
applied
sciences

Article

Data-Oriented Language Implementation of the
Lattice–Boltzmann Method for Dense and Sparse Geometries

Tadeusz Tomczak

����������
�������

Citation: Tomczak, T. Data-Oriented

Language Implementation of the

Lattice–Boltzmann Method for Dense

and Sparse Geometries. Appl. Sci.

2021, 11, 9495. https://doi.org/

10.3390/app11209495

Academic Editors: Wojciech Bożejko

and Ugo Vaccaro

Received: 30 August 2021

Accepted: 10 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
tadeusz.tomczak@pwr.edu.pl

Abstract: The performance of lattice–Boltzmann solver implementations usually depends mainly on
memory access patterns. Achieving high performance requires then complex code which handles
careful data placement and ordering of memory transactions. In this work, we analyse the perfor-
mance of an implementation based on a new approach called the data-oriented language, which
allows the combination of complex memory access patterns with simple source code. As a use case,
we present and provide the source code of a solver for D2Q9 lattice and show its performance on
GTX Titan Xp GPU for dense and sparse geometries up to 40962 nodes. The obtained results are
promising, around 1000 lines of code allowed us to achieve performance in the range of 0.6 to 0.7 of
maximum theoretical memory bandwidth (over 2.5 and 5.0 GLUPS for double and single precision,
respectively) for meshes of sizes above 10242 nodes, which is close to the current state-of-the-art.
However, we also observed relatively high and sometimes difficult to predict overheads, especially
for sparse data structures. The additional issue was also a rather long compilation, which extended
the time of short simulations, and a lack of access to low-level optimisation mechanisms.

Keywords: parallel programming; CUDA; GPU; LBM

1. Introduction

Current high-performance computers use some form of parallel processing on many
levels: beginning at instruction-level parallelism (ILP) and single instruction multiple data
(SIMD) support, through the use of dynamic random access memories (DRAM), which
transfer data in blocks containing several dozen bytes, up to multi/many-core chips and
clusters of machines connected with a fast network. Thus, to effectively use the available
hardware, the processed data should be carefully arranged in a way that allows usage
of all available hardware with minimal losses. For example, DRAM block transactions
connected with SIMD processing are tuned to large data sets containing elements processed
in the same way. When neighbouring elements require different operations, the hardware
is usually significantly underutilised. These limitations cause that many computational
problems, for example in the physic simulations area, require not only sophisticated
algorithms but also non-trivial data layouts in the memory to achieve high performance.
Typical examples of such problems are simulations on sparse geometries, i.e., geometries
for which computations must be performed only for a small part of area/volume.

The lattice–Boltzmann method (LBM) is a computational fluid dynamics (CFD) algo-
rithm based on cellular automata idea, where automaton cells correspond to points (called
nodes) of a uniformly discretised domain of computations. One of the main advantages
of LBM is its inherent parallelism; thus, many high-performance LBM implementations
are known.For dense geometries, the implementation may be relatively simple [1,2] and
allow the achievement of high hardware utilisation (up to about 80% of peak theoretical
memory bandwidth) [3,4]. However, when the significant part of geometry is solid and
many nodes of a discretised domain do not take part in computations, then the more
complex implementation techniques have to be used to avoid memory, bandwidth, and
computational power waste.

Appl. Sci. 2021, 11, 9495. https://doi.org/10.3390/app11209495 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7206-4199
https://doi.org/10.3390/app11209495
https://doi.org/10.3390/app11209495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209495
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209495?type=check_update&version=2

Appl. Sci. 2021, 11, 9495 2 of 19

The boundary between dense and sparse geometries may be difficult to define, espe-
cially when different constraints must be considered. From the performance point of view,
the geometry can be treated as sparse if dedicated techniques allow decreasing simulation
time or memory usage. An approximate distinction can also be based on application.
For example, aerodynamic simulations for car, aviation and space industries can be often
treated as dense because the simulated area is usually significantly larger than models of
a car or an aircraft wing. Medical simulations of large fragments of vascular systems are
usually sparse—the veins can occupy even less than 1% of the bounding volume. In oil
or chemical industries, different porous materials are used: sandstones, chemical reactors,
elements of fuel cells, etc. However, since their parameters can vary within wide limits,
thus the decisions about using techniques for dense or sparse geometries should be made
for each case separately.

LBM implementations for sparse geometries are based on two main approaches:
indirect addressing, where each node contains additional information about localisation
of neighbouring nodes, and spatial discretisation, where the information about geometry
sparsity is stored for fragments containing a number of neighbouring nodes from the
domain. Two main indirect addressing approaches are the connectivity matrix [5], used in
MUPHY [6] and ILBDC [7] solvers, and the fluid index array [4,8,9]. Spatial discretisation is
used in HemeLB [10], Palabos [11], OpenLB [12], Musubi [13] and WaLBerla [14] platforms.
A more detailed review of LBM implementations for sparse geometries can be found in [15].

Although there are known many techniques that allow increase in the utilisation
of hardware resources for computations on sparse geometries, implementation of these
techniques requires a significant amount of work, especially for different machines. Even
the rather simple implementation of one-level spatial discretisation from [16,17] requires
more than ten thousand lines of heavily templated C++ code. In this context, an interesting
approach to reduce the amount of work required to port the code to different platforms was
presented in [4], where the final code for target machines was generated from templates
written in the Python Mako library.

Recently, the data-oriented parallel programming language Taichi appeared [18],
which simplifies the development of high-performance codes for computations on both
sparse and dense data structures. It allows not only generation of the final code for different
target machines, but the more important feature is decoupling information about data
structures from computational kernels. By providing structural nodes, which can be used to
build complex, hierarchical data structures, and at the same time offer a simple interface
simulating access through [] operator like for dense data structures, the Taichi language
allows design of only simple, basic codes describing computations only.

In this work, we present an implementation of the lattice–Boltzmann method in the
Taichi language for both dense and sparse geometries and investigate its performance on a
massively parallel graphic processing unit (GPU). To our knowledge, currently, there are
no published studies on Taichi-based LBM solvers. A simple code of one existing attempt
is available [19], but it was designed to keep the code simple, thus its performance is low.
The implementation presented in this work is loosely based on this simple version, but we
significantly redesigned the code to improve performance and handle a wider set of bound-
ary conditions. Our implementation is created mainly for performance analysis, although
we did some elementary correctness tests. We also provide the source code (available at
https://github.com/tadeusz-tomczak/tilb (accessed on 30 August 20201)) which, as we
believe, can be a good starting point for building high-performance simulations of more
complex physical phenomena.

2. Materials and Methods
2.1. Taichi Language

The Taichi programming language [18] is an actively developed open-source [20]
just-in-time compiler that translates Python-like source code into binary code for different
hardware platforms (various CPUs, CUDA, AMDGPU and others). The language uses

https://github.com/tadeusz-tomczak/tilb
https://github.com/tadeusz-tomczak/tilb

Appl. Sci. 2021, 11, 9495 3 of 19

the standard Python syntax extended with decorators marking some functions as kernels.
During compilation, the kernels are transformed into optimised binary codes, which are
then called from the surrounding Python source. Such a solution allows easy binding of
efficient, application-specific kernels with a wide variety of available libraries and tools,
especially given that Taichi provides a basic GUI system and simple built-in interfaces to
NumPy and PyTorch libraries. The kernel compiler applies a few levels of optimisations,
including simple template instantiation, loop unrolling and vectorisation, constant fold-
ing, and others. Inside kernels, the highest level loops can be automatically parallelised
provided that operations are performed on Taichi fields.

