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Abstract: Recent literature proposes the use of a proactive password checker as method for preventing
users from creating easy-to-guess passwords. Markov models can help us create a more effective
password checker that would be able to check the probability of a given password to be chosen by an
attacker. We investigate the ability of different Markov models to calculate a variety of passwords
from different topics, in order to find out whether one Markov model is sufficient for creating a more
effective password checker. The results of our study show that multiple models are required in order
to be able to do strength calculations for a wide range of passwords. To the best of our knowledge,
this is the first password strength study where the effect of the training password datasets on the
success of the model is investigated.

Keywords: Markov models; passwords; password analysis; password strength; password score

1. Introduction

Authentication is the core of today’s Web experience. The online services, social
networks (e.g., Facebook, Twitter etc.) and websites require an authentication so that users
can create a profile, post messages and comments, and tailor the website’s content so it
can match their interests. In an information security sense, authentication is the process of
verifying someone’s identity and typically it can be classified into three main categories:
knowledge-based authentication-“what you know” (e.g., textual or graphical passwords),
biometrics authentication-“what you are” (e.g., retina, iris, voice, and fingerprint scans),
and token-based authentication-“what you have” (e.g., smart cards, mobile phones or other
tokens). Lately, another alternative authentication method is becoming more available-
the two-step verification. We focus on the first category and in particular, on the textual
passwords and their security simply because the username-password combination used
to be [1,2] and still is the most widely used method for authentication [3], due to their
simplicity and cost effectiveness. The problems related to textual passwords and password
security are not new. Morris and Thompson [4] were first to identify textual passwords
as a weak point in information system’s security. More than three decades ago, they con-
ducted experiments about typical users’ habits about how they choose their passwords.
They reported that many UNIX-users have chosen passwords that were very weak: short,
contained only lower-case letters or digits, or appeared in various dictionaries. The afore-
mentioned problems still exist today and are still being made to solve them. However,
users fail to implement the behaviours necessary to stay safe and secure, even though they
are aware of the security issues. They create the easiest-to-remember passwords regard-
less of any recommendations or instructions and tend to trade security for memorability.
Some important literature [5–9] proposes the use of a proactive password checker as a
method (beyond simple dictionary lookup and composition rules) for preventing users
from entering simple and easy-to-guess passwords into a computer system. The core
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property of a proactive password checker to be more effective and more prudent is the
ability to check the probability of a given password to be chosen by the user and hence the
probability to be chosen by an attacker. Some passwords are more likely to be chosen than
others since certain letters and combinations of letters in any given language occur with
varying frequencies.

1.1. Motivation

Some relevant literature [10–13] suggests that Markov models can be used as a tool
that can aid the development of such a proactive checker since they can estimate the
strength of a password by estimating the probability of the n-grams that compose the
password. The estimation can be better if the model is trained on actual password datasets.
However, a recent study in this area [14] suggests that state-of-the-art strength meters
from academia, that are based on probabilistic context-free grammar (PCFG) and Markov
models, are not enough competent at scoring weak passwords (which is basically their
primary goal). They further argue (based on experimental comparison) that Markov models
are no longer suitable for password scoring since they underperform compared to the
PCFG technique. The authors present an explanation for this invalidation of commonly
accepted belief that Markov models could be used to create better proactive password
strength meters/checkers (than probabilistic context-free grammar). The provided rational
states that smoothing techniques (e.g., backoff, Laplace and Good-Turing [13]) used in
Markov models make them better at cracking passwords (i.e., predicting more unseen
passwords), yet this, in turn, makes Markov-based strength meters subject to the sparsity
problem and worse at measuring weak passwords.

Our motivation for this study is based on the weaknesses of Markov models stated
and presented in [14], and the commonly known issues related to Markov models-sparsity
and overfitting [9,13]. As stated in [9,14] at some point the performance of the Markov
model is reduced because the model overfits the data and is not able to properly score weak
passwords anymore. One possible reason (besides the ones stated in [14]) for this issue
could be due to the fact that datasets used for training differ in terms of size, password
types, localization etc. Furthermore, as it is clear from the literature ([9,12,15]), these models
are mostly trained only on one training dataset or, at most, on a few datasets ([16]). This
could limit the performance of the model in terms of properly scoring weak or very strong
passwords. Since training datasets are core in developing the models, it is clear that they
will have some effect in the final password scoring that the Markov model produces, which
is also clearly suggested in [16]. Therefore, what we explore in our study is how significant
is this effect and how other characteristics (e.g., size of the dataset, average password
length, number of unique passwords etc.) affect the final password scoring.

We primarily focus on investigating the effect of different, but similar, training datasets
on strength estimation. For the purpose of our study we analyse publicly available datasets
of “common passwords” and process them regarding the frequency distribution of letters
these passwords contain. Based on these datasets and the frequency distributions, we built
different Markov models. This would help us find out if one Markov model is sufficient, or
if multiple models are needed for the password checker to be effective for a wide range
of passwords. To the best of our knowledge, this is the first time where the effects of the
training dataset on the final password score are investigated in detail.

1.2. Goals

The goals of this paper are: (i) to find out if different Markov models (trained on
different password datasets) will provide statistically different results when tested on the
same password dataset, (ii) to find out if one model (that is trained on one big dataset,
composed of multiple different datasets) is sufficient for creating an effective password
checker, and (iii) to find out if Markov models of different orders (specifically of first
and second order) will produce statistically different results. We address these goals by
focusing on investigating whether there is a statistically significant difference in the scores
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from different models, trained on different training datasets. Furthermore, we investigate
whether the order of the model has some significant effect on the success of the model.

1.3. Contributions

We make three contributions in this area. The first, and also the novelty in this research
field, lies in training the models on a variety of datasets (12 in total), each with different
characteristics, and testing them on the same password dataset in order to investigate the
effect of the dataset on the success of the model. In particular, we show that the dataset has
a significant effect on the final scoring of the passwords. The fact that different training
datasets can lead to statistically different password scores, leads us to the conclusion that
it is very important what kind of dataset is used to train the Markov models. We argue
that one universal dataset should not be used to train one Markov model if we want to
have an effective password scoring tool. The second contribution is the confirmation of
our previous statement: the use of multiple different Markov models is better for efficient
estimation of password strength rather than using one universal model, which is trained on
one big dataset that combines multiple different datasets. Finally, the third contribution is
that we showed that the difference in outputs between two Markov models with different
orders (1st and 2nd) is, in most cases, not statistically significantly different. Therefore,
the general conclusion here is that, without a doubt, it is important to analyse the dataset
before selecting the order of the model.

Overall, we show that if we want to have an effective password scoring tool for
calculating the strength of a wide range of passwords, it would be required to use multiple
different Markov models, which should be constructed and trained on a particular dataset
of passwords so that they can be more efficiently used on that particular password group.

1.4. Organization

The rest of the paper is organized as follows: we present and review the related work
in Section 2, and we provide some background of Markov models in Section 3. In Section 4
we describe our experimental methodologies, the construction of our models, the datasets,
and the processing of the datasets we used, including the choice of training/testing datasets.
Next, we present the results of our study in Section 5. We discuss the results and the ethical
considerations of the study in Section 6. In Section 7 we present our final conclusions.

2. Related Work

In this section, we provide a short review of relevant previous studies that deal with
calculating the password strength or password cracking process and are closely related to
Markov models.

The strength analysis of users’ passwords has been one active research area since
passwords were exposed as the weakest link in information system’s security in 1979
by Morris and Thompson. There are various techniques that have been used for both
calculating the strength of the password and enhancing the password cracking process.

2.1. Basic Password Strength Calculation

The basic password strength calculation is done by a simple password policy or, as it
is also called-a password rule system. Such a system has the ability to estimate the strength
of a given password by analysing its structure i.e., the number of upper case, lower case,
or whether it contains numbers or special characters. The estimation is a binary result
which tells whether the passwords meets the requirements of the policy or not. One major
weakness of a password rule system is that users and their textual passwords are still
considered “the weakest link”. Users tend to choose weak passwords and passwords that
are easy-to-guess and can be found in a dictionary [17]. Because of this, such a password
rule system fails when it comes to preventing weak passwords from entering the system.
For example, a password “Password1!” may be acceptable for the password rule system (it
contains an upper case, a number and a special character), but it is still the most common
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and one of the easiest passwords to be cracked (with the use of a personal computer it can
be cracked within seconds). We need more advanced password rules that can additionally
check the possibility that a given password can be chosen by the attacker. This is where
Markov models come to the rescue since they can be used as an aid to brute-force or
dictionary password cracking.

2.2. Entropy

One of the earliest method for password scoring is entropy. In information theory,
entropy is the expected value of the information contained in a message. Authors in [18]
attempt to determine the effectiveness of using information entropy (more specifically,
Shannon entropy) as a measurement of the security of various password policies. They
accomplish this by analysing the success rate of standard password cracking techniques
against multiple sets of real-life passwords. Their experiments show that password entropy
does not provide a valid metric for measuring the security provided by password creation
policies. Furthermore, they found that the most common password creation policies remain
vulnerable to online attacks, since users are using easy-to-guess passwords that still comply
with the requested policy (e.g., ”Password1!”).

