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Abstract: Continued advances in machine learning (ML) and deep learning (DL) present new
opportunities for use in a wide range of applications. One prominent application of these technologies
is defect detection and classification in the manufacturing industry in order to minimise costs and
ensure customer satisfaction. Specifically, this scoping review focuses on inspection operations in the
semiconductor manufacturing industry where different ML and DL techniques and configurations
have been used for defect detection and classification. Inspection operations have traditionally
been carried out by specialised personnel in charge of visually judging the images obtained with a
scanning electron microscope (SEM). This scoping review focuses on inspection operations in the
semiconductor manufacturing industry where different ML and DL methods have been used to
detect and classify defects in SEM images. We also include the performance results of the different
techniques and configurations described in the articles found. A thorough comparison of these
results will help us to find the best solutions for future research related to the subject.

Keywords: computer vision; deep learning; machine learning; defect classification; scanning electron
microscope; semiconductor; review

1. Introduction

Semiconductors are present in almost all devices used in our daily lives. Therefore, the
semiconductor manufacturing industry is continuously growing and gaining importance.
According to the STATISTA website, the global semiconductor industry’s revenues were
about $429 billion in 2019 [1]. Defect detection and classification is crucial in any manu-
facturing industry and, obviously, it is also crucial in the semiconductor manufacturing
industry, where accurate and cost-effective inspection systems that help discover and clas-
sify semiconductor defects early in the manufacturing process are essential to improving
revenues in this market sector.

So far, different algorithms have been developed to perform defect detection and
classification tasks. In the beginning, when the emerging semiconductor manufacturing
industry was less automated, human operators would be able to perform the inspection
operations manually with the help of optical microscopes due to the larger size of the
defects appearing on the wafers. Then, as the size of the defects decreased, the need for
some sort of alternative to help human operators perform the inspection task grew. That
growing need was met with the help of computer vision and new microscopy techniques [2].
The typical steps that are commonly followed in order to manufacture a semiconductor
wafer are depicted in Figure 1. The manufacturing process is not linear. It is composed
of hundreds of repetitions of the operations that collect the figure. A single error in one
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of those repetitions could jeopardize the whole manufacturing process [3]. As a result,
today it is common for an expert to identify defects by visual judgement using a scanning
electron microscope (SEM) after each of these steps along the manufacturing chain. Manual
surface inspection methods conducted by quality inspectors suffer from the disadvantages
of low efficiency, high labour intensity, low accuracy and low real-time efficiency [4]. These
weaknesses can be addressed by using advanced computer vision techniques.

Figure 1. Semiconductor wafer manufacturing steps.

With the advent of innovative machine learning (ML) and deep learning (DL) meth-
ods [5], which typically outperform traditional computer vision algorithms when fed with
high-volume datasets [6], a revolution is taking place in inspection systems. Novel and
traditional methods constitute the state-of-the-art of the inspection systems [7]. In many
occasions, traditional methods are used to preprocess the images in order to improve them,
extracting regions of interest (ROI) with the purposes of not wasting computational time
focusing on redundant data and increasing the detectability of the defects. Then these
ROIs are directly fed into the classifiers [8,9]. These approaches in which both traditional
and novel methods are combined are commonly referred to as hybrid approaches [10].
Although many ML and DL methods have been used [11], it is now, as a result of the
enormous increase in graphics processing unit (GPU) computing power, that they can be
applied efficiently, thus achieving high accuracy and high performance ultimately.

This scoping review is intended to collect all ML and DL methods used up to now
for the detection and classification of defects in semiconductor wafers from SEM images.
The main challenge faced by this review is to shed light on these novel methods that
will for sure replace or at least complement and assist human operators in the task of
defect detection and classification in the semiconductor industry, moving from a present
situation where this task is mostly performed manually to a new reality where detection
and classification will be performed automatically. Therefore, this review will allow future
authors to have prior knowledge on the best performing models. This will contribute to the
growing trend of applying these techniques to the semiconductor manufacturing industry
in defect detection and classification, improving the results obtained and increasing both
revenue and efficiency in the industry.

The paper is structured as follows. First, the methodology for searching the associated
literature will be presented in Section 2. Then, we will focus on the fundamentals of the
SEM in Section 3. Next, different ML methods will be analysed in Section 4. After that, DL
methods and, fundamentally, the most typical CNN models and the general components
of these networks will be introduced in Section 5. Later, the results and discussion will be
conducted in Section 6. Finally, we will end this review with the conclusions in Section 7.
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2. Search Methodology

In this section, the search methodology will be described in detail. As mentioned pre-
viously, the aim of the scoping review is to collect all the possible information regarding ML
and DL methods for semiconductor defect detection and classification using SEM images.

2.1. Search Strategy

In order to collect the necessary bibliography for this review, three different databases
(Scopus, IEEE Xplore and ACM Digital Library) were selected. The search terms used
to obtain the desired articles are shown in Table 1. Instead of directly searching in title,
abstract and keywords, the terms have been searched in the full text of the papers in order
to perform a more exhaustive search.

Table 1. Search terms.

Search Term Description

defect OR flaw OR imperfection OR fault OR
crack OR bug OR deficiency Synonyms for defect

detection OR detecting OR recognition OR
recognising OR identification OR identifying Synonyms for detection

classification OR classifying OR categorising
OR categorisation Synonyms for classification

vision OR visual OR image Screening the articles which work with
visual detection

wafer OR semiconductor Seeking articles in which the defects appear in
semiconductor wafers

SEM OR “scanning electron microscope” OR
“scanning electron microscopy” Articles with SEM as inspection device

”deep learning” OR “machine learning” Articles in which defects are classified using
these techniques

2.2. Inclusion and Exclusion Criteria

With the purpose of refining the results of the previously mentioned search, we have
introduced some inclusion and exclusion criteria, which are listed below.

