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Abstract: A major challenge in place recognition is to be robust against viewpoint changes and ap-
pearance changes caused by self and environmental variations. Humans achieve this by recognizing
objects and their relationships in the scene under different conditions. Inspired by this, we propose a
hierarchical visual place recognition pipeline based on semantic-aggregation and scene understand-
ing for the images. The pipeline contains coarse matching and fine matching. Semantic-aggregation
happens in residual aggregation of visual information and semantic information in coarse matching,
and semantic association of semantic edges in fine matching. Through the above two processes, we
realized a robust coarse-to-fine pipeline of visual place recognition across viewpoint and condition
variations. Experimental results on the benchmark datasets show that our method performs better
than several state-of-the-art methods, improving the robustness against severe viewpoint changes
and appearance changes while maintaining good matching-time performance. Moreover, we prove
that it is possible for a computer to realize place recognition based on scene understanding.

Keywords: hierarchical place recognition; semantic aggregation; semantic edges

1. Introduction

Visual place recognition (VPR) is a core task of localization [1–3] and loop closure
detection [4,5] for mobile robots, which means that robots can accurately identify the same
place according to the images under different conditions [6–8].

However, VPR is a challenging problem, because it suffers from the influences of
complex and time-varying environment and the factors of mobile robots. These problems
occur due to some specific reasons: (1) high frequency environmental variability such as
weather, light, and time of day; (2) long-term and slower environmental changes such as
seasons and vegetation growth; (3) dynamic obstacles such as pedestrians, and vehicles;
(4) static objects such as buildings that will also change due to engineering construction; and
(5) the different orientation of the camera installed on the mobile robot and the movement
of the robot. The problems above will cause viewpoint and appearance variations, meaning
that there will be a lot of non-overlapping content in the image, making VPR more difficult.

To solve these problems in VPR, some researchers use the hand-craft features extracted
from the images, such as Fab-Map [4]. It encodes image local features like SIFT [9] or
SURFn [10] into the bag-of-words models [5] to represent the image in the form of word
vectors, and realize place matching by calculating the distance between the corresponding
word vectors of two images. However, the image local features are sensitive to illumination,
weather, and other features. Nicosevici et al. [11] proposed a visual vocabulary-based
loop-closure method, where the visual vocabularies could be built online, enabling the
bag-of-words model to adapt to the dynamically changing environments. Milford et al. [12]
proposed a method, combining intolerant but fast low resolution whole image matching
with highly tolerant, sub-image patch matching processes to improve the accuracy of place
recognition. Amato et al. [13] proposed a new image feature representation, called VLAD,
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which realized image retrieval on large-scale datasets by aggregating the residuals of SIFT
features in images. However, in general, the performance of traditional place recognition
algorithms needs to be improved and they often fail to deal with severe viewpoint changes.
However, the hand-craft features are very sensitive to illumination and weather. When
the appearance of the environment changes significantly, it is difficult for the algorithm to
achieve good results [14].

With the development of deep learning, the methods based on deep convolutional
features outperform traditional handcraft features in many tasks in the field of computer
vision. Features extracted through convolutional neural network (CNN) are deeper and
more abstract, thus being non-sensitive to environmental conditions and appearance vari-
ations [15–17]. Chen et al. [18] applied the image features extracted by CNN to VPR,
verifying the effectiveness of convolutional neural network in place recognition. Sun-
derhauf et al. [19] extracted the image features of different convolutional layers with a
pre-trained AlexNet [18], so as to evaluate the robustness of that for viewpoint-variance
and condition-variance, which provides a reference for the selection of convolutional
features. Arandjelovic et al. improved the traditional method VLAD [13] and proposed
NetVLAD [20], which replaced the traditional local features with CNN features and im-
proved the performance. Chen et al. [21] proposed a CNN-based feature encoding method
to create image representations by mining the salient patterns of images, tacking variations
both in viewpoints and conditions. Although VPR methods based on CNN perform much
better than traditional methods, there are few works focusing on utilizing visual semantic
information, lacking a high-level understanding of the image.