Fields are the multidimensional data structures that provide an array-like data access
interface via the [] operator. Internally fields use a hierarchy of structural nodes (SNodes)
which define dimensions, size and data arrangement in memory. Information from SNodes
is used, both during kernel compilation and runtime, to optimise data access to field
elements and to distribute workload onto available threads/processors. Compilation-time
optimisations allow decreasing overheads caused by traversing nested SNodes but require
that the field definition must be known at the moment of kernel compilation and enforce
separate kernel compilations for different data structures.

The types of SNode allow the use of different data layouts. The dense layout is a simple,
multidimensional array. The bitmasked layout allows addition of information whether given
elements contain valid data or not. This layout does not reduce memory usage because all
bitmasked elements must be still placed in memory. However, computational kernels are
called only for data elements masked as valid, and thus the bitmasked layout can reduce
the number of operations for sparse data. Reduction of memory usage for sparse data is
possible with the pointer data layout that can mark pointers to non-existent data as invalid
and thus does not require memory allocation in this case.

The data layout in Taichi can be defined as a hierarchy of different SNodes. For
example, ti.root.pointer (ti.i, 16).bitmasked (ti.i, 8).dense (ti.i, 4) defines 16 pointers, each
pointing to 8 bitmasked dense blocks of data where each dense block contains 4 data
elements (not shown). After definition, this structure can be accessed using a simple [i]
operator, where i ∈ {0, . . . , 511}. The calculations of memory addresses, traversing and
checking values of pointers and bitmasks, and launching of the appropriate number of
computational kernels are internally handled by Taichi. Additionally, some optimisations
are applied to reduce the overheads caused by additional memory accesses required to
traverse multi-level, hierarchical data structures.

2.2. Lattice–Boltzmann Method

The lattice–Boltzmann method (LBM) is a numerical approach to solve the Navier–
Stokes equations, which describe the motion of fluids. The detailed LBM description with
the theoretical background is available in many books [21–23]; thus, in this work, we only
show a minimal introduction from the implementation point of view.

In LBM, the domain is discretised into a uniform, usually Cartesian, mesh containing
nodes distant by the lattice spacing δx along all axes. During computations, nodes communi-
cate with some neighbours—the choice of neighbours depends on lattice arrangement which
defines the dimension of the problem and communication pattern between neighbouring
nodes (lattice linkage). The lattice arrangement is usually described using DdQq notation,
where d is the dimension, and q is the linkage. For example, the D2Q5 arrangement defines
a 2D lattice where nodes communicate only with neighbours placed along the axes (left,
right, top, bottom), whereas D2Q9 takes into account also the nodes placed at diagonal
corners (see Figure 1).

A single iteration of simulation advances simulation time by the time step δt and
includes one-time communication between all nodes and additional computations. To
simplify equations, it is usually assumed that δx = 1 and δt = 1. In this case, the initial

Appl. Sci. 2021, 11, 9495 4 of 19

characteristic velocity U and the fluid viscosity ν have to be set up to keep the required
Reynolds number

Re =
U · L

ν
, (1)

where L denotes the characteristic length which is dependent on the selected size in simu-
lated geometry.

13

2

4

56

7 8 δx

δx
Figure 1. D2Q9 lattice arrangement and indices of lattice links (index 0 denotes the node itself).
Circles denote lattice nodes.

Each node contains a set of particle distribution functions (PDF) fi(x, t), where x denotes
node position, t denotes time, and i denotes the index of function corresponding to lattice
linkage. The PDF numbering can be chosen in different ways; in this work we use one of
the most often presented in Figure 1. The macroscopic fluid density ρ and velocity v are
related with PDFs according to equations

ρ(x, t) = ∑
i

fi(x, t) and v(x, t) =
1

ρ(x, t)
δx
δt ∑

i
vi fi(x, t), (2)

where vi are called lattice (microscopic) velocities and are equal to vectors from the current to
the neighbouring node. For the D2Q9 lattice shown in Figure 1, the selected values of vi
are the following: v0 = [0, 0], v1 = [1, 0], v4 = [0,−1], v6 = [−1, 1], etc.

The LBM operations are described by equation

fi(x + viδt, t + δt) = fi(x, t) + Ωi, (3)

where Ωi is named the collision operator. Simple LBM implementations are then often
realised as two alternating steps: collision computing new PDF values according to the right-
hand side of Equation (3), and streaming responsible for transferring the values computed
during the collision step into the places defined by the left-hand side of Equation (3).

One of the simple, yet widely used, collision operators is the Bhatnagar, Gross and
Krook (BGK) operator [24] defined as

ΩBGK
i = −ω

(
fi(x, t)− f eq

i (x, t)
)

, (4)

where ω is called the collision frequency and f eq
i is the local equilibrium distribution function.

Assuming both δx and δt equal to one, the collision frequency results from the fluid
viscosity ν as

ω =
1

3ν + 1
2

. (5)

The local equilibrium distribution function is defined as

f eq
i (x, t) = wiρ

(
1 + 3vi · v +

9
2
(vi · v)2 − 3

2
v · v

)
, (6)

where constants wi depend on lattice arrangement and for D2Q9 are w0 = 4
9 , w1,2,3,4 = 1

9 ,
w5,6,7,8 = 1

36 .

Appl. Sci. 2021, 11, 9495 5 of 19

3. Implementation

The LBM implementation can directly follow Equation (3) but, in our version, we
applied some of the techniques developed for higher performance: the f used kernel and
the pull scheme [25], which are used on different hardware platforms, and a collection of
low-level, GPU-only optimisations described below. The general idea of the presented
implementation is shown in Algorithm 1. The algorithm contains three main operations.

Algorithm 1: General idea of the presented LBM implementation. ρ, v, f ′i and
f ′′i denote temporary values used only inside the kernel.

1 for all nodes do
2 Set initial values of ρ, v
3 Set f pre

i = f eq
i

4 repeat
5 for all nodes at positions x do in parallel
6 Kernel stream and collide
7 for all directions i do
8 gather f ′i ← f pre

i (x− vi)

9 compute ρ and v from f ′i using Equation (2)
10 for all directions i do
11 compute f eq

i from ρ and v using Equation (6)
12 compute new f ′′i from f ′i , f eq

i , RHS of Equations (3) and (4)
13 store f post

i (x) ← f ′′i

14 for all nodes at positions x do in parallel
15 swap f post

i (x) � f pre
i (x)

16 until end of simulation;

Lines 1–3 are responsible for the initialisation of PDFs values fi that are set to equi-
librium state f eq

i computed from initial values of velocity and density. Initialisation is
done only once at the beginning of computations. Then, the simulation comes down to
computing values of PDFs for the successive time steps.

A single iteration of lines 5–15 corresponds to a single time step. During the time step
computations, all nodes are processed in parallel. To avoid race conditions, we use two
copies of fi functions: f pre

i = fi(t) functions were computed during the previous time step
and are only read, and f post

i = fi(t + δt) functions are computed during the current time
step and are only written. There are also known parallel implementations that use a single
copy of PDFs only [26] at the cost of increased code complexity.