2.3. Probabilistic Context-Free Grammars

Another tool for password cracking are probabilistic context-free grammars as an
aid in the creation of word-mangling rules, proposed by Weir et al. in [19]. Probabilistic
password cracking is based on the assumption that not all guesses have the same prob-
ability of cracking a password (i.e., some passwords are more probable to be guessed
than others). Probabilistic context-free grammars are based on a probability distribution
of user’s passwords and measure the frequencies of certain patterns associated with the
password strings. Authors trained this method on different sets of previously disclosed
passwords. They used some of the sets for training and others for testing the solution and
calculating password probabilities. As a comparison against the PCFG password cracking
technique, authors use John the Ripper’s default word-mangling rules. The results of the
study show that this technique performed better than John the Ripper by cracking 28–129%
more passwords, given the same number of guesses.

A study by Houshmand et al. [20] presents an improved PCFG for password cracking
by systematically adding keyboard patterns and multi-word patterns to the context-free
grammars used in probabilistic password cracking. They state that while their probabilistic
password cracking approach shows consistent effectiveness, at one point it gets “stuck” in
a dead end. Authors suggest that maybe at that point it is better to support Markov or
brute force guessing.

2.4. Markov Models

One of the earliest use of Markov models as a password cracking tool was by
Narayanan and Shmatikov in [10]. They used them as an improvement of rainbow ta-
ble cracking, by training Markov models to general rules that passwords follow. They
show that Markov models might have an important application for distributed password
cracking. This work also is the first to hint that Markov models can be used as a tool for
calculating password strength and shows that they can perform better than the Rainbow
attack by recovering 96% of the passwords over the 39% recovered by the Rainbow attack.

Later, a survey of the most common techniques used in public and private tools
for enhancing the password cracking process was made by Marechal [11]. The paper is
mainly focused on using Markov models as a powerful tool for password cracking and as
a password generator, for generating the most common passwords used as a supplement
for the dictionary or the brute-force attack. The findings in this paper show that the
Markov password generator, despite it being slower than John the Ripper [21] was actually
performing better. According to this study, Markov tools can be included in a password-
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checking policy so it can be more effective than those that only check the structural content
of the password.

Different password cracking techniques (attacks) were analysed by Dell’ Amico et al.
in [9] in order to find out what is the probability of breaking a given password. The authors
compared the search space against a number of cracked passwords for guessing techniques
like dictionary attacks, brute force, dictionary mangling, probabilistic context-free grammars,
and Markov models. These password cracking techniques were tested on three different large
datasets of passwords. Their findings show that no single cracking strategy prevails over
the others: dictionary attacks are most effective in discovering weak passwords, dictionary
mangling is useful when the base dictionaries are exhausted and Markov-model techniques
are powerful in breaking strong passwords. The authors of the study believe that proactive
password checking is a better approach in persuading the users to put more effort into
choosing their password.

Markov models as a tool for calculating password strength were already mentioned
in [11] where the authors showed that password crackers based on Markov models can
outperform existing cracking techniques. In [12] Markov models are used as a concept for
adaptive password strength meters that can estimate the password strength. Password
checkers have a very important role in providing security of computer systems since they
are the mechanism that should prevent bad passwords from getting into the system. This
study focuses on building adaptive password strength meters based on Markov models.
They measured the accuracy of their construction by comparing the scores of the meter to
the scores of other meters (Google, Microsoft etc.) as well as to the ideal password strength
meter. The results of the study show that their Markov-based password strength meter
achieves higher accuracy and outperforms commonly used password meters.

A similar probabilistic framework for estimation of password strength is proposed
in [15]. The proposed framework is based on a very large public dataset containing
75,000,000 unique passwords. As part of the framework, two different Markov mod-
els are considered and tested: simple Markov model, where the transition probability from
one character to another depends only on the previous state, and layered Markov model,
where the transition probability also takes into account the position of the character in
the given password. Both models are analysed and tested using different independent
datasets simulating a conventional password guessing attack. The authors argue, based on
the results of the study, that such a probabilistic framework may be capable of providing
a better estimation of the strength (i.e., the resistance to attacks) of a password. In [13]
Markov models were also proven to perform slightly better than the PCFG proposed by
Weir et al. in [19]. Through a systematic evaluation of many different password models
using 6 real-world plaintext password datasets, with about 60 million passwords, they
show that the model based on PCFG does not perform as well as the Markov model.

A related study presents results regarding the performance of Markov models that
counteract with the previous ones. Authors in [14] performed an experiment where they
tested existing password scoring meters from the industry (e.g., Zxcvbn, KeePSM and NIST
PSM) and academia (PCFG-based ones and Markov-based ones). Their results show PCFG-
based meter performs best among existing password scoring meters. Their conclusion
is that the PCFG-based model is better at measuring passwords, and the Markov-based
model is better at cracking passwords. Furthermore, the authors present a novel password
strength meter based on a fuzzy probabilistic context-free grammar. It can react dynamically
to changes in how users choose passwords.

A recent study [16] performs an extensive and empirical analysis of Chinese web
passwords where the authors evaluate the security of these passwords by employing two
state-of-the art cracking techniques: PCFG and Markov models. Their results show that
Chinese passwords are more prone to online guessing than English passwords. Further-
more, this study explores how password scoring meters measure the password strength,
which leads the authors to the claim that in order for a PSM to be accurate, its training set



Appl. Sci. 2021, 11, 9406 6 of 32

should be representative of the password base of the target site and that there is no single
training set that can fit all PSMs. This claim is what we explore further in our study.

2.5. Neural Networks

Neural networks can be considered as a statistical technique in pattern recognition.
They implement non-linear mappings from several input variables to several output
variables, where the form of the mapping is governed by a number of adjustable parameters.
A neural network learns how to compute a mapping by trial and error, through a certain
parameter optimization algorithm. Such an algorithm, due to the biological premises of
the theory of neural networks, is called a learning algorithm. During the learning process
(also called training), the network receives a sequence of examples and adapts its internal
parameters to match the desired input-output functionality. The knowledge to compute
the mapping is therefore acquired during this learning process and it is stored in the
modified values of the internal parameters. It is known that neural networks have been
used for generating the probability of the next element in a string based on the preceding
elements [22,23] (e.g., in generating the string password, a neural network might be given
passwor and output that d has a high probability of occurring next).

Since password creation is conceptually similar to text generation, it was somehow
inevitable for neural networks to become more commonly used as a tool for password scor-
ing and password generation. Their main advantage over other password scoring methods
is their speed and lightweight regarding memory requirements. One of the first times
where neural networks have been fully and successfully applied to designing proactive
password checkers is presented in [24]. This study presents a way of using neural networks
in a password checker solution. The authors applied SLP (Single Layer Perceptrons) and
MLP (Multilayer Perceptron) networks to the design of proactive password checking. They
have evaluated the performance of several network topologies and compared the MLP
networks with kernel-based and fuzzy-based neural network models. Their comparison of
classification rates obtained by their solutions with previous proactive password checkers
showed that proactive password checkers based on this technology have high efficiency
and efficacy.

Another study [25] describes how to use neural networks to model human-chosen
passwords and measure password strength. In their study authors comprehensively
test the impact of varying the neural networks model size, model architecture, training
data, and training technique on the network’s ability to guess different types of passwords.
Furthermore, this study compares the implementation of neural networks to state-of-the-art
password-guessing models, like probabilistic context-free grammars and Markov models.
This comparison shows that in general neural networks at high guesses outperform other
models, with some exceptions which are related to the training dataset (in this case authors
used a combination of datasets-one of which is the Rockyou training dataset used also in
our experiment). The main contribution of this study is the client-side implementation of a
proactive password checker based on neural networks. It is implemented in JavaScript and
light-weighted (requires only 60MB of disk space).

2.6. Summary of the Related Work

Based on the reviewed related work regarding Markov models, we can say that
Markov models can be used as an efficient tool for successful cracking of difficult passwords,
even though they have some setbacks (like overfitting). We argue that they can be used as
a framework for estimating password strength in a proactive password checker, as long as
they are properly trained and properly developed (see Section 1.1). Our approach has a
similar background as some of the related work that we described. In this work, we inspect
the possibility of using one universal Markov model, or multiple different models, as a
mechanism for password checking, by analysing publicly available datasets of passwords
that we used to train and test our Markov models on.
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3. Background

Markov model is a stochastic process where the next state of the system depends
only on the present state and not on preceding states [26]. That is, only on the single
present state and not the history of the states. Markov models are commonly used as a
language processing tool in speech recognition systems, like in [26], but they can also be
used in other fields, particularly in the context of passwords. Such Markov models have
already been used before (see Section 2) as an aid to brute-force or dictionary password
cracking. These models are based on the fact that particular characters or sub-strings in
a particular language area have a higher frequency of occurrence than others (e.g., the
string “the” is much more likely to occur than “tqe” and the letter e is very likely to follow
“th”). This approach can be used to calculate the strength of the password, by defining
a probability distribution over a sequence of characters, which constitutes the password.
Such constructed Markov model assigns each password a probability P, which is calculated
differently based on the order of the Markov model. The general equation for calculating
this probability is [12]:

P(“c1c2...c′′l ) = P(ci|c1...cn)
l

∏
i=n

P(ci|ci−n+1...ci−1). (1)

and can be applied to every order of the Markov models.
The models used by Narayanan and Shmatikov are zero-order model and first-

order model.
Zero-order Markov model is a Markov model, where the characters are independent

of each other i.e., each character’s probability is calculated according to the underlying
frequency distribution and independently of the previous characters.