Humans identify whether the place has been visited through analyzing the objects
and the relationships between objects in the scene. In computer image processing, image
semantic segmentation is an effective means for a computer to understand the contents of
images. In recent years, image semantic segmentation has received significant attention
and shown high performance in image scene understanding [22–28]. Some researchers
have integrated visual semantic information into place recognition. Sourav et al. [29]
proposed to use the semantics-aware higher-order layers of deep neural networks for
identifying specific places under 180 degrees viewpoint reversed. They developed a
descriptor normalization schemes to improve the robustness against appearance change.
In subsequent studies [30], they integrated the previous work to solve three challenges in
place recognition: reverse viewpoint, lateral perspective shift, and extreme appearance
change. Aiming at the bucolic environments such as natural scenes with low texture and
little semantic contents, but obvious appearance changes, Benbihi et al. [31] proposed a
global descriptor based on image topological and semantic information to achieve place
recognition by matching semantic edges between two images. These works have shown
that it is possible and efficient to apply image semantic information to VPR.

Maohai et al. [32] studied a strong robust hierarchical localization method, and realized
a coarse-to-fine hierarchical localization and autonomous navigation system for mobile
robot based on pure vision. Emilio et al. [33] proposed an appearance-based method for
topological mapping based on hierarchical decomposition of environment, and proved
that the hierarchical method could reduce search space in identifying place while improve
mapping accuracy in creating a map. Stephen and Milford [34] developed a new stacked
hierarchical localization framework, which concatenated localization hypotheses from
techniques with complementary characteristics at each layer, performing well on two
challenging datasets. These works have proved that hierarchical strategy is useful and
effective in reducing search space and localization.

Motivated by the works above, this paper believes that achieving efficient image-
understanding-based VPR across appearance and viewpoint variations requires semantic
understanding of the environment. Moreover, hierarchical strategy contributes to main-
taining computational efficiency. We combine visual semantics and hierarchy and propose
hierarchical place recognition based on semantic aggregation, to minimize the influences
of appearance and viewpoint variations.
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2. Hierarchical Visual Place Recognition Based on Semantic-Aggregation

Research [19] shows that the features extracted from the middle layer of CNN exhibit
strong robustness against the severe image appearance changes caused by illumination,
season, or weather conditions. On the contrary, high-level features are more semantically
meaningful and more robust with respect to viewpoint variations.

We propose a novel coarse-to-fine hierarchical method based on semantic aggregation,
making use of the mid-level convolutional features and semantic features to realize place
recognition. Figure 1 shows the whole process. Our approach is a coarse-to-fine visual
place recognition pipeline, and contains two parts: coarse matching and fine matching.
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Figure 1. Overview of our proposed method. (1) Coarse matching: we get the top n Candidates with a
global dataset search based on semantic aggregation and semantic filtering. (2) Fine matching: we
select the best match through semantic edges and semantic association in the Candidates. Coarse
matching helps to locate the query quickly, and fine matching helps to match the query accurately.
Such a coarse-to-fine hierarchical progress improves the accuracy of place recognition and maintain
computational efficiency.

2.1. Coarse Matching

We propose a simple yet efficient way of image representation, a hybrid global image
descriptor, which can be obtained by aggregating semantic residuals for each semantic
labels and semantic labels filtering. Then, we match the query with reference datasets by
calculating cosine distance, to find the images with top-n similarity in the query. Those
images contribute to the Candidates.

The whole process of coarse matching is illustrated in Figure 2. We use an advanced
cross-season semantic segmentation model [35] to obtain semantic labels and their proba-
bilities, image features, and image segmentation. This model is based on the PSP-Net [27]
and it greatly improves the robustness to seasonal changes by adding enforcing label
consistency across matching.

Firstly, mid-level convolutional feature map with the size of W × H × D is extracted
from the pre-trained ResNet [36] model with the dilated network strategy [37,38], where
W, H, and D are the width, height, and depth of the feature map, respectively. In this
task, W and H are 1/8 of the input image size, and D is 2048. Then, a pyramid pooling
module is applied to gather context information and mine rich semantic information. In
the pyramid module, 4-level pyramid are fused as the global prior and are concatenated
with the original feature map to generate a final feature map with the size of W × H× 4096,
where W and H are 1/8 of the input image size too.
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Figure 2. The process of coarse matching. Given an image, we obtain its semantic segmentation,
semantic labels and probabilities, and feature maps through a network model. Then, we compute
feature residuals of each semantic class and aggregate all feature residuals to get a hybrid image
descriptor Hc. Subsequently, we keep the main semantic classes through semantic filtering to
construct the final hybrid image descriptor H. Finally, a query is matched with the reference images
by cosine distance, getting the top n Candidates.