To minimise the memory bandwidth, we implemented the fused kernel (lines 6–13),
where collision and streaming are conducted in one step with a single read and write of
fi values. Additionally, we use the reversed order of collision and streaming, also known
as the pull scheme [25]. Direct implementation of Equation (3) computes the collision first
and then scatters the new, computed fi values to neighbour nodes. In the pull approach,
first, the fi values from the previous time step are gathered from neighbour nodes, then the
collision is applied, and, eventually, the new fi values are stored in the current node. This
scheme keeps addresses of all writes to memory aligned what may additionally decrease
memory traffic because unaligned memory writes often are more costly than unaligned
reads (for example due to allocate-on-write policy).

After processing of all nodes, the values of f pre
i and f post

i are exchanged in lines 14–15.
However, since we have not found an efficient way to exchange fields, then we use two
kernels with identical computations, but one of the kernels reads f pre

i and writes f post
i and

the second kernel does the opposite.

Appl. Sci. 2021, 11, 9495 6 of 19

The operations shown in Algorithm 1 do not include support for boundary conditions,
which is also present in the implemented kernel. To detect boundary nodes, we store in
memory an additional field encoding each node type (fluid, solid, boundary type) along
with a bitmask containing information about which neighbour nodes are present. We also
use a separate field to store values for boundary nodes with fixed conditions, e.g., constant
velocity. Supported boundary conditions are constant velocity, constant pressure, and
bounce back according to [27].

In addition to the optimisations mentioned above, we also applied a few low-level
optimisations: we used the structure-of-arrays instead of the array-of-structures data layout,
minimised the number of memory operations and placed them in a non-divergent code
to allow coalescing, and used numeric constants reducing the number of floating-point
arithmetic operations. These optimisations were applied after analysis of the generated
GPU assembly. Moreover, we resigned from encapsulating functionalities inside Python
classes due to a small drop in performance. Additionally, the whole code (except auxiliary
functions) is placed in a single source code file which simplified the management of
memory allocation and kernel generation. The complete code contains slightly more than
1000 source lines of code, including geometry generation and storage of results.

For convenience, we also allocate memory for values of velocity v and density ρ,
although these are not used during computations but only for data initialisation, storage
of results, and visualisation. To allow run-time generation of images illustrating velocity
fields, we also allocate an additional field for image memory, although it can be removed
when not used.

The source code structure contains a single, main library file tilb.py, which is then used
in separate scripts responsible for creating and running simulations. The file tilb.py provides
a collection of functions that allow allocation of memory and perform computations
according to Algorithm 1. These functions must be called in the correct order to properly
initialise internal library data structures that are then needed to create Taichi fields (allocate
memory) and generate computational kernels. The typical sequence is the following:

1. Set the selected data type (single- or double-precision), data layout, and
geometry resolution;

2. Create Taichi fields containing PDFs and auxiliary data—this requires information
from the previous step;

3. Set required values of node types—solid nodes can be left in an uninitialised state
which can reduce the memory usage when sparse data layouts are used;

4. Set initial ρ, v, compute ω, and initialise PDFs to local equilibrium;
5. Generate a kernel for stream and collide—this step is performed automatically during

the first kernel call and requires information from the first step and about geometry
sparsity to allow optimisations;

6. Compute a required number of time steps with optional saves of simulation state.

4. Results

The experiments were conducted on the computer containing NVIDIA GPU GTX
Titan Xp with 12 GB GDDR5X memory with the 384-bit bus at 5.705 GHz (547.68 GB/s),
Intel CPU i7-4930K at 3.4 GHz, and 48 GiB, four-channel 64-bit DDR3 memory at 1067 GHz
(68.256 GB/s). We used a Linux operating system (Ubuntu 16.04 with x86_64 kernel version
4.10.0-38), CUDA compilation tools release 10.0, Python 3.8.8, and Taichi language version
0.7.26. Code profiling was performed in an NVIDIA Visual Profiler.

4.1. Validation

We validated the code for the three standard cases: lid-driven cavity, flow through a
channel and flow past a cylinder. Due to simple boundary conditions and collision models,
not all cases gave good agreement with physical models, but we used them as a method to
validate code correctness. All computations were conducted in single precision using the
dense Taichi data layout.

Appl. Sci. 2021, 11, 9495 7 of 19

4.1.1. Lid-Driven Cavity

The lid-driven cavity flow is a standard CFD benchmark, where the flow inside a
square chamber is driven by a constant velocity at the chamber top lid. Depending on the
Reynolds number, different vortex structures can be observed. The characteristic length
L equals the length of the chamber side (L = ny − 1 in lattice units), the x-velocity of the
top lid is the characteristic velocity U (we used U = 0.1 in lattice units), and y-velocity of
the top lid is zero. The velocities at all other nodes are assumed to be zero. On the top
wall, the constant velocity boundary condition was imposed. For other walls, we used the
bounce-back boundary conditions.

The results were compared with data from [28] for different mesh resolutions nx × ny,
an example is shown in Figure 2. To obtain the correct Re values, the fluid viscosity was
computed according to Equation (1) as ν = U · (ny − 1)/Re. A uniform fluid density ρ = 1
was imposed initially. For some combinations of mesh resolution and Reynolds numbers
(for small resolutions and high Re numbers, as well as for large resolutions and small Re
numbers), we observed numerical instabilities. Verified simulation settings are shown in
Table 1. The simulation for Re = 10,000 was stopped before fully converging (mean squared
error ∑(v − vre f)

2/n was at the order of 10−3, maximum relative error was about 30%
for vx at y = 0.2813) and stabilised (we could still observe small, fading swirling waves),
but it was slowly approaching the reference velocity profiles. We also observed that, for
Re = 3200, a single reference data point at (y = 0.4531, vx = 0.86636) was significantly
different than the others.

|v|
0.10

0.05

0.00

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x, y

v x
,v

y
reference vx
reference vy

Figure 2. Lid-driven cavity results for Re = 5000 and D2Q9 lattice with 2048× 2048 resolution.
The picture on the left was generated from simulation results with ParaView [29] and shows the
magnitude of velocity and streamlines (denoted with white lines) after 3× 106 time steps. The plot
on the right contains a comparison of velocity profiles (lines) with the reference solution (symbols)
adapted from [28]. The complete simulation took about 44 min on a GPU.

Table 1. Validated cavity simulations for different Reynolds numbers Re. Time of computations is
given for GTX Titan Xp GPU and includes the compilation of kernels (about 20 s) and a few dozens
of saves of the simulation state to the disk.

Re Mesh Resolution Number of Time Steps Computation Time

100 128× 128 12,000 29 s
1000 256× 256 100,000 56 s
3200 1024× 1024 1,000,000 4 min
5000 2048× 2048 3,000,000 44 min

10,000 4096× 4096 10,000,000 12.5 h

4.1.2. Channel Flow

The flow through a channel can be solved analytically and is often used to validate
the correctness of CFD solvers. In the channel flow case, the fluid flow is analysed for a

Appl. Sci. 2021, 11, 9495 8 of 19

long channel with a radius R (for the 2D case the radius equals half of the channel height),
and the initial conditions force the flow along the channel. The stabilised flow should form
a parabolic velocity profile

vx = vmax ·
(

1−
(r

R

)2
)

(7)

with maximum velocity vmax at the centre of the channel (r denotes the distance from
the centre).