On the other hand, first-order Markov model is a Markov model, where each 2-gram
(i.e., diagram, ordered pair, or a sub-string of length 2) of characters is assigned a probability
by looking at the previous character. The probability assigned to a password “c1c2...cl” in
the case of a first-order Markov model would be ([13]):

P(“c1c2...c′′l ) = P(c1)P(c2|c1)P(c3|c2)...P(cl |cl−1). (2)

The probabilities P(αj|αi) are called conditional transitional probabilities and denote the
probability of a transition to state αj when the automata is in state αi. In the context of
passwords that would be the probability of a character ci following the character ci−1. The
conditional probabilities can be easily computed with the following formula ([13]):

P(ci|ci−1) =
count(ci−1ci)

count(ci−1x)
(3)

where count(ci−1ci) presents the number of occurrences of the sub-string ci−1ci and
count(ci−1x) denotes the number of occurrences of ci−1 when followed by another character
x. This character x is part of the password’s alphabet A, i.e., the set of distinct characters
that are identified in a particular password dataset, which is also the number of possible
states of the Markov model. The number of sub-strings ci−1x in a particular dataset is
by definition equal to: count(ci−1x) = ∑ci∈A count(ci−1ci). By using this substitution, the
above Equation (3) takes the form:

P(ci|ci−1) =
count(ci−1ci)

∑ci∈Acount(ci−1ci)
. (4)

The transitional probabilities (P(αj|αi)) between the states of the model (αj being the
current state and αi being the previous state) are described by a matrix called transition
probability matrix or simply transition matrix. Each value P(αj|αi) denotes the probability
that, given the model is currently in state αi, it will be in state αj in the next step.
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The power of Markov models lies in the ability to use the transition matrix for de-
termining the probability of the model being in a certain state after a certain number of
steps (more than one). For e.g., if we have a transition matrix with probabilities for the
various kinds of weather, we can denote the probability for the weather being rainy, sunny
or snowy two, three or four days from now. This probability is denoted by Pn

αiαj
, where:

• αi denotes the current state of the model
• αj denotes the next state of the model
• n denotes the number of steps

The probabilities Pn
αjαi

are calculated by setting the transition matrix to power n-the
number of steps.

When the above statements are applied to the passwords, the transitional probabilities
simply represent the probability of a character cj appearing after a character ci in a certain
position in the password, which corresponds with the number of steps (n). Having this in
mind we can transform Equation (2) into:

P(“c1c2...c′′l ) = P(c1)P(c2|c1)
1P(c3|c2)

2...P(cl |cl−1)
l−1. (5)

From the above equations, we can see that the probability P basically represents the
probability of occurrence of a sequence of characters and the order of the characters in
the password. This probability is obtained by analysing the frequency distribution (the
number of occurrences) of these characters in a suitable training dataset.

It is important to note that the probabilities of the first characters P0αi are represented
by an initialization vector. The initialization vector basically holds the probabilities of every
character occurring in the first position in a password.

The final score assigned to the password is a number that is computed by using the
following equation [15]:

S(“c1c2...c′′l ) = −10log10P(”c1c2...cl”), (6)

so that the less likely it is to produce the password, the stronger it is according to the model.
Needless to say, the frequency distributions of the characters used in keyspace com-

pression via Markovian filtering is language-specific, and the distribution used in this
paper applies only to passwords chosen by English-speaking users (presumably, similar
distributions can be found for other alphabet-based languages).

4. Materials and Methods

In this section we justify our decision on using first-order Markov models, we describe
our method, the development of the models, give a description of the datasets we use, and
present the selection of training/testing datasets.

4.1. Constructing the Model(s)

We used Equations (2) and (4) for building our models and Equation (6) for calcu-
lating the Markov scores for the passwords from the testing dataset. Our constructed
models are Markov models of first order (the model is applied to sub-strings of length two),
which means that the model keeps track only of the previous state of the system-i.e., the
probability distribution of the current character depends only on the previous character in
the password.

In our practical case, the number of states i.e., the number of distinct characters that
we search in the datasets and used in our models is A = 224, coinciding with the set of
ASCII characters from character code 32 to 255. This character set includes all characters
from the extended ASCII table, except for the initial 32 characters which are basically
unprintable control codes and are used to control peripherals such as printers. To the best
of our knowledge, such a large number of possible states of a Markov model hasn’t been
explored and used for password scoring yet [10,12,13,15].
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The output of the model is a real number indicating the password strength. Following
the approach in [15], in the case of passwords that are assigned a probability of occurrence
of 0 by the model, the final password strength is assigned 4000, which represents a very
high strength (so we can avoid infinite values). The value 4000 was selected because the
highest values that models otherwise achieved were only over three thousand (maximum
value is never over 4000). Further in the paper, we refer to this situation as the model was
unable to calculate the password strength.

For calculating the password strength we used Equation (5), which represents the
probability of a character (or a character sequence) occurring after a certain number of steps
of the model (i.e., a certain position in the password) and Equation (6), which represents
the final score of the password.

The initialization vectors are also trained on the same database subsets as the respec-
tive models. They represent the probability that a password initiates with each of the
224 characters.

To create the model and calculate the scores for the test passwords, we first need
to train the Markov model over a known distribution. This distribution can simply be a
publicly available set of passwords from a previously attacked dataset. These datasets are
further described in the following subsection.

4.2. Data Collections

We used 12 datasets that contain real user passwords in plaintext that were leaked and
are publicly available for research purposes. These password datasets represent real user
passwords, which were compromised by hackers and subsequently publicly disclosed on
the Internet. We used only the password information in the datasets and we removed all
additional information like user names and/or email addresses included in some datasets.

The “RockYou” dataset [27] contains over 14 million passwords leaked from the social
application site RockYou in December 2009. The “10 million combos” dataset [28] contains
10 million passwords collected and cracked by Mark Burnett for research purposes. The
dataset also contained user names that are connected to the passwords. In order to maintain
the anonymity of these informations, we removed the related user names and focused only
on the released passwords. The “PhpBB” dataset [27] contains about 180.000 passwords
cracked from MD5 hashes by Brandon Enright leaked from Phpbb.com in January 2009. The
“MySpace” dataset [27] includes 37.000 passwords that were obtained via phishing attack in
October 2006. The “faithwriters” dataset contains 8K passwords stolen from the religious
forum Faithwriters. The basic information and the sources of the rest of the datasets are
presented in Table 1. For additional details, readers are referred to original works.

Table 1. Basic information of datasets.

Dataset Size Date Obtained Source

rockyou 14,344,390 12-2009 [27]
10_million_passwords 10,000,000 02-2015 [28]

passwords 2,151,220 12-2011 [29]
uniqpass_preview 1,999,984 12-2011 [29]

phpbb 184,389 01-2009 [27]
scribd 106,358 Unknown Source unknown
tuscl 38,820 Unknown [27]

myspace 37,139 10-2006 [27]
singles_org 12,233 10-2010 [27]

10k_most_common 10,000 06-2011 [30]
hotmail 8930 Unknown [27]

faithwriters 8347 03-2009 [27]
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4.3. Data Processing

Since our goal is to create multiple Markov models and test them on the same testing
dataset, we decided not to merge all datasets into one big dataset and then partitioning it
into training and testing. Such an approach can also cause some frequent passwords or
passwords with similar length, or some pattern distributions, to appear both in training
and testing, thus introducing bias. Furthermore, since the datasets differ from each other in
terms of scope, size, password security policies under which passwords were constructed
etc., we were not able to decide which datasets will be used for training and which for
testing, because our results could easily be biased based on the selection of the training
datasets. Therefore, we decided to partition the datasets in the way that is shown in
Figure 1. Before the partitioning took place, we first randomized our datasets. Then, half
of the passwords in each dataset were used as a training dataset for building a Markov
model and the other half was added to our common testing dataset. In the end, we have 12
different models that are trained on 12 different datasets, and a common dataset for testing
the models.

Figure 1. Graphical presentation of the process of dividing datasets and combining them into one
dataset for testing.

After we partitioned our datasets into training and testing datasets and constructed
our models, we run every model on the same testing dataset, which contains over 14 million
passwords. The input of each Markov models is the testing dataset, while the output is a
set of calculated scores appropriately for each of the passwords from the testing dataset.
The process is presented in Figure 2.

Figure 2. Graphical presentation of the process of calculating the passwords’ strength with
different models.
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5. Results

In this section, we present the results of our study. First, we analyse the datasets
and the frequency distribution of the characters inside the datasets. Then we analyse the
passwords in the datasets regarding their construction like length, numerical, upper case,
lower case, alphanumerical, the containment of special characters etc. Finally, we present
our main results regarding our analysis of the connection between the models and the
scores of the testing passwords.

5.1. Character Frequency Analysis

The character frequency distribution is the basis for constructing a Markov model for
the purposes of either cracking passwords or computing its Markov score i.e., its strength.
We performed character frequency analysis on our datasets of disclosed real-life passwords
(see Appendix A).

Since the datasets are acquired from different sources, we expect them to differ in
terms of character frequency distribution, which is important for our research, since we are
trying to create different independent models. We present a couple of findings that point to
this assumption. First, in almost all of the datasets, the most frequent characters are numbers,
lower-case letters and upper-case letters, but the 10k_most_common and uniqpass_preview lack
upper-case letters. Likewise, special characters from the basic ASCII table are not present
in all the datasets. Second, the RockYou dataset contains characters from the extended
ASCII table, which other datasets do not, so we expect this dataset to produce significantly
different password scores from the testing dataset.