2.2.1. Inclusion Criterion

• Every publication, from inception to year 2020, that faces the semiconductor defect
detection and classification task by means of a deep learning or a machine learning
approach starting from a dataset composed by SEM images must be included.

2.2.2. Exclusion Criteria

• We will include just one copy per publication, removing duplicates.
• Publications that do not exclusively use SEM images in the dataset will be excluded.
• Articles that do not use any deep learning or machine learning technique will be ex-

cluded.
• Articles that do not perform the defect detection and classification task on semicon-

ductor images will be excluded.

2.3. Refined Results Acquisition Procedure

Figure 2 schematically shows the application of the inclusion and exclusion criteria.
The process of refinement was carried out in three stages: initial search, selection and
inclusion. Throughout the initial search stage, the raw results of the databases were
collected. Up to 224 articles were found in total, 219 in Scopus, 5 in IEEE Xplore and
none in the ACM Digital Library. In the selection stage, the duplicated documents were
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eliminated. As many as 3 documents were duplicated. Then, another 143 documents
were removed after reading the abstract, title and keywords. As the terms were searched
throughout the full document, those 143 articles clearly did not address the objective of
the review. Finally, at the inclusion stage, 70 more papers were removed from the list after
careful reading. Another 29 of them were eliminated for not using SEM images. In fact,
SEM was mentioned throughout the article, but other devices were used to construct the
data sets. Another 19 articles were removed because they did not perform defect detection
on semiconductor materials. Again, semiconductor materials were mentioned in the full
text, but defect detection and classification was devoted to other types of materials and
defects. Finally, 22 articles that did not employ machine or deep learning were removed.
These techniques were mentioned in the articles as future work or an alternative. Therefore,
solely 9 of the 224 initial documents remained on the list. The fact is that this may seem
like a really low number of articles. However, to the authors’ knowledge, all papers related
to the subject of the review have been collected. These 9 documents will be used for the
detailed study.

Figure 2. Search methodology.
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2.4. Research Questions

The documents found during the search should help us to answer the following
research questions:

• Which ML methods achieve the best performance in the detection and classification
of semiconductor defects from SEM images?

• Which DL methods achieve the best performance in the detection and classification of
semiconductor defects from SEM images?

The performance of the different approaches will be evaluated by means of the accu-
racy metric in Section 6.

3. Scanning Electron Microscopy

As mentioned above, scanning electron microscopy (SEM) plays an important role in
the inspection operations of most semiconductor industries [12–16]. Moreover, the authors
of this review are willing to work with images captured with this microscopy in the near
future. For these reasons, the focus will be on this type of microscopy throughout the
scoping review. However, there are other types of microscopy employed during inspection
operations, such as optical microscopy, scanning transmission electron microscopy (STEM),
and acoustic microscopy, among others. It should be noted that the ML and DL techniques
highlighted in this paper when applied to SEM images can also be extrapolated to images
containing other kinds of defects or obtained by other types of microscopes such as those
mentioned above. Although less used in the semiconductor manufacturing industry, they
can offer good results in certain applications that do not require such high performance as
provided by SEM. In this section, we will briefly introduce the basics of SEM to obtain an
overview of its operation, mentioning its technical characteristics and its main components.

Fundamentals of SEM

The resolution limit is defined as the minimum distance at which two different struc-
tures can be separated and distinguished as independent objects. For example, the resolu-
tion of the human eye is about 0.1 mm, while the resolution limit of light microscopy is
about 2000 A. The SEM, with the right settings, may well reach the range of 1 to 10 nm.
This improvement in resolution allows much more information to be acquired from the
images, which will lead to better performance in the process of detecting and classifying
defects in general [17].

SEM technology uses a focused electron beam to scan along the surface of the sample,
generating a wide range of signals which are fused and converted into a visual signal
with the help of a cathode ray tube. Two categories of electron-sample interactions are
distinguished: elastic interactions that result from the deflection of the incident electron by
the sample’s atomic nucleus or by electrons in the outer shell of similar energy without
significant loss of energy, and inelastic interactions that occur through various interactions
between the incident electrons and the sample’s electrons and atoms, resulting in the
transfer of substantial energy to that atom by the electron in the primary beam. The elastic
interaction generates back-scattered electrons (BSE) and the inelastic interaction generates
secondary electrons (SE).

Those electrons, as well as other signals such as X-rays, Auger electrons and cathodo-
luminescence, are used to form and analyse the image of the sample. For example, BSE
provides compositional and topographic information in SEM, SE provides mainly topo-
graphic information, X-rays are used to obtain chemical information of the sample, Auger
electrons, which have very low energies, are only used in surface analysis, and cathodo-
luminescence is a mechanism for energy stabilisation. Some key parameters, such as the
beam electron energy and the atomic number of the specimen, determine the character-
istics of what is called the region of primary excitation. Higher energies lead to deeper
penetration lengths, but surface resolution decreases. Higher atomic numbers lead to a
lower depth, since the higher the number of particles, the easier it is to stop the penetration
of the electrons. Therefore, the goal is to find a balance and, depending on the requirements
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of the scenario, determine the optimal beam energy. A schematic figure of an SEM device,
including all its components, can be appreciated in Figure 3.