We tested two versions of channel flow differing with inlet boundary conditions.
Simulation parameters were set to get similar vmax for both cases. The first case, denoted
as chan_v, used the constant velocity vx = 0.1 boundary condition at inlet. For fluid
nodes, initial density was set to ρ(t0) = 1.0. In the second case, chan_p, the inlet boundary
condition was set to constant pressure with ρ = 1.016, and the initial density for fluid nodes
was set to ρ(t0) = 1.008. Both versions used channels containing 4096× 512 nodes with
bounce-back boundaries on the top and bottom walls. Outlet condition was set to constant
pressure with ρ = 1.0, fluid viscosity was ν = 0.25, initial velocity for fluid nodes was set to
v(t0) = [0, 0]. We calculated 106 time steps which on the GPU took about 10 min per case,
including saves of the simulation state every 104 time steps. The achieved computational
kernel performance was 5.38 GLUPS, 387 GB/s for the single-precision version.

As can be seen in Figure 3, the obtained velocity profiles were close to parabolic. The
maximum values of velocities were slightly different (vmax = 0.158 for chan_v and 0.160
for chan_p). Since we were using the quasi-compressible fluid model, then we were not
able to achieve a complete agreement with theoretical models.

vx

0 0.08 0.16

vp

0 R 2R
0

0.05

0.10

0.15

y

v p

chan_p
chan_v

Figure 3. Velocity vx for channel flows with constant inlet velocity vx = 0.1 (picture in the top left)
and constant pressure ρ = 1.016 (bottom left) together with velocity profiles vp (plot on the right).
The profiles were taken at points x = 15× R (marked with arrows), where R is half the channel height.
Squares denote reference values computed from Equation (7) for arbitrarily chosen vmax = 0.159.

4.1.3. Flow Past Cylinder

Flows past stationary cylinders of different shapes are also one of the typical CFD
problems. For low Reynolds numbers, the flow is stationary. With increasing Re, the
unsteady phenomenon called the Kármán vortex street appears.

Our simulations were based on the chan_v channel flow described above. All pa-
rameters were identical except for viscosity which was changed to observe different flow
patterns. We used two often analysed, standard circular and square cylinders to find errors
with handling boundary conditions at corner nodes. The cylinders were placed at a dis-
tance from the inlet equal to two heights of the channel. On the cylinder surface, we used
the bounce-back boundary condition. The simulation time and performance were similar
to those in the chan_v case. The results are shown in Figure 4 where typical behaviour can
be observed.

Appl. Sci. 2021, 11, 9495 9 of 19

(a) ν = 0.5

(b) ν = 0.1

0 0.1 0.2 0.29

|v|

Figure 4. Velocity magnitude |v| and streamlines (white) after 106 time steps for flows past a cylinder
at different viscosities ν. The picture on the top shows a separation bubble comprising two symmetric
and counter-rotating recirculation zones. Other images contain unsteady Kármán vortex street
patterns. At the inlet, constant velocity is set to vx = 0.1. Mesh resolution is 4096× 512 nodes, sphere
diameter and square edge are equal to half of the channel height.

4.2. Performance
4.2.1. Memory Bandwidth

Before analysis of the implemented kernel, we first measured available memory
bandwidth during a simple copy of data between one-dimensional arrays for different data
layouts implemented in Taichi. The results are shown in Figure 5. Notice that we use both
SI (k = 103, M = 106, G = 109) and binary (Ki = 210, Mi = 220, Gi = 230) prefixes. As an
approximate reference, we run the NVidia bandwidthTest utility. Internally, bandwidthTest
measures calls to the cudaMemcpy function, but it should be noted that this utility does not
use preliminary “warm up” of the measured code. Furthermore, the bandwidthTest has no
support for size arguments larger than 231 bytes, and the results are displayed in MiB/s
and must be scaled.

For Taichi, we prepared a simple kernel copying data from one one-dimensional
array to the other. The number of threads per thread block was explicitly set to 512 since
it resulted in high average performance. Time duration measurements were conducted
using Python time.perf_counter for 100 kernel calls (as in bandwidthTest). Additionally,
before each measurement, we initially called the measured kernel five times to force
runtime compilation and initialise contents of cache memories and translation lookaside
buffers (TLB).

To investigate the strange behaviour observed in Figure 5 for memory block sizes
around 1 MiB, we prepared an additional kernel shown in Listing 1. We used custom
kernel copying data because it is difficult to observe internal implementation details of the
cudaMemcpy function. For a large amount of transferred data, the performance of the simple
kernel is slightly lower than the performance of cudaMemcpy, but for small memory blocks,
the copy kernel takes less time. We can thus suppose that cudaMemcpy uses an optimised
method of data copying but introduces more overhead than a simple kernel launch.

When small data blocks are copied, for both data copying methods, the performance
increases with block size due to a growing ratio of transfer time to overheads (transfer time
grows with memory block size). Because of a high cache hit ratio, it is possible to obtain
bandwidth even higher than the maximum memory bandwidth—for 1,383,048 bytes block
size, the simple kernel achieved up to 663 GB/s and L2 cache hit ratio about 0.5. If the

Appl. Sci. 2021, 11, 9495 10 of 19

block size increases further, the performance rapidly drops and eventually stabilises at
about 0.8 of peak memory bandwidth.

64 KiB 1 MiB 16 MiB 256 MiB 4 GiB
0

100

200

300

400

500

600

Size of memory block

Ba
nd

w
id

th
[G

B/
s] bandwidthTest

copy kernel
dense
bitmask all
bitmask 128 B
bitmask 8 B
pointer 512 B

0

0.2

0.4

0.6

0.8

1

Fr
ac

ti
on

of
m

ax
.b

an
dw

id
th

Figure 5. Bandwidth comparison of the simple CUDA copy kernel, bandwidthTest utility, and Taichi
kernels copying linear memory. Numbers after “bitmask” and “pointer” denote the size of the data
block assigned to a single bitmask/pointer.

Listing 1. Simple CUDA kernel copying memory.

__global__ void
copy_simple (const double * src , double * dest , const unsigned long length)
{

const unsigned idx = threadIdx . x + (blockIdx . x * threadsPerBlock) ;

i f (idx < length)
{

dest [idx] = s r c [idx] ;
}

}

Low performance for Taichi kernels and small block sizes results mainly from large
overheads between consecutive kernel launches. Code profiling revealed that Taichi
brings about 100 µs long breaks between subsequent kernel calls, whereas raw CUDA-C
implementation needs only single microsecond stoppages.

As can be seen in Figure 5, the memory bandwidth measured for Taichi kernels
strongly depends on the used data layout. For the large size of transferred data, the
maximum transfer (419.7 GB/s for 500 MB block size) was observed for the standard dense
layout. In the gigabyte range, the average bandwidth was 416 GB/s which is only 5%
lower than 436 GB/s reported by bandwidthTest.

When the bitmasked layout is used, the memory bandwidth strongly depends on the
amount of data masked by a single bit. For a single masking bit per 8 bytes of data, the
maximum bandwidth was 258 GB/s (at about a 4 GiB block size). When a single bit was
used to mask the whole block of data and small data blocks were transferred, the measured
bandwidth was similar to that for dense layout. However, starting from about 200 MiB
block size, the bandwidth slowly dropped to 352 GB/s for a 5.41 GiB block size. For many
different sizes of bytes per single bitmask, e.g., 64 KiB, the measured bandwidth dropped
even to less than 30 GB/s. For fine-grained bitmasking, the highest bandwidth (up to
304 GB/s when a few GiB of data were transferred) was observed when 128-byte blocks
were masked.