In order to confirm our assumption about the statistically significant difference be-
tween the datasets in terms of character frequency distribution, we performed a statistical
analysis of the character frequency for all datasets. We used the nonparametric Friedman’s
ANOVA statistical test for multiple repeated measures since the Shapiro-Wilk test for
normality showed that all of the differences between pairs of datasets do not conform to
a normal distribution (p < 0.05 in all cases). The Friedman’s ANOVA test did find that
there are statistically significant differences (χ2(11) = 259, p < 0.001). This confirms our
assumption and gives us the ability to continue with our experiment and analysis since
this meets the condition for diversity; this condition is met when at least one dataset is
different from the others.

5.2. Data Collections Characteristics

Before we present our main results, we present some summary statistics about our
datasets, regarding the characteristics of the passwords they contain. We are interested in
passwords characteristics like the average length, uniqueness, the percentage of passwords
that were only numerical, only lower-case letters, only upper-case letters, mixed-case
letters, alphanumerical, and that contain at least one special character.

Table 2 shows a summary of the distributions of passwords and the average password
length in each dataset. As we can observe, the most common passwords in every dataset
are alphanumeric passwords.

Table 3 shows the percentages of passwords that appear 1–5 or more times in ev-
ery dataset. As we can observe from the table, out of all 12 dataset only three (10_mil-
lion_passwords, passwords, and scribd) do not contain a 100% unique passwords. The high
percentage of uniqueness of the datasets goes in hand with our experiment, since it allows
us to train our models over a wide variety of passwords.
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Table 2. Passwords information.

Dataset Digits Only Lowercase Only Uppercase Only Mixedcase Alphanumeric A special Character *

1. rockyou 16.36% 26.06% 1.61% 1.12% 47.51% 6.82%
2. 10 million passwords 20.36% 38.25% 1.09% 2.52% 35.90% 1.10%

3. passwords 23.22% 23.85% 0.75% 1.56% 47.08% 3.02%
4. uniqpass preview 6.70% 28.96% 0.00% 0.00% 48.86% 15.48%

5. phpbb 11.24% 41.25% 0.93% 2.69% 41.19% 2.13%
6. scribd 0.27% 81.71% 0.18% 7.57% 2.94% 7.32%
7. tuscl 8.70% 42.36% 0.94% 2.38% 43.17% 1.72%

8. myspace 0.72% 6.75% 0.29% 0.18% 80.43% 10.66%
9. singles_org 8.37% 55.11% 2.26% 4.37% 29.00% 0.24%

10. 10k most common 5.54% 83.10% 0.00% 0.00% 11.20% 0.16%
11. hotmail 18.52% 41.59% 2.21% 1.05% 29.50% 6.93%

12. faithwriters 6.27% 50.15% 1.32% 3.83% 37.14% 0.53%

* the password contains at least one special character.

Table 3. Passwords frequency information.

Dataset Size Unique Twice 3 times 4 times 5+ times

1. rockyou 14,344,390 100% 0% 0% 0% 0%
2. 10_million_passwords 10,000,000 44.34% 3.86% 1.21% 0.6% 1.89%

3. passwords 2,151,220 99.96% 0.02% 0% 0% 0%
4. uniqpasss_preview 1,999,984 100% 0% 0% 0% 0%

5. phpbb 184,389 100% 0% 0% 0% 0%
6. scribd 106,358 75.68% 12.12% 0.03% 0% 0%
7. tuscl 38,820 100% 0% 0% 0% 0%

8. myspace 37,139 100% 0% 0% 0% 0%
9. singles_org 12,233 100% 0% 0% 0% 0%

10. 10k_most_common 10,000 100% 0% 0% 0% 0%
11. hotmail 8930 100% 0% 0% 0% 0%

12. faithwriters 8347 100% 0% 0% 0% 0%

Table 4 shows the average password length in our datasets. The table shows that the
average password length (weighted by the size of the datasets) is 8.38 characters, which is
in line with findings in [17,31,32].

Table 4. Password length.

Dataset Size Password Length

Mean Standard Deviation

rockyou 14,344,390 8.75 2.898
10_million_passwords 10,000,000 7.59 2.15

passwords 2,151,220 8.37 1.995
uniqpass_preview 1,999,984 9.92 3.51

phpbb 184,389 7.54 1.75
scribd 106,358 7.51 2.6
tuscl 38,820 7.37 1.75

myspace 37,139 8.23 2.6
singles_org 12,233 6.74 1.19

10k_most_common 10,000 6.30 1.3
hotmail 8930 8.79 2.89

faithwriters 8347 7.71 1.86
Simple average 7.9

Weighted average 8.38
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5.3. Main Results

Each model produced 11,924,618 results. Table 5 shows the descriptive statistics for
the results of all 12 models. From it we can quickly notice some distinguishable differences
between the models. The mean values range from 132.99 to 3003.56, medians are between
120.22 and 4000.00, and standard deviations range from 95.21 to 1895.30. All of these
differences are very big and at least one reason for this can be seen in the mode statistic.
The mode of all models is 4000. This is not surprising as the models assign this value to
passwords for which they are unable to calculate the strength. As the passwords that could
not have their strength calculated are considered to be stronger than the rest we assigned
them the highest value. In our case the value 4000 acts similarly to a ceiling value, resulting
in a distribution with a ceiling effect (which, in turn, compromises the normal distribution
of the models).

Table 5. Descriptive statistics for the password strengths produced by the 12 models.

Dataset Mean Median Mode Std. Deviation Maximum

10_million_passwords 146.26 120.22 4000 257.99 4000
10k_most_common 1074.47 126.20 4000 1671.79 4000

faithwriters 1286.00 141.36 4000 1772.61 4000
hotmail 632.37 127.12 4000 1303.92 4000
myspace 487.87 132.53 4000 1111.33 4000

passwords 1656.88 161.35 4000 1895.30 4000
phpbb 174.87 128.49 4000 381.38 4000

rockyou 132.99 120.69 4000 95.21 4000
scribd 3003.56 4000.00 4000 1690.55 4000

singles_org 750.01 127.06 4000 1425.36 4000
tuscl 427.66 127.33 4000 1027.52 4000

uniqpass 657.80 126.40 4000 1332.94 4000

An example of this can be seen in Figure 3. Figure 3 shows the distribution of myspace
model. In the right part of the graph, we can see the large increase in the frequency of the
ceiling value.

Figure 3. Distribution histogram for the myspace model.

All models produce such an effect to a greater or lesser degree. Even though the
mode of all the models is 4000 it might pay to take a closer look at the frequency of this
value in different models. After all the scribd model has a median that is the same as the
ceiling value, meaning more than half the results outputted by this model were 4000. High
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frequencies of such values could also mean a bad training dataset that was not able to
accurately measure the strength of passwords from the testing dataset.

Many ceiling values would inflate the average statistics and the standard deviation.
We can see this is in Figure 4, where the number of ceiling values that each model produces
is shown. Comparison between Table 5 and Figure 4 indicates that the size of the mean is
connected with the number of ceiling values each model produces–the order of models,
sorted by their mean size is the same as the order of models when sorted by the number
of ceiling values. This will probably be the most important defining characteristic of
successful models, because of the way we define a good password checking model. The
best model is the one that is the most severe with the passwords it is checking (i.e., it
produces the smallest values) because when dealing with the security we should always
be prepared for the worst-case scenario. An excessively stringent model promotes the
use of safer passwords, while an overly mild model gives good marks to less desirable
passwords and creates false confidence in those passwords. Models with more ceiling
values will on average and when compared, value by value, to another model be more
prone to show higher password strengths and will therefore be determined to be less
desirable for evaluation of password strengths.

Figure 4. Frequency of ceiling values for each model.

When comparing models by their frequency of ceiling values (Figure 4), we can notice
large differences between them. The most successful model at avoiding ceiling values and
therefore the most successful at calculating the strength for any password turned out to be
the model created from the biggest password dataset—rockyou. It was unable to calculate
only 5417 passwords (0.045%), while on the other hand scribd failed to calculate the strength
of almost 8.9 million passwords (74.2%).

Figure 5 shows how many models were unable to calculate individual passwords. For
approximately half a million of passwords used in the testing dataset, every single model
was able to successfully calculate their strength. Those are most likely the very weakest
of passwords, constructed from very common characters. Of the approximate 12 million
passwords used in the testing dataset, almost 2.55 million passwords failed to be calculated
by one model, 4 million by two models, etc. (see Figure 5). The strength of the most
complex passwords was impossible to calculate for up to nine models. This means that
for every single password at the very least three models were able to compute its strength.
As we have seen in the previous graph every single model had difficulties calculating the
strength of some passwords. However, we have now seen that every password could
be processed by at least a few models. This gives us the first indication that the use of
multiple models is required in order to be able to do strength calculations for a wide range
of passwords.
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Figure 5. The number of times models were unable to calculate each passwords strength.

Friedman’s ANOVA test is a non-parametric statistical test used for one-way repeated
measures analysis of variance by ranks. The Friedman test was selected, because as
is clear that the model outputs are not normally distributed. Considering the sample
size, the significance level was set at 0.001. Test results show statistically significant
differences between the distributions of Markov models trained on different datasets,
with χ2(11) = 14,629,394.673 and p < 0.0001. Consequently, we reject the null hypothesis,
stating that the distribution of scores in all models are the same and accept the alternative
hypothesis confirming that at least two of the models’ distributions differ.