Defining the semantic label si at position i within the feature map is as follows:

si = argmax
c

pic c = {0, 1, . . . , C} (1)

where c refers to the semantic classes corresponding to the related dataset, and C is the
total number of semantic classes; pic represents the probability of the pixel at the location i
belonging to a semantic class c.

Since each pixel’s semantic class is determined, the mean descriptor mc for each
semantic class c can be computed as follow:

mc =
∑M

i {xi|si = c}
∑M

i {i|si = c}
(2)

where xi is the D-dimensional descriptor for the feature map, and M is the number of the
pixels. Then, feature residuals of each semantic class can be computed by |xi −mc|, which
preserves the distribution differences between local features and semantic mean value.

Then, we aggregate all the feature residuals of each semantic class for all the pixels in
the image and weight with the corresponding semantic label probability to get Hc:

Hc = ∑M
i pic|xi −mc| (3)

where Hc is essentially a hybrid image descriptor based on semantic aggregation for a
semantic class c.

However, using Hc for the coarse matching directly will reduce computation efficiency.
Moreover, some semantic classes will reduce robustness, such as person, car, since they are
dynamic. Those semantic classes will increase non-overlap contents between the images,
thus leading to a low accuracy. We keep L(L < C) main semantic classes to construct the
final hybrid image descriptor H. H is the add of L2-normalized H1, H2, . . . , HL.

H =

〈 ·
H1 +

·
H2 + . . . +

·
HL

〉
(4)
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where
·

H1 +
·

H2 + . . . +
·

HL refer to L2-normalized H1, H2, . . . , HL respectively. Meanwhile,
in order to improve the ability to distinguish distance, H is normalized again as follows:

H =
(H −m)

σ
(5)

where m and σ are the mean and standard deviation of descriptor calculated on the
dataset, respectively.

After that, the query is matched with the reference images by cosine distance djk:

djk = 1−
Hj·Hk

‖Hj‖2‖Hk‖2
, ∀j ∈ [1, N] (6)

where djk is the cosine distance between the query k and reference image j in the reference
dataset, and N is the number of images in reference datasets. The top n reference images
with the lowest distance to the query are kept as Candidates and passed to the fine matching
for the final match.

2.2. Fine Matching

Matching query with reference datasets only by coarse matching took a long time,
imposed great pressure on the computer, and returned a low accuracy. To address this,
we added a fine matching after the coarse matching to improve the matching accuracy
and increase the computational efficiency, which is shown in Figure 3. A semantic edge
descriptor is introduced, which does not involve the neural network calculation, and the
whole process speed is fast while maintaining a high accuracy.
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Figure 3. Illustration of fine matching process. Given an image (a), we first get its semantic segmen-
tation (b) through coarse matching. Then, we extract its semantic edges, and describe these semantic
edges (c) with wavelet transform. After that, we associate the query semantic edge descriptor and the
Candidates semantic edge descriptors with semantic labels (d). Finally, we match them with cosine
distance to find the best match (e).

2.2.1. Semantic Edges Extraction and Description

Given an image, we can obtain its semantic segmentation through coarse matching.
We firstly detect and extract its edges based on Canny, outputting a list of semantic edges
and corresponding semantic labels. Figure 4 shows the semantic segmentation and its
semantic edges.

There are many existing methods to describe edges. Among the existing edge de-
scriptors, we prefer the wavelet descriptor [39]. Wavelet transform can generate a unique
representation for a signal. More importantly, the multi-scale decomposition of wavelet
descriptors makes the edge descriptors more compact and better discriminative.

For the semantic edges extracted above, we subsampled them and collected P pixels.
Their (x, y) locations in the image are connected into a two-dimensional vector to outputting
an original sequence. Then, we separately computed the discrete Harr-wavelet transform
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over each row and column and normalized them by L2-normalization, outputting a semantic
wavelet descriptor, which has translation, scaling, and rotation invariance.
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2.2.2. Semantic Association and Matching

To make the matching more precisely, we introduced a semantic association strategy.
The semantic wavelet descriptor of the query is associated with that of the reference datasets
according to their semantic labels. Figure 5 shows the process of semantic edges association.
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together to match faster and more precisely. For example, edges marked 1 to 10 are all edges labelled
with vegetation in the Candidates. And edge below is the vegetation edge in the query. They are
associated as a group.