Appl. Sci. 2021, 11, 9495 11 of 19

The pointer layout has the lowest maximum measured bandwidth, although it is less
dependent on the size of the block of data assigned to a single pointer than the bitmask
layout. For a single pointer per 8 bytes of data, the bandwidth was below 20 GB/s and,
additionally, we had to significantly decrease the amount of allocated memory. With the
increasing size of the pointed data block, the bandwidth steadily increased, achieving
247 GB/s at 124 MiB transferred data block for a single pointer per 512 bytes of data,
as shown in Figure 5. Then, when increasing the amount of data per single pointer, the
maximum bandwidths stayed in the 230–250 GB/s range for up to 16 MiB of data per
pointer. After this limit, the bandwidth dropped to 144 GB/s when a single pointer was
used for a block containing 1 GiB of data. We can also observe that the pointer layout
has different overheads than other data layouts—for the small size of the data block, the
performance plot for the pointer layout has a different shape than for other layouts.

The data from Figure 5 allow us to draw a general conclusion that, for dense data
layouts, the Taichi language brings in a small, usually negligible overhead. However,
sparse layouts (bitmask and pointer) reduce available bandwidth by at least about 40% for
fine-grained resolution. It should be noticed that, for all data layouts available in Taichi, we
were trying to find parameters giving the highest bandwidth, although we did not conduct
the exhausting measurements for all available combinations. We could have then missed
some significantly better settings, although this seems unlikely.

4.2.2. LBM Performance

The performance P of LBM implementations is often measured in lattice updates per
second (LUPS), which define the number of processed nodes per unit of time. However,
direct comparison of PLUPS values for different implementations is difficult since the
amount of processed data per node depends on both the lattice arrangement and the data
type, usually either single (32 bits) or double (64 bits) precision floating-point number.
Since LBM implementations are usually bandwidth-bound on available machines, in this
work, we then define LBM performance as a theoretical, minimal bandwidth PB required
to achieve given LUPS for specific lattice arrangements and data types.

Let sd denote the size (number of bytes) required to store a single number (sd ∈ {4, 8}
for single- and double-precision floating-point numbers). Assuming that, in an ideal
case, processing of a lattice node requires only read and write of all q functions fi, the
minimum amount of transferred data per single node is Bnode = 2 · q · sd bytes. The
LBM implementation performance can be then defined as PB = Bnode · PLUPS. We can
also define a theoretical bandwidth utilisation UB = PB/Bpeak, where Bpeak denotes the
maximum theoretical memory bandwidth of a given machine. For the GTX Titan Xp GPU,
UB = C · PGLUPS, where C ∈ {0.131, 0.263} for single and double precision, respectively,
and PGLUPS is performance in 109 LUPS. The values of UB can be then compared for
different machines showing how much room for potential improvements is still available.
However, the UB coefficient does not take into account the additional limitations of the
machine that prevent it from achieving full memory bandwidth.

The performance of the LBM kernel was measured for dense and sparse geome-
tries, different data structures, and single and double precision numbers. Results for
sparse data structures for dense geometry can be treated as an estimation of introduced
overheads compared to the dense memory layout. Measurements were conducted using
Python time.perf_counter for 1000 kernel calls. Before measurements, each kernel was called
100 times to force the runtime compilation and warm up the whole system. For sparse
data layouts, we turned on the experimental async_mode available in Taichi that disables
analysis of geometry sparsity before each kernel call because, in our case, the geometry is
static during computations. This mode allowed increase in performance, but we observed
sporadic problems with stability.

Appl. Sci. 2021, 11, 9495 12 of 19

Performance for Dense Geometries

As an example of dense geometry, we used the cavity case at different mesh resolutions.
Measurements for each data point require more than 20 s because of kernel compilation.
Thus, we limited the number of checked mesh resolutions to about 100 on a logarithmic
scale. To keep results comparable, all measurements for different data types and layouts are
for the same set of geometry resolutions. The obtained performance is shown in Figure 6
and Table 2.

1282 2562 5122 10242 20482 40962
0

100

200

300

400

Number of nodes

Ba
nd

w
id

th
[G

B/
s]

f32 f64
dense

bitmask node
tile

pointer tile
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ba
nd

w
id

th
ut

ili
za

ti
on

U
B

Figure 6. Performance of cavity GPU simulation for different mesh sizes, memory layouts and data
types (f32 and f64 denote single- and double-precision floating-point numbers, respectively).

Table 2. Performance of cavity simulations for different data layouts. Performance PLUPS is given
in GLUPS, PB in GB/s. Column “Mesh” contains mesh size for which maximum performance was
observed. Average performance is computed for meshes containing at least 10242 nodes. Reference
performances for other work are adapted from [3,4,16,17] and contain results for collision operators
similar to the one used in this paper. For GPUs different to GTX Titan Xp, only UB values can be
directly compared. The works of [3,4] use optimised dense layouts, whereas [16,17] employ tiles.

Layout
Maximum Average

Mesh PLUPS PB UB PLUPS PB UB

f32 dense 10242 5.37 386 0.705 5.12 369 0.674
f32 bitmask node 20482 5.13 370 0.675 4.78 344 0.629
f32 tile 10242 5.12 369 0.673 4.53 326 0.596
f32 pointer tile 10242 4.12 296 0.541 3.85 277 0.506
f64 dense 20482 2.65 381 0.696 2.51 362 0.661
f64 bitmask node 39552 2.60 375 0.685 2.40 346 0.631
f64 tile 10242 2.58 372 0.679 2.37 341 0.622
f64 pointer tile 25092 2.46 354 0.646 2.42 348 0.635

Other work
[4] D3Q19, f64, K40 2433 0.77 235 0.816 - - -
[4] D3Q19, f32, K40 2433 1.48 226 0.782 - - -
[3] D3Q19, f32, K20c 1923 1.04 158 0.757 0.98 149 0.714
[16] D3Q19, f64, TITAN - 0.64 194 0.674 - - -
[17] D3Q19, f32, Titan Xp 1003 2.20 334 0.609 - - -
[17] D3Q19, f64, Titan Xp 2523 0.99 301 0.550 - - -
[16] D2Q9, f64, TITAN - 1.02 147 0.509 - - -

Appl. Sci. 2021, 11, 9495 13 of 19

We compared performance for four different data layouts. The dense layout is a
standard, multidimensional array containing all PDFs for all nodes. As excepted, this
version offers the highest performance to 70% of peak GPU memory bandwidth. This
result is close to the best-reported values for highly optimised codes from [3,4] and is
consistent with performance reported for the same hardware in [17]. During code profiling,
we observed that loads of all PDFs (excluding f0, f2 and f5) cause uncoalesced transactions
because, as shown in [4], neighbour fi values are shifted in memory by one position. We
found no method to correct this behaviour—the typical technique is the usage of shared
memory but the Taichi language offers no such feature.

The bitmasked data structures can be used in many ways. At first, we applied a single
bitmask per each fi function because, due to the structure-of-arrays data layout, we were
not able to apply a single bitmask per a whole lattice node. The observed performance
dropped more than twice compared to the dense layout—maximum bandwidth was at the
level of 140 GB/s for the single-precision version.