For post hoc testing the Sign test was used, to compare every possible pair of models.
When looking at the difference between all 66 model pairs none had a normal distribution
and the majority of them were also nowhere close to symmetrically distributed. Because
other statistical tests assume that one of the two distributions is a normal distribution, the
Sign test, which makes no assumptions about the distribution, was used.

For post hoc testing the Wilcoxon Sign test was used, to compare every possible pair
of models. The Sign test was selected because the data meet all the required assumptions
(explained below). Figure 6 contains a selection of four differences between models with
normality curves. Graph a in Figure 6, for example, shows the distribution of 10_mil-
lion_passwords model results subtracted from the results of the rockyou model. Here the
distribution is fairly symmetrical, but as we map the differences of more diverse models
the distributions become more and more skewed. When looking at the difference between
all 66 model pairs none had a normal distribution and the majority of them were also
nowhere close to symmetrically distributed (Figure 6a,b graphs are the closest). Because
other statistical tests assume that one of the two distributions is a normal distribution, the
Sign test, which makes no assumptions about the distribution, was used.
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Figure 6. Four examples for the distribution of differences between two models.

Pairwise comparisons were performed with a Bonferroni correction for multiple
comparisons. Statistical significance was therefore accepted at the p < 0.000015 level. The
results for all 66 pairs can be seen in Table A1. Based on the results we reject the null
hypothesis (the median of the differences between two models is 0) for all 66 pairs and
accept the alternative, stating that the median of the differences between two models is not
equal to 0. This was, because the sample size and nature of data, somewhat expected. For
this reason, we also included effect size [33]. Effect size is a measure of magnitude or size of
an effect (the observed phenomenon). Effect size is calculated with the following formula:

r = Z/
√

N, (7)

where r is the effect size, Z is the z-value produced in the sign test, and N is the number of
observations. Bigger r value means a more substantial difference between the results of the
two models. Using Cohen criteria, we interpret the size of the effect. Effect size between
0.1 and 0.3 is considered to be small, but definitely not trivial or something to be ignored.
Bigger values that are smaller than 0.5 are said to have a medium effect, while r values over
0.5 represent a large effect. To simplify and make the effect size more understandable we
also calculate the common language effect size (CL), also called probability of superiority.
CL gives the probability that a random score from one model will be higher than its
matching pair in the second model. CL is calculated by dividing the positive differences by
the number of comparisons. The number of comparisons excludes ties (pairs where both
models produce the same value). Effect size, its effect classification and CL can all be found
in Table A1.

Each row in the table represents a pair of models (Model 1 and Model 2). Next two
columns are the Z and the p-value results of the sign test. Following are the metrics for the
effect size. Let us for example take the first pair in Table A1. For the pair 10K_most_common
and 10_million_passwords the effect size was calculated to be 0.1092. This result is higher
than 0.1 and is therefore not insignificant, however, it is not especially high, so we mark
the effect as small. CL is calculated by subtracting the model 2 results from model 1. The
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end percentage, therefore, tells us the probability of model 1 producing a higher strength
evaluation than model 2 for a random password. Looking back at the previous example,
the CL is 57.73%. This means 10K_most_common produced higher strength estimations
in 57.73% of the cases, while 10_million_passwords only had the higher value in 42.27% of
the results (excluding the ties). This brings us back to the definition of a more successful
model. Generally, the model consistently producing smaller password strength estimations
would be better. From the example, we can see that model 10_million_passwords more rarely
generates the higher strength value of the two and for that reason, we would consider this
model to be the better one. Because of the way the models are sorted into model 1 and 2
columns, the ones in the second column are always considered better. As a result, to find
the best models we can simply just count the number of times a single model is written in
the second column (higher the count, better the model). Following this rule, we find that
10_million_passwords is the best model, followed by rockyou, phpbb, tuscl, uniqpass, hotmail,
singles_org, 10k_most_common, myspace, faithwriters, passwords, and the worst of the tested
models scribd. We summarise this and order the models in Table 6.

Table 6. Ordering the models

Order Number Dataset Size Freq. of Ceiling Values % *

1 10_million 10,000,000 51,339 0.43
2 rockyou 14,344,390 5,417 0.05
3 phpbb 184,389 115,528 0.97
4 tuscl 38,820 909,631 7.63
5 uniqpasss_preview 1,999,984 1,635,319 13.71
6 hotmail 8930 1,553,497 13.03
7 singles_org 12,233 1,922,760 16.12
8 10k_most_common 10,000 2,934,668 24.61
9 myspace 37,139 1,083,773 9.09

10 faithwriters 8347 3,564,910 29.90
11 passwords 2,151,220 4,715,074 39.54
12 scribe 106,358 8,848,941 74.21

* percents from the testing dataset.

Ordering the models from the best to the worst is not very difficult, however, it should
be noted that the differences between models are not even remotely the same. For this rea-
son, we join models with similar results into groups. As stated before 10_million_passwords
produces the best results, but rockyou does not lag far behind. The effect size shows that
they do in fact produce very similar results. Additionally, as was shown in Figure 4 rockyou
is the most likely to calculate the strength of any passwords. These two models we would
therefore classify as very good. Not so good but still very decent are the models phpbb, tuscl,
uniqpass_preview, hotmail, and singles_org. All of these are very similar to each other, as can
be seen from effect sizes. While their dissimilarity to the two best models is not big enough
to be of small effect, they are quite close. The same cannot be said for 10K_most_common
and myspace, which have a meaningful difference to the two best models. Consequently,
these two models are considered not good, although they are still much better than the
last group. Models faithwriters, passwords, and scribd are significantly different from any
preceding model. This is especially true for the scribd model, which is the only one that has
medium and large differences from other models (including faithwriters and passwords).

Table 7 is a summary of the big Table A1 (see Appendix B) that includes all the results
mentioned and can be found in the appendix. Of the 66 comparisons between the models,
in 35 cases the difference was determined to be too small to be of any importance. The
remaining differences are large enough to not be ignored. Of those, 20 were classified as
small, 9 as medium and 2 as large differences. The table also shows the difference in CL
between classes.
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Table 7. Summary of Pairwise Comparison.

Effect # Mean r Value Mean CL

Trivial 35 0.044 53.14%
Small 20 0.154 61.01%

Medium 9 0.426 82.12%
Large 2 0.523 87.01%

6. Discussion

Now that we have all the data, we can look for the possible reasons, why some
password datasets might be better for constructing a good Markov model.

The first dataset property that could cause differences is its size. Intuitively one might
assume, bigger learning set of passwords would produce a better end result. Considering
the two biggest password datasets (rockyou and 10_million_passwords) managed to construct
the two best models this might look very plausible. However, the rockyou model, even
though it was constructed from more than 40% bigger dataset, is still not better than the
10_million_passwords model. Furthermore, the third best model (phpbb), which was only
marginally worse than the two best, was constructed from a dataset more than fifty times
smaller than the 10_million_passwords and was only fifth in the overall size, while the third
largest dataset (passwords) created the second worst model. This leads us to believe that
while the size is important, the quality of the dataset is also important. The increase in
dataset size also seems to have a diminishing return on the final quality of the model. This
would mean that the biggest datasets do not necessarily make a better model, while on the
other hand, smaller datasets have a stronger possibility to build a weaker model. In our
case, this is seen from the fact that none of the models built from the four smallest datasets
is amongst the five best models. The only considerably larger datasets that performed
worse have other major problems.

When looking at the password composition of models some additional reasons for the
success or failure of models can be found. The easiest password property to look at is the
mean length (Table 2). Password length does not appear to have any effect on the model’s
success. Models constructed from datasets with higher average password length can be
found among the best and worst. For example, the 10_million_passwords model, which
was shown to be the best, has the fifth shortest average password length, while rockyou
the second best model was constructed from a dataset with the second highest average
password length.

The composition of the passwords themselves is somewhat more difficult to compare,
but with the help of the frequency distribution of characters in datasets (see Section 5.1)
and the table on password information (Table 2) some distinct differences between datasets
and the resulting models become clear.

A quick overview of character frequencies shows that numerical characters are very
common in the majority of datasets, while upper-case letters are fairly uncommon. This
could be an added reason why datasets with proportionally smaller amount of numerical
characters perform reasonably badly (10K_most_common, faithwriters, scribd and partially
singles_org) and why datasets with no upper-case letters can do reasonably well (i.e.,
uniqpass_preview).

Uniqpass_preview is the third biggest dataset by the number of characters (passwords
dataset has more passwords but they are shorter). It has decent amounts of lower-case
letters, numbers and compared to other datasets it has proportionally more special char-
acters (more than 15% of all passwords contain a special character). Even though it has
zero upper-case letters the constructed model was the fifth best. This means that the model
cannot calculate the strength of any password with any number of upper-case letters. As
a consequence, the model cannot calculate the strength of a fair amount of passwords
(7th place overall). More ceiling values would normally mean a bad result, but a healthy
number of lower-case, numeric and special characters gives this model the ability to rigidly
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asses all other passwords. Uniqpass_preview is the best model built from a dataset that is
completely missing a major group of characters. A helping factor for this is no doubt also
the fact that the dataset was constructed for password cracking (although here we use only
a part of it) and is not just a collection of random passwords.