Figure 3. Scanning electron microscope.

The basic components of an SEM device are the electron gun, the lenses, the scan
coil and the secondary electron detector. Those elements are going to be briefly described
along the following lines. The electron gun task is to produce a stable electron beam with
high current and directed to a small spot. There are several types of electron guns such as
tungsten electron guns, lanthanum hexaboride guns (LaB6) and field emission guns. Other
key components are the lenses. Two kinds of lenses are distinguished: the condenser lenses
where the electron beam is converged in a parallel stream, and the objective lenses, which
are used to focus the beam into a probe point. In order to form an image, the scan coil
deflects the beam throughout the x and y axis to cover all the sample. Finally, the secondary
electron detector, another crucial component, collects the secondary electron which, as we
mentioned before, has the important role of providing fine topographic information.

4. Machine Learning

With the shrinkage of the products of the semiconductor manufacturing industry, the
killer defects that completely ruin the product are also becoming smaller [18]. This fact
has encouraged industries to implement high-resolution microscopy techniques, such as
SEM explained above, and to develop ML methods that detect and classify these tiny killer
defects with great precision. In addition, ML approaches include the important advantage
of providing reliable models in noisy real-world industrial environments [19]. ML has
the ability to figure out the relationships in large datasets. If the right method is selected
and its settings are optimal, defect detection and classification can be achieved easily. The
dataset must be divided into different sets. One of them, usually the largest, is used to train
the algorithm, another to validate it and the last to evaluate it. ML techniques are mainly
classified into three major groups attending their learning strategy: supervised learning,
unsupervised learning, and semi-supervised learning [20].

4.1. Supervised Learning

In supervised learning, the strategy is to train a classifier with a set of labelled data.
Therefore, the number of categories to classify the dataset is known. Once the system has
learned to identify the different patterns, the classifier is able to assign each piece of data to
its corresponding category [21]. There are several methods of supervised learning. The
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methods that have been applied in the works selected in the search that make use of these
supervised methods are introduced. Some of the methods described below have not been
used in the selected papers, but we present them as background for future work.

4.1.1. Support Vector Machines (SVM)

SVMs rely on the hyperplane concept to separate a set of data into different classes [22].
The key to performing a correct classification is to obtain the optimal hyperplane, which
will be the one that maximises the space between the classes of the dataset. It was initially
designed to perform a binary classification. Although it is more complex, nowadays it can
be used in multidimensional problems. The most commonly used kernels employed in
SVM are linear kernels, quadratic kernels, polynomial kernels, Gaussian kernels and radial
kernels. In our search results, we have found a paper using SVM [23]. Notice that SVM
is not the main method for defect detection and classification in the paper, but the same
dataset is applied to compare the accuracy of several methods, which we consider worth
mentioning here.

4.1.2. Decision Trees (DT)

A DT is a hierarchical method where an entry is divided into several branches [24].
The amount of information is augmented with every set of new branches. The goal is
to obtain the highest separation between the data of the dataset. In order to achieve this
goal, the initial dataset is split by means of binary divisions into branches along several
iterations where the entropy is reduced [21,25]. The process ends up when the maximum
tree depth is reached or a run-time cut-off is met [26]. There are several DT algorithms such
as regression tree, tree medium, and some ensemble methods such as random forest and
bagged tree. As for SVMs, we have found one paper that uses a DT algorithm, concretely a
random forest algorithm, to compare its accuracy with the principal method employed [27].

4.1.3. K-Nearest Neighbours (K-NN)

K-NN is based on the idea that a prediction regarding a data-point can be made from
its neighbours [28]. The letter K makes reference to the number of neighbours that will
be used. In order to obtain proper results, we have to set an optimal K value, taking into
account that a low value of K will lead to a bad prediction and a large value will lead to
poor performance [26]. Throughout our refined search, we found a paper that implements
this K-NN algorithm to detect unknown class defects [23].

4.1.4. Naive Bayes

Bayesian classifiers assign the most likely class to a given example described by its
feature vector. The learning process in these classifiers can be significantly simplified
assuming that the features have a statistical independence [29]. The fact is that, although
this assumption is not very realistic, their performance is good enough to compete with
more complex existing methods. The probabilities can be adjusted as new input data enter
the classifier.

4.1.5. Discriminant Analysis (DA)

DA is a group of methods that assign the probability of a given dataset belonging to
a certain class based on the Bayes’ theorem [30]. The class each input image will belong
to will be the one with the highest probability. There are several DA classifiers. The most
important ones are linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) [31].

4.2. Unsupervised Learning

This type of method is based on learning by using an unlabelled dataset. The model
obtained is automatically adapted to the observations. The model is mainly created
through the use of clustering methods. There are some methods worth mentioning, which
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are described below. We are also mentioning the papers from the search that make use of
unsupervised methods. Some of the methods described below have not been used in the
papers, but we also introduce them as a background for future works.

4.2.1. K-Means

k-means is a clustering method that aims to separate the initial unlabelled dataset
into k clusters [32]. The value of k is predefined. A sample belongs to the cluster with the
closest mean value to the cluster’s mean value. In order to draw a map in our mind, a
cluster is represented by a point with a value equal to the mean value of the cluster. The
different samples of the cluster will be surrounding that point. The idea is to establish
a number of clusters that cover the maximum number of samples while minimising the
inertia (the distance between the cluster point and the different samples that belong to that
cluster) [21]. During our search, one paper implementing the k-means algorithm to analyse
SEM images was found [33].