However, the bitmask layout does not save memory and serves only as a convenient
way to skip computations for non-existent data. The reasonable way is then to use bitmasks
only for a field containing encoded node type. This layout enables for simple management
of sparse geometries and is marked as “bitmask node” on performance plots. As can be
seen in Figure 6 and Table 2, when a single bitmask is used per whole data of a single
lattice node, the performance loss is less than 10% compared to the dense layout for
geometries containing at least 106 nodes. For smaller geometries, the bitmask layout has
low performance. An additional advantage of this approach is that, due to the fine-grained
masking of single nodes, only valid nodes are processed, even for very complex geometries.

The pointer layout available in Taichi can also be used in many ways, but the applied
method should allow storage in memory only values used during computations. We then
used a single pointer per tile containing data for 162 neighbour nodes. The resulting data
layout is denoted as “pointer tile”. Additionally, we measured performance for the “tile”
layout defined as a dense array of tiles without an additional layer of pointers.

The measured performance of the tile layout was similar to the dense layout, but
only for geometries with less than 20482 nodes. After this limit, the achieved bandwidth
utilisation dropped even below 0.5 for single-precision data and the largest geometry.
We observed two issues appearing for the tile data layout. First, the dimension of the
CUDA thread block had to be reduced to the number of nodes per tile—in our case from
512 to 256 threads per block. For the dense layout, such a change of thread block size
decreased bandwidth from 360 to 338 GB/s for the cavity 40962 case and single-precision
data. Next, the Taichi has no support for low-level optimisations presented in [16,17], e.g.,
usage of shared memory, warp level programming, and LBM-optimised index calculations
inside a tile. For example, we tried to store f1 and f3 functions using column-major order,
but we encountered different behaviour than described in Taichi documentation. It is
also probable that the observed decrease in performance may be caused by other, as yet
undetected reasons.

For the pointer tile layout, the performance is slightly surprising. When double-
precision data are used, then the performance stays high and steady even for the largest
geometries, despite the drop-out observed for tile layout. On the other hand, performance
for single-precision is also almost constant but at the low level (UB = 0.5) given by the
minimum value observed for tile layout and the largest geometry. We have not found
the cause of such behaviour yet and only found that the code handling pointers in the
kernel is quite complex and significantly increases register pressure—the kernel required
70 registers which decreased the theoretical occupancy to 37.5%.

The presented data show that we achieved high performance for each of the presented
layouts despite the low bandwidth observed during simple data copy of sparse layouts.
Only the tile-based layouts have lower performance, and for large geometries only (except
the pointer tile layout for single-precision data). However, the measured performance
was erratic and strongly dependent on geometry size for some of the analysed layouts,

Appl. Sci. 2021, 11, 9495 14 of 19

for example, the bitmask node layout, single-precision data, and geometries containing
between 10242 and 20482 nodes.

Performance for Sparse Geometries

Performance for sparse geometries is measured in the same way as for dense ones,
but only non-solid nodes are taken into account in the performance calculation. Thus, for
each sparse geometry, we define its porosity

φ =
nnon−solid nodes

nall nodes
(8)

which determines what proportion of all nodes are involved in the LBM calculations. We
treat all non-solid nodes as computational because LBM implementation is bandwidth-
bound on our system and, even for the bounce-back boundary nodes, which do not require
computations, we need to read and write fi functions from/to memory.

The performance for sparse geometries was measured for square geometries with
40962 nodes and different porosities φ ≥ 0.1. The large geometry size was chosen to keep
at least 106 non-solid nodes, even for the lowest porosity. To obtain the required φ, the
geometry was filled with solid, circle obstacles. We used two different arrangements of
obstacles: a regular array and a random placement, with examples shown in Figure 7. The
regular array contains a mesh of 8× 8 circles, of which the radius depends on the required
φ. We did not use regular arrays for φ < 0.3 because, in such cases, all geometry walls are
filled with solid nodes from overlapping circles. For the random placement, the geometry
was filled with randomly placed circles. The radii of circles were also randomly chosen
from r ∈ [8, 256] nodes.

Figure 7. Examples of sparse geometries with 40962 nodes and porosity φ = 0.4. Pressure boundary
conditions were set on the inlet (left wall, ρ = 1.016) and outlet (right wall, ρ = 1.0), bounce back on
the top and bottom walls and on borders of obstacles, viscosity ν = 0.5. Colours correspond to the
velocity magnitude after 106 time steps; a logarithmic scale is used. Calculations took about half an
hour per geometry.

To estimate overheads for computations on sparse geometries, we define the sparse
computational efficiency

ηP =
P(sparse geometry)
P(dense geometry)

, (9)

where P(sparse geometry) and P(dense geometry) denote measured performances for the
same data layout and geometry size. It should be noted that ηP does not take into account
that the number of computational nodes in the sparse geometry is lower than in the dense
one which may have an additional impact on performance. However, for dense data lay-
outs, the memory is allocated for all nodes regardless of node type. Thus, the definition in
Equation (9) seems reasonable.

Appl. Sci. 2021, 11, 9495 15 of 19

The obtained performance results are shown in Figure 8. As can be seen, for all
layouts but tile, the performance gradually drops with porosity. This performance decrease
shows that the geometry sparsity introduces overheads, for example, creates redundant
memory traffic caused by neighbouring solid and non-solid nodes, which are visible even
after using data layouts (e.g., bitmasked) eliminating explicit operations for solid nodes.It
should also be noted that the performance depends not only on porosity but also on the
placement of solid and non-solid nodes. For randomly placed obstacles, the measured
performance was slightly higher than for the regular placement, because randomly placed
circles formed large, solid areas that minimised the interlacing in memory of the data
for solid and non-solid nodes. Only for the tile layout, the performance was practically
constant for porosities φ ≥ 0.4, which suggests that for the tile layout, other factors limit
performance, as shown in Figure 6 for large geometry.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ba
nd

w
id

th
ut

ili
za

ti
on

U
B

0.10.20.30.40.50.60.70.80.91
0

100

200

300

400

Porosity

Ba
nd

w
id

th
[G

B/
s]

0.10.20.30.40.50.60.70.80.91
0

0.2

0.4

0.6

0.8

1

Porosity

Sp
ar

se
co

m
pu

ta
ti

on
al

ef
fic

ie
nc

y

dense bitmask node
tile pointer tile

ref_A ref_B

Figure 8. Performance of GPU simulations (top) and sparse performance efficiency (bottom) for
single-precision numbers, different data layouts, and sparse geometries with 40962 nodes and
different porosities. For a given data layout, the lower sequence of points shows performance for
regularly placed circles, and the upper points correspond to performance for randomly placed circles.
Reference performance for tile-based implementations optimised for sparse geometries is adapted
from [16] (ref_A) and [17] (ref_B), accordingly. Performance for implementation from [17] is for
GTX Titan Xp, D3Q19 lattice arrangement and single-precision numbers, whereas work [16] uses
double-precision, both D2Q9 and D3Q19 lattices, and different GPU (GTX TITAN) thus positions of
markers (triangles) result from UB only.

The lowest performance was observed for the pointer tile layout. For porosity 0.1, the
performance dropped to 25% of performance for dense geometry. However, in contrast to
other layouts, performance for the pointer tile layout has the lowest differences between
geometries with regularly and randomly placed obstacles. It may suggest additional
overheads not connected with a sparsity of geometry, although more detailed research
is needed.