The four datasets that were the best have one thing in common. Frequency distribu-
tions of characters show that they all have reasonable amounts (enough for the Markov
model to make connections between the majority of characters) of all types of characters.
The most variety in the character set definitely belongs to the rockyou dataset. This is the
most likely reason that this dataset is the most reliable at being able to calculate the strength
of any password. The 10_million_passwords dataset is similar to rockyou in the distribution of
characters, but it does not have such a wide range of characters. Consequently, it is better at
measuring more common passwords (constructed from more commonly used characters),
while it somewhat lags behind the rockyou in the ability to calculate the strength of any
password. Third (phpbb) and fourth (tuscl) best models were constructed from a lot smaller
datasets and therefore cannot compare with the first two in the number of characters, but
the amount of characters here is still enough for Markov models to not have problems
building connections between them and from the frequency distributions of characters it is
visible that proportions between different types of character are still very similar. The built
Markov models are therefore probably also very similar, resulting in password strength
estimation very much alike to those of 10_million_passwords and rockyou even though they
were built from considerably smaller datasets.

Hotmail and singles_org datasets both have a good amount of lower-case letters and
comparable, although a small, number of upper-case letters. Hotmail also has proportionally
more numeric characters and it has some special characters while singles_org has none. As
a result, hotmail is better at calculating the password strength for any password and is also
marginally better overall. Hotmail model is in 6th place, while single_org is in 7th.

10K_most_common is the 3rd smallest dataset, but with the shortest average pass-
word length, it contains an even smaller amount of characters than the smallest dataset-
faithwriters. It has no upper-case letters, practically no special characters and the proportion
of numeric characters is small when compared to the best models. More than 83% of
all passwords in 10K_most_common consist exclusively of lower-case letters. Frequency
analysis of characters would suggest faithwriters to be a better dataset because it contains
upper-case letters and more numeric characters, however, the end results do not support
this presumption. Contents of the two datasets reveal that faithwrites has many passwords
with religious motives (the dataset was obtained from a religious forum) consequently
suffering from a large number of very similar passwords. A dataset consisting of related
passwords creates a Markov model that is not good at estimating the strength of any other
passwords. The 10K_most_common dataset on the other hand is a collection of common
passwords. The dataset is filtered and does not contain recurrence of any passwords.
Because it contains the most likely passwords it also contains at least some of the most
likely combinations of letters. As a result, the 10K_most_common model is very successful
despite its size and absence of upper-case letters.

The myspace dataset contains a varied collection of characters, but the special characters
and the upper-case letters are sparse. The constructed model is therefore fairly successful
in estimating the strength of any passwords (5th best), but passwords containing any of the
special characters or the upper-case letters, have their strength rated fairly high because based
on the dataset they are very uncommon. These high values cause the model to be ranked
fairly low (9th place). This phenomenon can also be seen in descriptive statistics (Table 5).
Myspace results have a small mean value (because results do not contain many 4000) but a
relatively high median (because on average the calculated password strength is larger).

Passwords dataset looks, on the basis of all the metrics that we have measured like it
should produce a good model. The only metric where it slightly stands out is the number
of numeric characters. More than 31% all characters in the dataset are numeric, but this is
not far from the 25% in rockyou and 10_million_passwords. Nevertheless, the results of the
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statistics test show that the model is the second worst model of them all. To find a reason
for this we had to look at the passwords themselves. Although the dataset is fairly big, we
have found that the variety of passwords in the dataset is very low. Many of the passwords
are just a variation of the same password or they share a word root. As a result, the Markov
model learns that those character combinations are very common (because they are often
repeated in the dataset), which would be a good thing, if there was not for many other
valid combinations of characters that the model never sees, and therefore cannot calculate
the strength for. Passwords is a very good example of a dataset that on paper looks as it
should perform well, but in reality, is not good at all.

In our research, the worst dataset to construct a Markov model from was scribd. From
the frequency distribution of the characters, we can see why. Upper case, numeric, and
special characters are all very rare in the dataset, especially considering that the dataset is
not small. As a result, the model could not estimate the strength for almost three-quarters
of the passwords in the testing dataset.

As we have seen with multiple modes the model’s ability to calculate the password’s
strength for any password and its quality rating (how good did the model turn out to be)
seem to be strongly connected. Models that were able to calculate more password strengths
(Figure 4) ended up being marked as better models. It is self-evident that good models
should be able to calculate the strength of any password, while the models that struggle
to estimate the strength of the majority of passwords are not good. This only further
substantiates our claim that multiple Markov models are needed in order to construct a
proper password checker.

6.1. Solidity of the Experiment

The first-order Markov model is commonly used for password cracking [10] since it is
the most easier to implement and requires less computational power. Higher order models
require more computational power, depending on the level of the model (i.e., the level of
history that the model keeps track of). One could argue that Markov models of higher
order can be more accurate at calculating probabilities since they take into account previous
states of the model, which in turn could lead to a more accurate calculation of password
strength [9,16]. The counterargument to a such statement would be the fact that selecting
the order of the model is a more challenging issue than it may seem. Markov models of
higher order can give us a greater accuracy as long as we have enough data. Every order
we add to the Markov model gives us A times more parameters, where A is the number of
states (in first-order Markov model A is basically the set of distinct characters identified in
the training dataset), i.e., an exponential explosion in a number of parameters. This means,
roughly, that we need exponentially greater amounts of data to properly train the model. At
some point, the model will overfit the data and it will run the risk of sparsity [14]. Sparsity
means that transition probabilities are being computed from very small count numbers,
which may be noisy [13]. So, the proper order of the model would be the one that fits the
data. Furthermore, creating a higher order model can be more difficult and expensive. In
the worst-case scenario, where the order k is exceeding the maximum password length,
the model would explicitly list the probability of occurrence of each possible password [9].
This would require a larger training set and more storage capabilities since the required
space is of the order of |A|k, where |A| is the size of the character set [9].

For the purposes of our study, we used first-order Markov model mainly because of
the above arguments-the possibility of data sparsity or data overfit if we use the wrong
order of the model. In order to back up our decision, we conducted a short experiment
where we compared first-order and second-order Markov models. We were interested
in the differences in the outcome of the first-order and the second-order Markov model.
The models were trained on the same password datasets in order to provide consistency
and statistical conditions. We used Equation (1) for calculating the probabilities of the
passwords. The models were trained on datasets described in Section 4.2 and then tested
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on the same testing dataset (containing randomly selected passwords that do not appear in
the training datasets).

Wilcoxon Signed Rank was used for testing the differences between the results from
the first-order and the second-order Markov model. Wilcoxon Signed Rank test is a non-
parametric statistical test that is used to compare two sets of scores that come from the
same participants. This test was selected, because the outputs of both models are not
normally distributed (Kolmogorov-Smirnov test indicated that the differences in the scores
from both models do not follow a normal distribution, D = 0.407, D = 0.364, D = 0.388,
D = 0.434, D = 0.483, D = 0.377, D = 0.504, D = 0.501, D = 0.523, D = 0.425, D = 0.485,
D = 0.446, p < 0.001).

In only five out of twelve cases test results show statistically significant differences be-
tween the median of differences between the two models, with Z = −14.084, Z = −227.664,
Z = −386.435, Z = −348.423, Z = −736.736, p < 0.001. In these cases we reject the null
hypothesis, stating that “the median of differences between first-order and second-order
equals 0” confirming that there are statistical differences between the medians of differ-
ences provided by both models. Consequently, in the other seven cases, we retain the null
hypotheses (i.e., seven out of twelve cases showed no statistically significant differences).

The above tests show that the difference in outputs between the two Markov models
with different orders is, in most cases, not statistically significantly different. Therefore,
we argue that it is, without a doubt, important to analyse the dataset before selecting the
order of the model. As long as one is not limited by the hardware and one is not facing
data sparsity, one can use a higher order Markov model when necessary. Since our study is
not directly related to what order of the model we use and the statistical tests showed no
statistical differences in most of the cases, we decided on using first-order Markov model
for our experiments.

6.2. Effectiveness of the Approach

So far we have analysed the output scores of the models and compared them with
each other. Based on the statistical analysis of these scores we argued that multiple Markov
models are needed in order to create an effective password checker for a wide range of
passwords and that one universal dataset should not be used to train one Markov model
if we want to have an effective password scoring tool. In this section, we test and prove
the effectiveness of different models specified for scoring different groups of passwords.
For that purpose, we performed an additional experiment as a continuation of our main
experiment. The goal is to prove the effectiveness of our models for scoring passwords that
are strong, medium, or weak. Furthermore, the universal Markov model was trained on
one “ultimate” password dataset, which consists of multiple different password datasets
put together. We then tested the cracking resistance of the passwords that our models and
the universal model identified as strong, medium, or weak. We define the term cracking
resistance as the ability of a password to resist the cracking attack-the longer the password
resists the attack, the higher the password strength score.

6.2.1. Environment Setting

We tested the cracking resistance for 1500 of the best-ranked passwords from our
testing dataset. We selected these passwords based on the score given by three of our
models. We classified these passwords in the categories of strong, medium and weak in
the following way: 500 of the best ranked passwords scored by our best-ranked model
10_million_passwords were classified as strong passwords, 500 of the best ranked passwords
scored by our middle-ranked model hotmail were classified as medium passwords, and 500
of the best ranked passwords scored by our worst-ranked model scribd were classified as
weak passwords. We did a similar selection for the universal model: we selected the top
500 passwords that were scored by the universal model as strong, 500 that were scored as
medium, and 500 that were scored as weak.
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For testing the cracking resistance of the selected passwords we used Hashcat [34]
and its abilities. Hashcat is an open-source tool (MIT License) and its functionalities are
generally available. It can also be used in Markov mode for cracking passwords which
is useful for our efficiency testing since the password guesses in Markov modes are built
with the use of Markov models.