3. Experiments and Results
3.1. Datasets and Performance Evaluations

We used two publicly available VPR benchmark datasets: North Campus Dataset [40]
and Nordland Dataset [41], to validate the effectiveness of our method. These two datasets
include viewpoint variations and appearance variations caused by seasonal changes, col-
lection tools, and so on. Their key information is summarized in Table 1 and their sample
images are shown in Figures 6 and 7.
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Table 1. Dataset summary.

North Campus Norland

Environment University of Michigan’s North Campus Train ride

Collection tools Segway robot Train

No. of frames
(Reference/Query) 501/501 3600/3600

Distance between
adjacent images 5 m 20 m

Viewpoint variation Severe None

Illumination variation Severe Severe

Seasonal variation Severe Severe

Tolerance (frames) 1 1
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3.1.1. North Campus Dataset

The North Campus Dataset is a large scale, long-term autonomy dataset for robotics
research collected the University of Michigan’s North Campus over 15 months. The
dataset consists of 27 sequences which repeatedly explore the campus both indoor and
outdoor on different trajectories across seasons, each containing dynamic obstacles, view-
point variation, illumination variation, seasonal and weather changes, and long-term
structural changes caused by construction. We used the summer sequence for reference
and the autumn sequence for query. Figure 6 gives the image samples from the North
Campus Dataset.

3.1.2. Norland Dataset

The Norland Dataset is the collection of four sequences of images from a 728 km
trainway with seasonal environmental variation. Since the collection camera is fixed on the
train head, there is no viewpoint variation. We used the spring sequence for reference and
the summer for query. Image samples form Norland Dataset are shown in Figure 7.

3.1.3. Performance Evaluations

We evaluated the recognition performance based on PR curve (precision-recall rate
curve), matching time, and F1-score. The PR curve was used in the comparison experiment,
and the matching time and F1-score were used in the ablation study. For each dataset,
ground truth is the frame-level correspondence, and we set a tolerance of one frame. For
each query, if the matched reference image was close enough to the correct reference image,
it will be considered as a true positive match. For example, if the correct reference image is
the kth image, then the (k− 1)th, kth, and (k + 1) th reference image are all considered to
be the true positive match to the query.

3.2. Experimental Setup

The semantic segmentation model is trained with the Cityscapes dataset [2] and then
fine-tuned with the CMU-Seasons dataset [42]. The Cityscapes dataset includes 20 classes,
then C is set as 20 and c is a value of 0–19.

The segmentations of sample images in Figures 6 and 7 are shown in Figures 8 and 9.
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L is set as 3 representing three main static semantic classes of road, building, and
vegetation in the images of query and reference datasets. Then, the hybrid image descriptor

is simplified as H =

〈 ·
Hroad +

·
Hbuilding +

·
Hvegetation

〉
, and

·
Hroad,

·
Hbuilding,

·
Hvegetation refer

to L2-normalized Hroad, Hbuilding, Hvegetation respectively. Through the fowling ablation
study, we take the Candidates n for 10.

We set P = 64 in the fine matching and kept the even coefficients of the wavelet
transforms, which are redundant. Through this, we obtained a 128-dimension vector of the
edge descriptor.

3.3. Ablation Study (Effects for Hierarchy and Candidates)

In order to study the effectiveness of hierarchy strategy and the number of Candidates
in our method, we conducted 3.3.1 (the number of Candidates) and 3.3.2 (hierarchy or
single), two ablation experiments on two datasets.

3.3.1. The Number of Candidates

To analyze the influence of the number of Candidates(n) on the whole method, matching
time and F1-Score were adopted as the performance indicators. Note that matching time
here refers to the time of coarse matching and fine matching but not the time of semantic
segmentation of query and reference datasets.

We set the number of Candidates to 5, 10, 15, 20, 25, 30, and 50, respectively. The results of
matching time and F1-Score with different number of Candidates are shown in Figures 10 and 11.
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The results in Figure 10 show that matching time of the North Campus dataset is
lower than that of the Norland dataset on the whole. This is because the size of the two
datasets is significantly different. The latter is 7 times more than that of the former, so the
matching time of query on the Norland dataset is higher. Moreover, the matching time
of the Norland Dataset increases greatly when the number of Candidates is 30 and 50.
However, the maximum is only 0.501 s, which meets the real-time requirements. To sum
up, matching time under 25 can be suitable for these two datasets.