4.2.2. K-Medoids

This clustering method relies on the medoid concept [34]. A medoid, in this case a
cluster medoid, is the point of the cluster whose value is the closest to the mean value of
the whole cluster, or, in other words, the most central point of the cluster. k-medoids is a
very robust method with low sensitivity to noise and disturbance.

4.2.3. Self-Organising Maps (SOM)

A SOM or self-organising neural network is an unsupervised clustering method
that allows to map the high-dimensional input data to a low-dimensional field (usually
bi-dimensional) without losing the topological structure [35]. The maintenance of the
topological structure is performed by applying a neighbourhood function [21]. Throughout
our search, we also found one paper that implements an SOM method to perform the
defect detection and classification task [36].

4.3. Semi-Supervised Learning

The types of methods that use the semi-supervised learning strategy are trained both
with labelled and unlabelled data. The most common approach is to first train the model
with labelled data and then continue training with unlabelled data. Usually the size of
the labelled batch is much smaller than the size of the unlabelled data. Semi-supervised
learning also receives the name of reinforcement learning.

5. Deep Learning

Deep learning (DL) is generally handled as a particular branch of ML [37]. Deep
learning has come to substitute the “manual” feature extraction process by an autonomous
and efficient feature extraction one [38]. Several DL techniques such as recurrent neural
networks (RNN), restricted Boltzmann machines (RBM), autoencoders (AE), variational
autoencoders (VAR) and convolutional neural networks (CNN) have already been applied
in smart manufacturing [39,40]. However, as revealed by our search, the most used
techniques for inspection are CNN with doubt [41–43]. CNN are deep structured neural
networks that are mainly employed in image processing tasks [44]. The different elements
that compose these networks will be highlighted and the various CNN models that can be
used for defect detection and classification will be listed. CNN are inspired by the human
visual perception system, in particular by the visual cortex, which is the element of the
brain in charge of detecting and identifying objects.

When we discussed ML techniques, it was explained that large datasets with hundreds
of images of each class were needed to obtain accurate results. With DL techniques,
not large but huge datasets with thousands of images are needed to obtain accurate
results. Fortunately, the initial dataset can be increased by applying data augmentation
techniques based on image transformations (which include operations such as flipping,
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noising, padding, scaling, and cropping [45]) or even performing the so-called One-Channel
Augmentation (which consists in adding random pixel noise, brightness adjustment, blur,
edge extraction, etc.) [46] in order to obtain a rich and sufficient dataset. Even some
CNNs such as generative adversarial networks (GAN) [47] and conditional convolutional
variational autoencoder (CCVAE) [48] can be used to perform this task. As for ML, in DL,
the data set is divided into three datasets for the learning phase: a training dataset (usually
the largest one), a test dataset and a validation dataset. Early stopping conditions must be
included with the aim of avoiding overfitting and saving computing time [49]. The main
approach is to monitor one of the metrics involved in training (such as loss or accuracy)
and stop training if there is no improvement after a given number of epochs.

After this brief introduction, the structure of this section is explained. First, the general
components that usually appear in CNN will be presented. Next, the different CNN
typically used for defect detection and classification will be introduced. Finally, the two
existing approaches for carrying out defect detection and classification will be discussed.

5.1. Elements of a CNN
5.1.1. Neurons

The neuron is the smallest element on a CNN. Each neuron has a weight that is
modified during learning. This weight, in combination with different biases, is used during
the training of the different network layers. If the input image is a grayscale image, there
are as many neurons as pixels in the image. If the input image is an RGB image, there will
be one neuron per pixel and channel, i.e., the number of neurons will be three times the
number of pixels in the RGB image.

5.1.2. Layers
Convolutional Layers

A set of interconnected neurons builds the so-called convolutional layer, another key
component of these networks. CNN usually incorporate several convolutional layers,
which are the most relevant elements for feature extraction. The first layers are used to
extract low-level features and, as one goes deeper into the convolutional layers, high level
features are obtained [50]. The trend is to move towards deeper solutions to improve the
accuracy of the CNN. The features are extracted by performing the convolution operation,
where a group of input pixels (the initial image or the result of the previous convolution)
are multiplied (scalar product) by a small matrix called kernel. The kernel, which slides
through all the input pixels, contains weight factors to store extracted features [51]. Those
weights, which are at first random, are usually adjusted by applying the backpropagation
algorithm, which minimises the cost function through several iterations. The resulting
matrix obtained from all convolution operations is known as a feature map.

There are different parameters that must be set up for each convolution. The three
that are explained next are the most important ones.

1. Kernel size: is the first parameter that needs to be established in a convolutional layer.
There is a wide range of options but, commonly, the most used sizes are 1 × 1, 3 × 3
and 5 × 5.

2. Stride: is a parameter that defines the step size of the kernel. For example, if the stride
has a value of 3, the kernel will move 3 pixels horizontally after each convolution
operation. Typical values for the stride are 1, 2 and 3.

3. Depth: indicates the number of kernels that are used in each convolution. Each kernel
generates a feature map, and the totality of the feature maps receives the name of
feature mapping. The most used approach is to start with a few kernels along the first
layers and continue increasing this number until the last convolutions.

Activation Layer

The activation layers, also known as non-linearity layers, are crucial for enhancing the
performance of CNN. As real data are non-linear, it is necessary to introduce non-linearity
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in the dataset. The activation layers are usually introduced after each convolution. There
are several functions that are used to introduce this non-linearity, but maybe the most
important ones are ReLU where the negative pixel values are replaced by zero, and sigmoid
that usually returns a value between 0 and 1.