Appl. Sci. 2021, 11, 9495 16 of 19

Figure 8 also contains reference results from [16,17] for high-performance, tile-based
GPU implementations optimised for sparse geometries. In many cases, the tile-based
implementations with low-level optimisations outperform all Taichi versions, but the
presented values should be compared carefully. Performance of implementation from [17]
was measured for similar geometries (randomly arranged spheres) and the same data type
and GPU as in the current work, but for a different lattice arrangement (D3Q19). In addition,
two sparse geometries used in [17] , cerebral aneurysm and aorta with coarctation, resulted
in much higher performance than randomly arranged spheres due to high spatial locality.
Results for these geometries are shown in the right top corner in Figure 8. Work [16] used
different GPU, double-precision numbers, and a limited set of geometries, including high-
performance cerebral aneurysm and aorta with coarctation. Moreover, the performance was
measured for two different lattice arrangements, D2Q9 and D3Q19, and significantly higher
values were observed for D3Q19. Geometries with porosity close to 0.2, and a single dense
geometry, used D2Q9, whereas geometries with porosities φ ≥ 0.7 were three-dimensional.
Additionally, the implementation from [16] does not use memory layout optimisations
presented in [17] , thus its performance is lower, as shown in Figure 8 for φ ≥ 0.7.

4.2.3. Memory Usage

Memory usage is difficult to measure for the Taichi language since it internally pre-
allocates and manages GPU memory. However, we observed that, for the dense layout,
the maximum size of allocated arrays was very similar for raw CUDA and Taichi imple-
mentations (two arrays containing about 720× 220 64-bit elements). After exceeding this
limit, we observed excessive page faults and a significant performance decrease. When
we turned off the unified memory support, then memory allocation errors appeared spo-
radically. Although we did not conduct an in-depth analysis, we did not find any serious
problems; thus, it seems that Taichi effectively manages memory and introduces minimal
overhead only.

5. Conclusions

In this work, we presented the implementation of the lattice–Boltzmann solver in
Taichi, the interpreted, data-oriented language which decouples computations and data
arrangement in memory. We showed that, although sparse data layouts provided by
Taichi bring significant overheads when used on a fine-grained level during simple data
copying, it was possible to a design high-performance code of the lattice–Boltzmann solver
for non-trivial cases. Four data layouts were tested: the dense layout which is a simple,
multidimensional array; the tile layout with data arranged in square tiles containing
162 neighbouring nodes; the bitmask node layout where single nodes could be masked;
and the pointer tile layout allowing allocation of memory per single tiles but at the cost of
additional, indirect addressing. An additional advantage of the presented solution is short
and simple code (about 1000 source lines) which is freely available in the hope that it can be
a practical basis for further experiments due to its low complexity and high performance.

The obtained performance is comparable to the best existing implementations but
strongly dependent on used data layouts. For the dense layout, we achieved up to about
70% of peak memory bandwidth available on GTX Titan Xp GPU, which corresponds to
5.37 GLUPS for single- and 2.65 GLUPS for double-precision computations. Slightly lower
performance, but still up to over 67% of peak memory bandwidth, was observed for other
dense data layouts, the tile and the bitmask node. The lowest performance, up to 54% of
the peak, was obtained for the pointer tile layout and single-precision computations. Thus,
Taichi implementations of LBM for dense geometries should have the highest performance
with the simple, dense layout.

For sparse geometries, the layout resulting in the highest performance depends on
geometry sparsity. Best performance for low porosities φ ≤ 0.3 was observed for the
tile and the dense layouts, although it was still about two times slower than for dense
geometries. Geometries with higher porosities were processed the fastest with the bitmask

Appl. Sci. 2021, 11, 9495 17 of 19

node and the dense layouts. The pointer tile layout has the lowest performance (about
two times lower than the tile layout for porosity 0.1) but, in contrary to the other layouts,
allows saving of memory by skipping data for some solid nodes.

Apart from data layouts available in Taichi, other factors may also have a significant
impact on the code performance, which sometimes was difficult to predict. In the presented
measurements, we observed that both geometry size and placement of solid and non-
solid nodes has a visible impact on performance. Full performance requires geometries
containing at least 106 nodes, but such behaviour was also reported in other papers about
LBM implementations on GPU. However, we observed uncommon performance drops for
the tile layout and large geometries, and significant performance limitations for the pointer
tile layout for single-precision data. We have not found the reason yet and believe that
significantly more thorough studies are needed to analyse overheads introduced by the
Taichi language and its internal architecture.

The source code in Taichi is clean and concise, but we observed a few limitations. For
example, we did not find a way for passing a static argument to function and use it as a
compile-time constant index, thus we had to inline some operations manually to enable
compile-time optimisations. Moreover, it is difficult to control register usage per kernel, and
setting the number of CUDA threads per block is limited. For async mode, we sometimes
observed problems with stability and code profiling by the NVIDIA Visual Profiler.

One of the issues was also the long compilation time. Although an additional time
required for runtime compilation is typical for interpreted languages, it should be reported,
especially that the presented code takes more than 20 s to compile. Comparing this with a
few seconds needed to obtain the stationary solution for small meshes (up to 2562 nodes),
the kernel compilation enlarges the simulation time by order of magnitude. We suspect
that maybe some form of precompiled kernels could significantly decrease the time for
short simulations. It should be noted that we used only one simple collision model and a
reduced set of boundary conditions. For more complex computational models or universal
kernels with support for many different collision models, the time required to generate
kernel code can be longer.

In many situations, the compilation time has a low impact on total performance or
even can be neglected, especially for long, complex simulations taking hours or more, or
when the time for simulation is not strictly constrained. However, there are some edge
cases where the compilation time may be of importance. One of the examples may be
real-time systems where simulations are required to predict the results of available actions,
and these predictions must be available under time constraints. Another example may be
the calibration of a numerical model, where many simulations with different settings are
run to search the given parameter space. The performance measurements presented in
this work can be considered as some form of parameter space searching where we analyse
the impact of different parameters on the performance of the simulation. Moreover, the
compilation time can decrease performance even for relatively complex cases, for which
GPU implementation allows quick finishing of computations. For example, we have shown
that 106 time steps, for geometry containing 10242 nodes, can be computed in few minutes
on a single GPU with Pascal architecture. Usage of newer GPUs, Volta or Ampere, could
decrease simulation time further—memory bandwidth for the A100 GPU is about three
times higher than for the GPU used in this work, thus we may expect a similar decrease in
simulation time.

Future work includes searching for methods that allow the use of other optimisation
techniques used for LBM implementations. We are also planning the implementation of
more complex collision models, boundary conditions, and support for three-dimensional
geometries, although this may require the new design of code due to a larger amount of
data per node which can increase register pressure.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2021, 11, 9495 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code presented in this study is openly available in Github
at https://github.com/tadeusz-tomczak/tilb (accessed on 30 August 20201).

Acknowledgments: The authors are very grateful for the reviewer’s valuable comments, which
improved the manuscript, and for the support from NVIDIA Corporation for providing them with
the Titan Xp GPU used in this research.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BGK Bhatnagar–Gross–Krook operator
CFD Computational fluid dynamics
CPU Central processing unit
CUDA Compute Unified Device Architecture
DRAM Dynamic random-access memory
GPU Graphics processing unit
GUI Graphical user interface
ILP Instruction-level parallelism
LBM Lattice–Boltzmann method
LUPS Lattice updates per second
PDF Particle distribution function
SI Système international (d’unités)
SIMD Single instruction, multiple data
SNode Structural node
TLB Translation lookaside buffer

References
1. Tölke, J. Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA.