Since Hashcat works only on hashed data, we hashed the selected passwords with
MD5 hashing algorithm, before we ran them through Hashcat. We performed three
password cracking cycles-one for every category of passwords. In every cycle we ran the
same sequence of password cracking techniques: (1) dictionary attack, (2) dictionary attack
with additional mangling rules, and (3) Markov mode attack. The first password cracking
technique is a basic dictionary attack, the second is a dictionary attack with additional
mangling rules that are already implemented in Hashcat, while the third is a technique
that is based on Markov models. It is important to note that for the dictionary-based
password cracking techniques we used all our training files that we used to train our
Markov models on.

We expected to crack all the weak and most of the medium passwords in a relatively
short time, but for the strong passwords, we expected it would take a much longer time. For
the purpose of this experiment we only need to prove that the passwords that our models
identified as weak passwords can be cracked in a lot shorter period of time regarding
the passwords that were identified as strong. Considering this, we decided to run all
cracking techniques for the same amount of time-2 weeks for every password cracking
technique-and count the number of cracked passwords from every password category. By
analysing the number of cracked passwords from every category, within the same period
of time, we can confirm whether those passwords are weak, medium or strong.

The last password cracking technique based on Markov models took more time to
complete since the Markov model needs to be trained first. For training the model we used
our best training dataset-10_million_passwords. Because of space and memory sparsity (the
size of the final Markov file with password suggestions has grown to almost 350 GB), we
let Hashcat work for 2 days and build the Markov model. We piped the generated results
from the Markov model into Hashcat and performed the password cracking technique.

It is important to note that all parts (cycles) of the experiment were performed with the
same technical equipment and in the same time period in order to preserve the continuity
and the soundness of the experiment. We used Intel(R) Core(TM) i5-3550 processor on
3.30 GHz and 24 GB of RAM with 64-bit Windows 10 operating system.

6.2.2. Results

We started every password cracking cycle by running the passwords through Hash-
cat’s dictionary attack process. The results of the cracking process for every cycle for the
three different models are shown in Table 8.

Table 8. Password cracking results for the three different Markov models.

Password Category Attacking Technique TotalDictionary Dictionary + Rules Markov Mode

Weak 462 (92.4%) 4 (0.8%) / 466 (93.2%)
Medium 96 (19.2%) 150 (30%) / 246 (49.2%)
Strong 2 (0.4%) 153 (30.6%) / 155 (31%)

Table 9 shows the results of the cracking process for the universal Markov model.
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Table 9. Password cracking results for the universal Markov model.

Password Category Attacking Technique TotalDictionary Dictionary + Rules Markov Mode

Weak 10 (2%) 49 (4.8%) / 59 (11.8%)
Medium 2 (0.4%) 25 (5%) / 27 (5.4%)
Strong 1 (0.2%) 25 (5%) / 26 (5.2%)

Multiple different models Expectedly, in the category of weak passwords we man-
aged to crack almost all of the passwords. With the first dictionary attack, we managed to
crack 462 weak passwords or 92.4%. Following, we used a dictionary attack with additional
rules (these were mostly basic mangling rules) where we managed to crack additional
4 passwords (0.8%). Surprisingly, with the Markov mode, we didn’t manage to crack any
passwords. The first cracking cycle took one day to complete i.e., we managed to crack 466
(96.4%) weak passwords in just one day.

The second cycle of cracking passwords from the category of medium passwords gave
even more promising results. With the basic dictionary attack we managed to crack only
96 medium passwords (19.2%) and with the second attack with additional mangling rules,
we cracked additional 150 passwords (30%). In the second cycle we ended up with a total
of 246 (49.2%) cracked medium passwords.

In the third and final cycle, we managed to crack 155 (31%) passwords that were
identified as strong. We cracked the passwords with the dictionary attack followed by
additional more complex mangling rules. The Markov mode attack did not manage to
crack any of the strong passwords.

In the scope of this additional experiment with multiple different Markov models, we
managed to crack overall 466 passwords from the weak category, 246 from the medium,
and 155 from the category of strong passwords. As evident from the descriptive statistics
of the results, our Markov models are able to distinguish between at least three different
categories of passwords (i.e., strong, medium, or weak).

Universal model The situation with the universal Markov model was completely dif-
ferent. As we can see from Table 9 we managed to crack only 11.8% of the weak passwords.
In the second and third cycle we cracked even fewer passwords: only 5.4% of the medium
and 5.2% of the strong passwords. Most of the passwords were cracked with the dictionary
attack with additional mangling rules. Surprisingly, with the Markov mode, we also didn’t
manage to crack any passwords. Overall, we cracked a total of 112 passwords out of 1500
selected. The number of cracked passwords with this approach is far lower than the other
approach where we used three different Markov models. Even more, the number of cracked
passwords between each category is almost the same, especially between the category of
medium and strong passwords (27 and 26 accordingly). This gives the indication that
the ultimate model has difficulties with categorizing medium and strong passwords and
probably undergoes the “overfitting” process, where it can no longer distinguish between
new passwords that are supposed to be strong and already known ones that are supposed
to be weaker.

6.3. Ethical Considerations

Our results are from our Markov models that were trained on password datasets
that are publicly and widely available. These datasets were originally collected through
illegal cracking and phishing attacks. Some argue that such data should not be used by
researchers because it can compromise the accounts and data of the users whose passwords
were stolen. The passwords that we used were anonymised and did not contain any other
data that could connect the password to its user and/or account. We use these datasets
only to train our Markov models and not to use them as cracking datasets, for they do not
contain any other information about the passwords (e.g., usernames or email addresses).
We do strength analysis of plaintext passwords, not cracking hashed passwords which we
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could publish later and compromise the users and their accounts. Furthermore, since these
password datasets have already been used in other research studies [9–12,15,18,19] and
have been made public and easily available, using them in our research does not increase
the harm to the victims. Still, there is a possibility that attackers will use these datasets as
training sets for their cracking mechanisms, but since we use the datasets and our statistical
analysis to improve the way password checkers work and to better assess the passwords’
strength entered by the users, our use of them to assess passwords’ strength and our results
are more likely to be of practical use for the security and for the system administrators.

6.4. Limitations

When performing the experiments, we limit the number of states, i.e., the number of
distinct characters that we search in the datasets and use in our models, to 224, coinciding
with the set of ASCII characters from character code 32 to 255. This character set includes
all characters from the extended ASCII table, except for the initial 32 characters which are
basically unprintable control codes and are used to control peripherals such as printers.

It is necessary to note that when Markov models are used for password cracking they
are usually used as an aid when dictionaries are exhausted and when the search space
becomes very large. We assume that an average attacker would have access to password
training sets that are as good and effective as the best of all our training sets. If Markov
models are used the other way around (as a password scoring tool), one should do an
analysis of the datasets similar to ours, in order to find the right way to combine the
datasets and to create a more effective password scoring tool.

Furthermore, the datasets that we used in our research are publicly available datasets
of passwords that were illegally collected. This increases the doubt that these datasets are
partial (only a part of larger datasets that also contain stronger passwords) and biased
datasets that contain only the most common and weaker passwords that are easy to predict.
Since these are publicly available datasets of previously compromised accounts, we can
argue that future attackers can also use only the datasets that are available online in order
to build their tool and strategy for an attack. This implies that a solution for password
restriction based on multiple Markov models should be able to recognize and prevent the
weak passwords from entering the system. The problem in information security are not
strong passwords that are not yet cracked and leaked, but weak passwords that are publicly
available. A good password checker should not let weak passwords through. Hence, our
models should be able to recognize and assess these passwords as weak. This implies that
our models should be trained on weak, biased and similar passwords that are available for
most of the attackers.

6.5. Practical Use of the Approach

Our approach can be used in a typical Web-based password-protected service. A
practical example of our approach follows:

The Markov model is represented by a Markov matrix that contains the conditional
transitional probabilities (see Section 3) needed for calculating the password score. This
matrix is stored and available on the server-side, while the actual password checker is
available on the website (i.e., the client-side). On the client-side, the user enters the
password in the password field. The password entered in plain text is then sent through a
secure connection (HTTPS) to the server-side. On the server-side, the Markov matrix is
used to calculate the score of the password. If the password is assessed as strong or very
strong, the password is hashed, salted and stored in the database. Otherwise, a warning is
presented to the user, stating that the password is too weak to be accepted by the system
and it requires a change. Additional instructions on how to create a secure and strong
password are displayed. The levels of password strength are defined on the basis of the
scores of all the passwords in all training datasets. Basically, the solution can be used as an
additional step at the server-side and there is no need for additional modification of the
existing user interface (i.e., the website).
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7. Conclusions

In this study, we explored the possibility of using Markov models as a basis for creating
a more effective password checker. The idea itself brought out the question of whether one
model is sufficient if we want our password checker to be able to properly calculate the
strength of a variety of passwords with different characteristics. Successively, the objective
of this study was to compare different Markov models and find out whether there are
significant differences between them. Our goal was to find out whether different Markov
models will provide statistically different results when tested on the same password dataset,
which would lead us to the answer to our main question. We used publicly available
password datasets that we randomized and divided into training and testing datasets.
We explored the results of every model and compared them with each other in order to
investigate the statistical significance in the scores from different models. We also explored
the effect of the datasets size, the average password length and other characteristics on the
success of the model.