Pooling Layer

A pooling layer, used for sub-sampling, usually comes after the activation layer.
Without sub-sampling, the volume of data would grow up continuously convolution
after convolution, requiring a huge computational effort and, consequently, much more
processing time. Sub-sampling aims to perform a filtering operation throughout the input
data (the data coming from the corresponding activation layer) in order to eliminate a
large part while maintaining the most relevant information. Therefore, only the relevant
information will feed the next convolutional layer. This operation also normalises the data,
which means that the variance of the data is reduced. In these layers, as in the convolutional
ones, the stride and the size of the kernel or filter must be determined. A typical value of
two is usually adopted for both parameters. There are different pooling or sub-sampling
methods. The most relevant ones are briefly exposed below:

1. Average pooling: offers the mean value of the sub-sampled pixels as the output value.
2. Max pooling: offers the highest value of the sub-sampled pixels as the output value.
3. Other methods: are not as popular as the previous ones. The reason is that they

are more specific methods that offer a great performance under certain particular
scenarios. Some examples are mixed pooling, stochastic pooling, spatial pyramid
pooling (SPP) or region of interest pooling (ROIP).

Figure 4 shows a graphical explanation of the operation of the max and average
pooling algorithms. In this case, a 2 × 2 kernel and a stride with a value equal to 2 is used.
It can be appreciated that max pooling provides the highest value of the kernel window,
while average pooling yields the average value of the kernel window.

Figure 4. Max pooling and average pooling algorithms.

Fully Connected Layer

The fully connected (FC) layers are connected to each of the neurons of the previous
layer. These layers perform a high-reasoning operation, reducing the multidimensional
data of the previous layers to a (1 × 1× N) vector, where N is the number of output classes.
Neurons in these layers also have an associated weight, which, as with the convolutional
layer neurons, is adjusted after several iterations by the backpropagation algorithm. To
avoid overfitting and to boost network performance, the dropout algorithm is included in
these layers. The purpose of the algorithm is to eliminate the connections of the FC layer
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with neurons whose weight is equal to zero, so that neurons having a zero contribution
to the determination of a certain output class do not participate in the calculation. This
reduces training time and contributes to a lighter system.

Classification Layer

The 1D vector obtained from the FC layers feeds the classification layer. The classifica-
tion layer transforms the vector elements into probabilities of belonging to each class. The
most common function in the classification layer is softmax. The probabilities obtained
can be used directly to perform the classification, approximating the highest probability
to 1 (the element belongs to that class) and the rest of the probabilities to 0 (the element
does not belong to the rest of the classes) [52]. Another approach is to use an ML classifier
such as the ones explained above to make the final classification. These classifiers may
substitute the softmax function and also be complementary to it. Several classifiers can
even be applied in parallel to compare results and receive feedback to help improve the
reliability of the results.

5.1.3. Convolutional Neural Network Models

The different elements that build convolutional neural networks (CNN) have to be
combined to obtain good solutions. Undoubtedly, the number of configurations is almost
infinite. However, there is a good number of CNN configurations that have demonstrated
excellent results. These CNNs are called backbone networks, since they are the basis of the
different architectures that are implemented to solve, among others, the problem of defect
detection and classification.

In this section, an overview of some widely used CNNs will be provided, mentioning
the works from our search that make use of such architectures. Again, some backbone
networks that are not used in any of the works we have found during the search will be
added to provide background for future projects.

AlexNet

AlexNet is a pioneer within CNN [53]. It is very simple in comparison to the latest
models. AlexNet is composed of five convolutional layers, a pooling layer (max pooling),
three FC layers and an activation layer using a ReLU function. It is not very common
to find applications that use AlexNet today, but it is still very important because it was
precisely that CNN, which inspired the rest of the models [52].

VGGNet

VGGNet won the localisation and classification tracks of the ILSVRC competition in
2014 [54]. Therefore, we are talking about a powerful network. It has two versions that are
widely used, VGG-16 and VGG-19. VGG-16 is composed of 13 convolutional layers using
3 × 3 kernels, 5 pooling layers and 3 FC layers. VGG-19 includes three more convolutional
layers. As the network structure is somewhat simple and its performance is great, it
has been used as a backbone network to develop many different applications [50,52]. In
the search carried out in our scoping review, we found a couple of documents in which
VGGNet was implemented for the task of defect detection and classification [55,56].

GoogleNet

GoogleNet or Inception V1 [57] is an example of an inception network. It presents two
main advantages. The first is a significant reduction in the parameters that the network
must manage (about twelve times less than AlexNet). The second is the implementation
of inception modules, which allow several convolution operations to be performed using
different kernels on the same layer. It is necessary to consider that although the depth of
the network is twenty-two convolutional layers, taking into account the layers within the
inception modules, there would be more than fifty convolutional layers. It also replaces the
max pooling algorithm with an average pooling algorithm in the last layers.
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A figure has been prepared to visualise how the inception modules operate. Figure 5
shows the parallel convolution operations that can be performed in the same layer with
the help of the inception modules [52]. Moreover, there have been several advances from
the initial Inception V1. Each new model is a step beyond the previous one in terms of
precision and processing time, exceeding the previous model. Some of the new models are
Inception V2, Inception V3, Inception V4, Inception-ResNet V1 and Inception-ResNet V2.
An article has been found in our search implementing Inception V2 [58], another one with
Inception V3 [59] and another one with Inception-ResNet V2 [55].

