2-weighted, and FLAIR images. Thus, although T2-weighted MRI
alone is used to directly predict the rating of EVPS, we obtained comparable accuracy to
state-of-the-art methods at both image- and subject-level.
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Direct grading of the EPVS rather than detection or segmentation is more convenient
and efficient in clinical practice. Since the model estimates the rating directly from T2-
weighted MRI without either detection or segmentation of EPVS, the proposed framework
has great potential for use as a disease risk indicator. However, before the proposed frame-
work can be used in clinical practice, the EPVS rating estimation model must be further
improved with sufficient data training. In the future, we intend to continue collecting data
in order to develop an efficient model for estimating the EPVS rating accurately.

5. Conclusions

In this paper we proposed a deep learning model for directly estimating the EPVS
rating from T2-weighted MRI images without requiring detection or segmentation. The
proposed model is trained in an image-by-image manner and validated at the subject-level
via the majority voting method. Since the proposed model followed the same procedure as
a radiologist does and estimates the EPVS rating directly from T2-weighted MRI images
without either detection or segmentation, it is convenient and efficient for clinical use.
Our results demonstrate that the proposed method can be used as a disease risk indicator,
assisting in the early detection of dementia. This paper may be of interest to readers who
are interested in neurology and its applications.
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