We find that of the approximate 12 million passwords used in the testing dataset,
almost 2.55 million passwords failed to be calculated by at least one model. We also find
that every single model had difficulties calculating the strength of some passwords and
that every password could be processed by at least a few models. Hence our assumption
that the use of multiple models is required in order to be able to do strength calculations
for a wide range of passwords.

Overall, the results and the statistical tests demonstrate that there are significant
differences in medians between all models. Size of dataset seems to be a big determining
factor in the final quality of the model, up to a certain point-increasing the dataset size
(number of characters) afterwards has a diminishing return. The size itself will do no good,
without the right composition, the right and sufficient amount of numbers, lower and
upper-case letters, and special characters.

Based on the presented results, we came to a few major conclusions:

• different Markov models (trained on different password datasets) provided statisti-
cally different results when tested on the same password dataset,

• more diverse datasets are needed to be able to calculate the strength of as many
passwords as possible, since one “universal” model, trained on one “universal”
dataset is less effective at classifying passwords in different categories (i.e., weak,
medium, strong),

• the passwords in the dataset are also important. They should be diverse and should
not repeat in any significant way,

• different Markov models of 1st and 2nd order, in most cases, give no statistically
different results,

• overall, Markov models can be used as a basis for constructing a more effective
password checker that uses multiple different and specific Markov models, which
could be more effective if we want to cover a wider range of passwords.

The fact that different training datasets can lead to statistically different password
scores, leads us to the conclusion that it is very important what kind of dataset is used to
train the Markov models. We argue that one universal dataset should not be used to train
one Markov model if we want to have an effective password scoring tool. Our results give
the indication that the use of multiple models is required in order to be able to do strength
calculations for a wide range of passwords. We further argue that if a Markov model would
be used for assessing password strength, then it should be constructed and trained on a
particular dataset of passwords, so it can be more efficient for that particular password
group. For this manner, multiple different Markov models can be used in combination
(depending on the type of the password), so the password scoring tool can effectively cover
a wider range of passwords. In other words, we select the one model that is trained on a
dataset of passwords that closely resembles the password creation policy.

We believe that the results of this study can be of certain aid for future password
checkers, that would be based on multiple Markov models, where each is tailored for a
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particular password group(s). Such a password checker can easily and more effectively
check the probability of a given password to be chosen by the user.
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Appendix A. Character Frequency Distribution

Figure A1. Frequency Distribution of Characters-Dataset: 10_million_passwords.

Figure A2. Frequency Distribution of Characters-Dataset: 10k_most_common.
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Figure A3. Frequency Distribution of Characters-Dataset: faithwriters.

Figure A4. Frequency Distribution of Characters-Dataset: hotmail.

Figure A5. Frequency Distribution of Characters-Dataset: myspace.

Figure A6. Frequency Distribution of Characters-Dataset: passwords.

Figure A7. Frequency Distribution of Characters-Dataset: phpbb.
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Figure A8. Frequency Distribution of Characters-Dataset: rockyou.

Figure A9. Frequency Distribution of Characters-Dataset: SCRIBD.

Figure A10. Frequency Distribution of Characters-Dataset: singles_org.

Figure A11. Frequency Distribution of Characters-Dataset: tuscl.

Figure A12. Frequency Distribution of Characters-Dataset: uniqpass_preview.
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Appendix B. Pairwise Comparison of the Models

Table A1. Pairwise Comparison of the Models.

Model 1 Model 2 Z p-Value r Effect CL

10k_most_common 10_million_passwords −533.29 <0.000005 0.1092 Small 57.73%

10k_most_common hotmail −97.42 <0.000005 0.0199 Trivial 51.43%

10k_most_common phpbb −170.25 <0.000005 0.0349 Trivial 52.47%

10k_most_common rockyou −466.12 <0.000005 0.0954 Trivial 56.75%

10k_most_common singles_org −54.90 <0.000005 0.0112 Trivial 50.81%

10k_most_common tuscl −135.87 <0.000005 0.0278 Trivial 51.99%

10k_most_common uniqpass −117.42 <0.000005 0.0240 Trivial 51.73%

faithwriters 10_million_passwords −1075.77 <0.000005 0.2203 Small 65.59%

faithwriters 10k_most_common −474.36 <0.000005 0.0971 Trivial 57.15%

faithwriters hotmail −641.63 <0.000005 0.1314 Small 59.47%

faithwriters myspace −493.29 <0.000005 0.1010 Small 57.25%

faithwriters phpbb −757.29 <0.000005 0.1551 Small 60.98%

faithwriters rockyou −1026.99 <0.000005 0.2103 Small 64.87%

faithwriters singles_org −579.74 <0.000005 0.1187 Small 58.61%

faithwriters tuscl −690.55 <0.000005 0.1414 Small 60.13%

faithwriters uniqpass −645.65 <0.000005 0.1322 Small 59.54%

hotmail 10_million_passwords −473.38 <0.000005 0.0969 Trivial 56.86%

hotmail phpbb −44.39 <0.000005 0.0091 Trivial 50.64%

hotmail rockyou −397.70 <0.000005 0.0814 Trivial 55.76%

hotmail tuscl −32.67 <0.000005 0.0067 Trivial 50.48%

hotmail uniqpass −26.93 <0.000005 0.0055 Trivial 50.39%

myspace 10_million_passwords −685.35 <0.000005 0.1403 Small 59.93%

myspace 10k_most_common −64.28 <0.000005 0.0132 Trivial 50.94%

myspace hotmail −210.92 <0.000005 0.0432 Trivial 53.07%

myspace phpbb −284.03 <0.000005 0.0582 Trivial 54.11%

myspace rockyou −624.40 <0.000005 0.1279 Small 59.04%

myspace singles_org −173.66 <0.000005 0.0356 Trivial 52.53%

myspace tuscl −255.10 <0.000005 0.0522 Trivial 53.71%

myspace uniqpass −232.11 <0.000005 0.0475 Trivial 53.38%

passwords 10_million_passwords −1154.46 <0.000005 0.2364 Small 66.73%

passwords 10k_most_common −552.33 <0.000005 0.1131 Small 58.42%

passwords faithwriters −142.85 <0.000005 0.0293 Trivial 52.20%

passwords hotmail −739.00 <0.000005 0.1513 Small 60.99%
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Table A1. Cont.

Model 1 Model 2 Z p-Value r Effect CL

passwords myspace −631.29 <0.000005 0.1293 Small 59.29%

passwords phpbb −883.09 <0.000005 0.1808 Small 62.81%

passwords rockyou −1106.78 <0.000005 0.2266 Small 66.03%

passwords singles_org −680.09 <0.000005 0.1393 Small 60.18%

passwords tuscl −783.45 <0.000005 0.1604 Small 61.52%

passwords uniqpass −749.46 <0.000005 0.1535 Small 61.15%

phpbb 10_million_passwords −452.18 <0.000005 0.0926 Trivial 56.55%

phpbb rockyou −374.77 <0.000005 0.0767 Trivial 55.43%

rockyou 10_million_passwords −85.05 <0.000005 0.0174 Trivial 51.23%

scribd 10_million_passwords −2563.90 <0.000005 0.5250 Large 87.18%

scribd 10k_most_common −1978.05 <0.000005 0.4050 Medium 81.69%

scribd faithwriters −1719.88 <0.000005 0.3522 Medium 78.20%

scribd hotmail −2214.09 <0.000005 0.4534 Medium 83.74%

scribd myspace −2228.82 <0.000005 0.4564 Medium 83.38%

scribd passwords −1469.32 <0.000005 0.3009 Medium 75.33%

scribd phpbb −2430.38 <0.000005 0.4977 Medium 85.32%

scribd rockyou −2542.95 <0.000005 0.5207 Large 86.83%

scribd singles_org −2149.37 <0.000005 0.4401 Medium 83.17%

scribd tuscl −2314.10 <0.000005 0.4739 Medium 84.46%

scribd uniqpass −2213.08 <0.000005 0.4532 Medium 83.81%

singles_org 10_million_passwords −488.33 <0.000005 0.0999 Trivial 57.07%

singles_org hotmail −29.83 <0.000005 0.0061 Trivial 50.44%

singles_org phpbb −82.63 <0.000005 0.0169 Trivial 51.20%

singles_org rockyou −414.37 <0.000005 0.0849 Trivial 56.00%

singles_org tuscl −55.45 <0.000005 0.0114 Trivial 50.81%

singles_org uniqpass −52.65 <0.000005 0.0108 Trivial 50.77%

tuscl 10_million_passwords −425.79 <0.000005 0.0872 Trivial 56.17%

tuscl phpbb −22.96 <0.000005 0.0047 Trivial 50.33%

tuscl rockyou −363.60 <0.000005 0.0745 Trivial 55.26%

uniqpass 10_million_passwords −434.23 <0.000005 0.0889 Trivial 56.29%

uniqpass phpbb −26.70 <0.000005 0.0055 Trivial 50.39%

uniqpass rockyou −362.49 <0.000005 0.0742 Trivial 55.25%

uniqpass tuscl −13.70 <0.000005 0.0028 Trivial 50.20%
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