Figure 5. Inception module structure: parallel convolutions.

ResNet

The advent of ResNet revolutionised the world of CNN [60]. ResNet won the Best
Paper Award at the Computer Vision and Pattern Recognition Conference in 2016. It has
a depth of 152 layers, which is achieved through a novel idea. Each layer does not have
to adjust every single weight of its neurons but only learns a residual correction of the
previous layer. This depth allows for huge accuracy. In fact, ResNet is considered one
of the most accurate models on CNN. Therefore, it is widely used for tasks that require
detecting and classifying very small objects or, as in our case, defects [50]. Throughout
our search, we have found one paper that implements the ResNet model for detecting and
classifying defects [55,59].

MobileNet

The main difference between MobileNet and the models mentioned above is the
replacement of the traditional convolution operation [61]. The novel convolution can be
divided into two: a point-wise convolution (carried out by means of 1 × 1 kernels) and a
depth-wise convolution. As a result, the size of the model is smaller and the complexity is
much lower. As accuracy is not affected, MobileNet outperforms two contrasted networks
such as VGGNet and GoogleNet [52].

EfficientNet

Originally developed back in 2019 [62], EfficientNet was born to solve the scaling
problems of the state-of-the-art convolutional neural networks. Up to that time, there
were three different ways to perform the scaling of a network with the aim of gaining
precision while classifying: going deeper (which involves more layers), going wider (more
channels) or working with the image resolution. Those scaling techniques were carried out
individually. EfficientNet performs what is known as a compound scaling, where up to
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three constants are determined by means of a grid search, giving the user the possibility of
determining a fourth to adapt the network to the equipment’s capacities. Starting from
a base model (EfficientNetB0) that includes an input convolutional layer, seven mobile
inverted bottleneck blocks (MB Convolution) [63] and a fully connected layer, the different
models (ranging from 1 to 7) are obtained through this compound scaling operation.

Other Models

As mentioned above, there are many suitable CNN configurations with acceptable
results. Of the documents analysed in the scoping review, some do not use any of the
above models but built their own ones. Some authors even compared the performance
of their models with the previous ones. The configuration of these models will be briefly
discussed in the results and discussion section. Moreover, several articles implementing
CNN models designed by the authors have been selected in the scoping review [23,27,64].

5.1.4. Other Configurable Parameters

In this subsection, two different configurable parameters of convolutional neural
networks will be explained: loss functions and optimisers.

Loss Functions

The loss in a CNN is, basically, the error in which the CNN incurs while predicting.
That error can be computed by means of different loss functions. Within all the existing
loss functions, there are five that should be highlighted due to their common use in
this CNN field: mean absolute error (MAE) (mainly used in regression models), mean
square error (MSE) (as MAE, used in regression models), binary cross-entropy (BCE)
(which is designated for binary classification issues), categorical cross-entropy (CCE) (multi-
class classification tasks) and sparse categorical cross-entropy (SCCE) (also for multi-class
classification issues).

Optimisers

The optimisers or optimisation algorithms are crucial parameters of a CNN. They
determine the training speed and, definitely, the final performance of the CNN [65]. The
optimiser is commonly chosen by using a grid search, in which different algorithms
are tested. The most employed optimisers are stochastic gradient descent (SGD) [66]
Momentum [67], Nesterov [68], RSMProp [69] and Adam [70].

5.2. One-Stage and Two-Stage Approaches

The models presented may be implemented to solve different problems. As for the
detection and classification of defects, two approaches are distinguished:

• One-stage approaches or classification-based methods. Detection and classification
(for example, of defects) is carried out simultaneously in a single stage. The main
objective of the approach and its greatest advantage is the detection and classification
in real-time. The disadvantage of this approach, compared to the two-stage approach,
is that its accuracy is significantly lower. Therefore, it is focused on tasks that must
be agile or fast and that do not require high accuracy. An example is the YOLO (You
Only Look Once) architecture. YOLO can use different CNN models as a backbone
such as VGGNet and GoogleNet.

• Two-stage approaches or region proposal-based methods. The detection and classifi-
cation tasks are carried out separately. First, a network generates proposals of regions
for object detection, and then a different network is fed with those region proposals
to definitively locate and classify the object (in our particular case, the defect). Since
the detection and classification task is executed in two stages, the time required to
perform them is greater than in the single-stage approach. Despite this increase in
time, the approach is very popular for tasks that require high accuracy. This approach
can be considered for future works if, for instance, the location of the defect is not
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sufficiently clear. Along the first stage, the defects would be located, while in the
second one they would be classified. Further information can be found in [71]. An
example of this approach is region-based CNN (R-CNN) and its variants, considered
one of the best architectures in terms of accuracy.

6. Results and Discussion

In this section, we will present and discuss the results obtained when applying ML
and DL methods to the defect detection and classification task in the papers selected
during our search. This will allow us to obtain an overview of the performance of each
method implemented and to select those methods that provide a better performance for the
development of future projects. Certainly, the various papers have used a different dataset,
and the technology available at the time of the research was not the same. Therefore,
although the results obtained through the different methods can be compared, they must
be judged according to the available technology and the quality of the dataset in each
publication. The results can be observed in Table 2.

Table 2. Methods and their metrics.