As can be seen from Figure 11, for each dataset, there is little difference in the F1-Score
of different Candidates. However, the F1-score of the North Campus Dataset is higher than
that of the Norland Dataset on the whole. This indicates that our method is robust to severe
viewpoint changes and image appearance changes.

Taking account of matching time and F1-score, we find that the effectiveness is better
when the number of Candidates n is 10 or 15. Finally, in the comparison experiment, we
took n for 10.

3.3.2. Hierarchy or Single

To compare the performance of hierarchical place recognition method, coarse matching
only, and fine matching only, we conducted the Hierarchy or Single experiments. F1-Score
was adopted as the performance indicator.

Note that coarse matching only means that we get the final best match for the query
just through a coarse matching. Fine matching only means that we get the final best match
for the query just by fine matching.

According to the result of ablation 3.3.1, we compared our hierarchical method with
the Candidates n to be 10 and 15, respectively, coarse matching only and fine matching only
on the North Campus Dataset and the Norland Dataset. The results are shown in Table 2.

The results show that the performance of hierarchical strategy with Candidates 10 and
15 is better than that of coarse matching only, and fine matching only on both two datasets.
It reveals that our hierarchical place recognition is efficient. Comparing with using a single
strategy, the hierarchical strategy behaves better.
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Table 2. F1-scores of different strategies.

The North Campus Dataset The Norland Dataset

Hierarchical strategy with Candidates 10. 0.94856 0.85944

Hierarchical strategy with Candidates 15. 0.95046 0.83152

Coarse matching only 0.85045 0.75051

Fine matching only 0.90979 0.80217

3.4. Comparison with the State-of-Art Methods

We conducted experiments to evaluate the performance of place recognition by com-
paring PR curves of the following single-image-based baseline methods:

FabMap [4]: A classical method for appearance-based VPR based on Bag-of-Words model;
VLAD [13]: A large-scale image-based place recognition model. It can be used for

place recognition and realize good performance on many datasets;
NetVLAD [20]: A viewpoint-robust CNN model for VPR, which can achieve great

performance on most datasets;
WASABI [31]: A novel image-based place recognition model across seasons from

semantic edge description on bucolic environments such as scenes with low texture and
little semantic content.

The results are shown in Figure 12. Figure 12a shows the results of experiments
conducted on the North Campus Dataset, which involves severe viewpoint variations
and environmental condition variations. Figure 12b shows the results of experiments
conducted on the Norland Dataset, which involves severe appearance variations. The
method that we proposed (red line) obtains the best performance. We think this is because
our method utilizes both the mid-level convolutional features and the higher-level semantic
features in the coarse matching, thus our method is robust to the viewpoint changes and
environmental conditions. Moreover, the fine matching further improves the accuracy.

The results indicate that the method that we proposed is robust to viewpoint-variant
and appearance-variant conditions.
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3.5. Runtime Analysis

We implemented the proposed system in two steps: (1) semantic segmentation and
(2) coarse matching and fine matching. We called the step (2) the matching process, and
experiments were done on an NVIDIA 1090Ti GPU. The results are shown in Figure 10.
For a single image, it takes approximately 0.059 s to achieve matching with the Candidates
10. Even when the Candidates number is 50, the time of matching is 0.501 s for a reference
image sequence with 3600 images. We believe that our method has the potential to satisfy
real-time demands.

4. Discussion

We presented a coarse-to-fine visual place recognition pipeline, and done experiments
on two benchmark databases with many images from a wide variety of seasonal environ-
ments to study whether our method adapts to variations in viewpoint and appearance. We
compared our method with state-of-art place recognition algorithms and demonstrated its
superior performance. Our proposed method can be used in loop-closure and localization,
and it performs well especially for the scenes with seasonal environmental changes and
long-term conditional changes. However, it is important to note that our method relies
on semantic segmentation. Thus, the effectiveness of semantic segmentation has a great
influence on our method and the performance of the computer also affects the efficiency of
our method.

5. Conclusions

In this article, we proposed a coarse-to-fine hierarchical place recognition based on
semantic-aggregation. Specifically, we aggregate the mid-level convolutional feature and
high-level semantic feature in the coarse matching, while associating semantic edges in
fine matching. The experimental results show that our method significantly improves
the performance, exhibiting strong robustness against variations in viewpoint and ap-
pearance simultaneously. It outperforms the state-of-art single-image-based methods on
two representative datasets while showing good computational efficiency. In the future,
we will study how to improve our method, making it adapted to sequence-image-based
place recognition.
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