Comput. Vis. Sci. 2008, 13, 29–39. [CrossRef]
2. Tölke, J.; Krafczyk, M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 2008, 22, 443–456.

[CrossRef]
3. Mawson, M.J.; Revell, A.J. Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs.

Comput. Phys. Commun. 2014, 185, 2566–2574. [CrossRef]
4. Januszewski, M.; Kostur, M. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method. Comput. Phys.

Commun. 2014, 185, 2350–2368. [CrossRef]
5. Schulz, M.; Krafczyk, M.; Tölke, J.; Rank, E. Parallelization Strategies and Efficiency of CFD Computations in Complex Geometries

Using Lattice Boltzmann Methods on High-Performance Computers. In High Performance Scientific and Engineering Computing,
Proceedings of the 3rd International FORTWIHR Conference on HPSEC, Erlangen, Germany, 12–14 March 2001; Breuer, M., Durst, F.,
Zenger, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 115–122.

6. Bernaschi, M.; Melchionna, S.; Succi, S.; Fyta, M.; Kaxiras, E.; Sircar, J. MUPHY: A parallel MUlti PHYsics/scale code for high
performance bio-fluidic simulations. Comput. Phys. Commun. 2009, 180, 1495–1502. [CrossRef]

7. Zeiser, T.; Hager, G.; Wellein, G. Benchmark analysis and application results for lattice Boltzmann simulations on NEC SX vector
and Intel Nehalem systems. Parallel Process. Lett. 2009, 19, 491–511. [CrossRef]

8. Martys, N.S.; Hagedorn, J.G. Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann
methods. Mater. Struct. 2002, 35, 650–658. [CrossRef]

9. Nita, C.; Itu, L.; Suciu, C. GPU accelerated blood flow computation using the lattice Boltzmann method. In Proceedings of the
High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 10–12 September 2013; pp. 1–6.

10. Mazzeo, M.; Coveney, P. HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex
geometries. Comput. Phys. Commun. 2008, 178, 894–914. [CrossRef]

11. Parmigiani, A.; Huber, C.; Bachmann, O.; Chopard, B. Pore-scale mass and reactant transport in multiphase porous media flows.
J. Fluid Mech. 2011, 686, 40–76. [CrossRef]

12. Krause, M.; Kummerländer, A.; Avis, S.; Kusumaatmaja, H.; Dapelo, D.; Klemens, F.; Gaedtke, M.; Hafen, N.; Mink, A.; Trunk, R.;
et al. OpenLB—Open source lattice Boltzmann code. Comput. Math. Appl. 2021, 81, 258–288. [CrossRef]

13. Hasert, M.; Masilamani, K.; Zimny, S.; Klimach, H.; Qi, J.; Bernsdorf, J.; Roller, S. Complex fluid simulations with the parallel
tree-based Lattice Boltzmann solver Musubi. J. Comput. Sci. 2014, 5, 784–794. [CrossRef]

https://github.com/tadeusz-tomczak/tilb
http://doi.org/10.1007/s00791-008-0120-2
http://dx.doi.org/10.1080/10618560802238275
http://dx.doi.org/10.1016/j.cpc.2014.06.003
http://dx.doi.org/10.1016/j.cpc.2014.04.018
http://dx.doi.org/10.1016/j.cpc.2009.04.001
http://dx.doi.org/10.1142/S0129626409000389
http://dx.doi.org/10.1007/BF02480358
http://dx.doi.org/10.1016/j.cpc.2008.02.013
http://dx.doi.org/10.1017/jfm.2011.268
http://dx.doi.org/10.1016/j.camwa.2020.04.033
http://dx.doi.org/10.1016/j.jocs.2013.11.001

Appl. Sci. 2021, 11, 9495 19 of 19

14. Feichtinger, C.; Donath, S.; Köstler, H.; Götz, J.; Rüde, U. WaLBerla: HPC software design for computational engineering
simulations. J. Comput. Sci. 2011, 2, 105–112. [CrossRef]

15. Tomczak, T. Lattice Boltzmann Method for Sparse Geometries: Theory and Implementation. In Analysis and Applications of Lattice
Boltzmann Simulations; Valero-Lara, P., Ed.; IGI Global: Hershey, PA, USA, 2018; Chapter 5, pp. 152–187.

16. Tomczak, T.; Szafran, R.G. Sparse Geometries Handling in Lattice Boltzmann Method Implementation for Graphic Processors.
IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1865–1878. [CrossRef]

17. Tomczak, T.; Szafran, R.G. A new GPU implementation for lattice-Boltzmann simulations on sparse geometries. Comput. Phys.
Commun. 2019, 235, 258–278. [CrossRef]

18. Hu, Y.; Li, T.M.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A Language for High-Performance Computation on Spatially
Sparse Data Structures. ACM Trans. Graph. 2019, 38, 201:1–201:16. [CrossRef]

19. Wang, Z. LBM_Taichi. Available online: https://github.com/hietwll/LBM_Taichi (accessed on 30 August 2021).
20. Taichi Programming Language. Available online: https://github.com/taichi-dev/taichi (accessed on 30 August 2021).
21. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. The Lattice Boltzmann Method: Principles and Practice;

Graduate Texts in Physics; Springer International Publishing: Cham, Switzerland, 2017.
22. Guo, Z.; Shu, C. Advances in Computational Fluid Dynamics—Lattice Boltzmann Method and Its Applications in Engineering; World

Scientific Publishing Co. Pte. Ltd: Singapore, 2013; Volume 3.
23. Mohamad, A.A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes; Springer: London, UK,

2019; Volume 70.
24. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and

Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [CrossRef]
25. Rinaldi, P.; Dari, E.; Vénere, M.; Clausse, A. A Lattice-Boltzmann solver for 3D fluid simulation on GPU. Simul. Modell.

Pract. Theory 2012, 25, 163–171. [CrossRef]
26. Bailey, P.; Myre, J.; Walsh, S.D.; Lilja, D.J.; Saar, M.O. Accelerating Lattice Boltzmann Fluid Flow Simulations Using Graphics

Processors. In Proceedings of the 2009 International Conference on Parallel Processing, Vienna, Austria, 22–25 September 2009;
pp. 550–557.

27. Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997,
9, 1591–1598. [CrossRef]

28. Ghia, U.; Ghia, K.; Shin, C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method.
J. Comput. Phys. 1982, 48, 387–411. [CrossRef]

29. Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware: Clifton Park, NY, USA, 2015.

http://dx.doi.org/10.1016/j.jocs.2011.01.004
http://dx.doi.org/10.1109/TPDS.2018.2810237
http://dx.doi.org/10.1016/j.cpc.2018.04.031
http://dx.doi.org/10.1145/3355089.3356506
https://github.com/hietwll/LBM_Taichi
https://github.com/taichi-dev/taichi
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1016/j.simpat.2012.03.004
http://dx.doi.org/10.1063/1.869307
http://dx.doi.org/10.1016/0021-9991(82)90058-4

	Introduction
	Materials and Methods
	Taichi Language
	Lattice–Boltzmann Method

	Implementation
	Results
	Validation
	Lid-Driven Cavity
	Channel Flow
	Flow Past Cylinder

	Performance
	Memory Bandwidth
	LBM Performance
	Memory Usage

	Conclusions
	References