Reference Method Accuracy

CNN (self design) 0.962
[23] SVM (radial basis function) 0.925

K-NN 0.933

[27] CNN (self design) 0.953
Random forest 0.942

[33] K-means —

[36] SOM *

Inception V2 0.900
ResNet 50 0.875

[55] VGGNet16 0.844
R-Inception V2 0.974

R-ResNet 50 0.968
R-VGGNet16 0.960

[56] CNN (self design) 0.821

[58] Inception V1 0.873
Commercial ADC 0.772

[59] Inception V2 0.600
ResNet 50 0.700

CNN Back-propagation 1
[64] CNN Linear Vector Quantisation 1

CNN Radial Basis Function 0.900
Note: * The results are presented in terms of sensitivity and specificity, not accuracy.

From Table 2, it can be observed that the accuracy metric has been chosen to compare
the papers. The main reason is that almost all papers from the reviewed literature use
this metric to evaluate their models. However, there are two exceptions. In the first
one [33], there is no numerical result because the paper focuses on defect detection and
quantification. Despite this, the paper has been included due to the feature extraction
and classification that is performed with the K-means clustering method. For the second
exception [36], different metrics have been used to evaluate the SOM model. Those metrics
are sensitivity and the specificity.

In order to properly comment and discuss the results and obtain both a particular
comparison of the methods and models used in each article and an overview of all the
models and methods discovered, this section will be divided into two parts. In the first
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one, we will focus on the comparison and discussion of all the methods used in each article.
In the second, we will look at the whole set of articles as an overview.

6.1. Article by Article Discussion

As shown in Table 2, three different methods have been used to carry out the task
of detecting and classifying defects in one of the articles [23]. The article has two main
objectives. The first is to implement a CNN to perform the detection and classification of
defects on the surface of the wafers, and the second is to detect defects of unknown class.
Two different datasets are used. One of them, consisting of 2123 160 × 160 images, after
being augmented to 6369 images by means of flipping and rotating the original images,
is used for training and testing. The other is composed of 30 unknown defect images.
To achieve the first objective of the paper, a CNN designed by the authors themselves
is implemented. It contains four convolutional layers, two max pooling layers, one FC
layer and ReLU as its activation function. This CNN, which achieves a test accuracy of
0.962, is compared with a classical ML method. Specifically, it is an SVM with the radial
base function, which achieves a test accuracy of 0.925. Thus, we can clearly see that the
designed CNN exceeds the SVM in this case and for this particular data set. Finally, to
achieve the second objective, a K-NN is fed with the CNN output. K-NN only fails in 2 of
the 30 images, and only in one of the five categories that are analysed, so that its accuracy
is 0.933.

In the following article [27], the authors implemented a CNN designed by themselves
to perform the task of defect detection and classification. This CNN was composed of three
convolutional layers, one max pooling layer and two FC layers. The available dataset for
this experiment, once augmented, contained 12,000 images. The test accuracy achieved was
0.953. The authors also applied the same dataset to a random forest method, obtaining a
test accuracy of 0.942. Thus, it can be stated that, although the results are adequate and very
similar, the designed CNN outperforms the random forest method in this case. Regarding
the average training time for this experiment, it depends on the number of clients used
when computing. The average training lasts for about 160 s when there is only one client,
while when there are from six to ten clients, it decreases to 80 s.

A k-means approach is then adopted in the article [33]. The objective of the study is to
analyse an SEM image to detect, quantify and classify the image features using clusters
in which the defects are included. As can be seen in Table 2, the authors do not provide
quantitative results. They present a novel tool that allows to quantify and group the
features, defects in this case, in different clusters according to their features and to manage
them together.

The next article that appears in Table 2 is [36]. Again, there is no result on accuracy in
the table but for another reason. The authors designed an SOM-based method to perform
automatic defect detection and classification on wafers. The results have not been included
in the table because different combinations of mask sizes and number of clusters were
attempted to determine the best one. The results were expressed in terms of specificity
(number of negative or non-defective true ROIs (regions of interest) detected divided by
total negative or non-defective ROIs) and sensitivity (number of positive or defective true
ROIs detected divided by total positive or defective ROIs). The best combination of results
was reached by using 8 × 8 masks with three, four or five groups, achieving a value of
0.967 for sensitivity and 1 for specificity.

Then, in Reference [55], the authors used three different CNN models in order to classify
different wafer maps: Inception V2, ResNet-50 and VGGNet-16. The achieved accuracy was,
0.9, 0.875 and 0.844, respectively. It seems clear that Inception V2 and ResNet-50, which have
almost identical results, outperform VGGNet-16. Then, the Radon transform was merged
with the previously mentioned CNN models, creating new models named R-Inception V2,
R-ResNet-50 and R-VGGNet-16. These new models had an accuracy of 0.974, 0.968 and 0.96.
As we can appreciate, every model of this new approach outperformed its corresponding
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simpler model. Among the new models, the same tendency was maintained. R-Inception V2
and R-ResNet-50 offered similar results and both slightly outperformed R-VGGNet-16.

Moreover, in [56], the authors classified the chemical composition of particle defects
on semiconductor wafers. A VGGNet-based model was assigned for achieving that goal.
The idea of the article was to merge the features extracted along the convolution operations
with data extracted from an energy-dispersive X-ray (EDX) microscope. In order to do that,
the authors started from a dataset of 5761 SEM images belonging to 8 classes, along with
98 images with no defect. The average training time was of 0.264 s/defect/epoch/GPU.
The test accuracy reached was 0.992 for the Top-3 accuracy and 0.821 for the Top-1 accuracy.
Then, two different transfer learning approaches were followed, obtaining worse results
without saving computing time significantly.

Continuing with article [58], the authors developed a CNN model based on Inception
V1 that surpassed the commercial state-of-the-art automatic defect classification (ADC)
system in the field of semiconductor defect detection and classification. Up to 5388 images
of eight different classes constitute the dataset for this experiment. In this case, the CNN
selected achieved a test accuracy of 0.873, whereas the ADC system achieved a test accuracy
of 0.772. Therefore, the CNN model clearly outperforms the ADC system. Regarding the
run-time, it varies from 40 h when no transfer learning is included to 4 h once transfer
learning is included.

In [59], the authors compared two different CNN models, Inception V3 and ResNet-50,
in semiconductor defect detection and classification. As shown in Table 2, the accuracy
of the models was 0.6 and 0.7, respectively. These values are poor, probably due to the
initial dataset’s distinctiveness and/or quality, as it contains only 736 images, which belong
to seven classes. Nevertheless, the ResNet-50 model outperformed the Inception V3 one.
Regarding the training time, it takes for about 4.5 h to train Inception V3 and 9 h to
train ResNet-50.

Finally, in [64], the authors proposed three different CNN models to carry out the
post-sawing inspection task. The three CNNs were designed by the proper authors. The
first CNN used a back propagation algorithm that reached an accuracy of 1. The second
one used a linear vector quantisation (LVQ) algorithm and also achieved an accuracy of 1.
Finally, the third one implemented a radial basis algorithm and obtained an accuracy of
0.9. For this dataset, backpropagation and LVQ offered the same result, outperforming the
radial basis one. Although these results are included, it seems clear that they are not really
comparable with the ones of the previous papers, as obtaining accuracy values of 100%
reveals that the classification task was not that complex.

6.2. General Overview

Once the results of the different articles have been discussed one by one, the challenge
is to construct a comprehensive overview of the results. It can be said that CNN surpasses
ML methods, at least in all the papers we have collected. This can be explained by the
ability of CNN to extract meaningful features from large datasets. If the datasets were
smaller, ML methods could probably outperform CNN, the performance of which declines
when the volume of the datasets is reduced.

Among all CNN models, special attention should be paid to those designed by the
authors themselves. As the authors are well aware of the requirements of each particular
application, they can configure the CNN to achieve decent performances and even be
lighter than existing predesigned models.

When talking about predesigned models, the Res-Net and Inception V3 models, which
obtain similar and satisfactory results, should be highlighted. As for ML-based methods,
SVM and random forest are probably the ones that perform best in the works studied in
this scoping review.



Appl. Sci. 2021, 11, 9508 17 of 21

6.3. Limitations of This Work

This work is subject to some limitations. In addition to the proper limitations that each
article included has itself, our review presents its own limitations. These stem from the
difficulty of comparing the several articles that comprise it. Despite using similar images
and models, each work uses its own dataset and proposes its own task. Each dataset is
composed of a different number of images and classes with different sizes and distributions.
As for the tasks, each has its own complexity. All these aspects make it difficult to draw
fully concluding remarks.

7. Conclusions

This work has presented a scoping review in relation to the detection and classification
of defects in semiconductors from scanning electron microscope (SEM) images through the
use of machine learning (ML) and deep learning (DL) approaches. Throughout the paper,
we have addressed several issues.

First, our search strategy was determined, obtaining nine final articles from a total of
224 found initially. Next, we focused on the fundamentals of SEM, explaining the objective
of this microscopy and the main components of an SEM device. Later, we described
the most typical ML methods, classifying them into supervised, unsupervised and semi-
supervised methods. Then, we presented the different components of a CNN and, later,
the most typical models as well as the two main approaches that can be followed for defect
detection: one-stage and two-stage. Finally, the results obtained in the different articles
were presented and discussed.

The final conclusion should be that the main purpose of the scoping review has
been fulfilled. To the best of our understanding, all the knowledge about the detection
and classification of defects in semiconductors from SEM images using ML and DL has
been gathered.

From the authors’ point of view, as only nine papers that address the challenge of
detecting and classifying defects in semiconductor materials from SEM images have been
found, there is a huge opportunity with a multitude of exploitable approaches to achieve
even better results than those obtained so far in the literature reviewed. All the information
that has been gathered will help in future works to directly rule out some methods that offer
poor performance and to focus directly on the higher performance methods. Therefore,
the main contribution of this work is to guide future authors towards the best performing
methods to further improve the results in defect detection and classification and thus
contribute to the development and prosperity of the industry.
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The following abbreviations are used in this manuscript:

AE Autoencoder
BCE Binary cross-entropy
BSE Back-scattered electron
CCE Categorical cross-entropy
CCVAE Conditional convolutional autoencoder
CNN Convolutional neural network
DA Discriminant analysis
DL Deep learning
DT Decision Tree
FC Fully-connected
GAN Generative adversarial network
GPU Graphics processing unit
K-NN K-nearest neighbours
LDA Linear discriminant analysis
MAE Mean absolute error
ML Machine learning
MSE Mean square error
QDA Quadratic discriminant analysis
RBM Restricted Boltzmann machine
ReLU Rectifier linear unit
RNN Recurrent neural network
ROI Region of interest
SCCE Sparse categorical cross entropy
SE Secondary electron
SEM Scanning electron microscope
SGD Stochastic gradient descent
SOM Self-organising maps
STEM Scanning transmission electron microscopy
SVM Support vector machine
VAR Variational autoencoder
YOLO You only look once
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