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Abstract: This paper presents multiple readings to solve a vehicle routing problem with pickup and
delivery (VRPPD) based on a real-life case study. Compared to theoretical problems, real-life ones
are more difficult to address due to their richness and complexity. To handle multiple points of view
in modeling our problem, we developed three different Mixed Integer Linear Programming (MILP)
models, where each model covers particular constraints. The suggested models are designed for
a mega poultry company in Tunisia, called CHAHIA. Our mission was to develop a prototype for
CHAHIA that helps decision-makers find the best path for simultaneously delivering the company’s
products and collecting the empty boxes. Based on data provided by CHAHIA, we conducted
computational experiments, which have shown interesting and promising results.

Keywords: vehicle routing problem; pickup and delivery; optimization; mixed integer linear
programming

1. Introduction

Transportation studies can be considered as an intersection between several domains,
methods, and techniques to propose, solve, and develop solutions for real-life problems.
Artificial intelligence [1–4] and optimization [5–7] stand behind the majority of developed
solutions. Among transportation and mobility problems, we recall the Vehicle Routing
Problem (VRP). VRP is a well-known problem studied in Operational Research and Compu-
tational and Decision sciences. It consists of routing products from depots to customers by
drawing adequate distribution plans. The routing plans, also called circuits or tours, need
to respect multiple constraints, such as vehicle loading capacities and customer demands.
The main objective of VRP is to provide significant savings in terms of transportation
costs while ensuring the lowest delivery delays. A variant of VRP is called VRP with
Pickup and Delivery (VRPPD). VRPPD joins the processes of collecting and delivering
either simultaneously or separately. To deal with a real-life VRPPD, several requirements
need to be considered, such as time window restriction, travel cost, vehicle capacity, hetero-
geneous vehicle fleet, vehicle travel time, vehicle speed, multi-dimensional capacity, route
restrictions, and uncertain decisions to choose between picking up first and delivering
second, or the opposite, or even performing both simultaneously. In addition, there might
be different objective functions that could be minimized, such as those related to travel
cost, satisfying customer requirements, loss of funds, etc.

This study is motivated by an industrial context, which is a problem related to a
mega poultry company in Tunisia called CHAHIA. CHAHIA supplies a large number of
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meat product outlets every day. The various orders issued daily to serve these outlets are
delivered in boxes owned by CHAHIA. The logistics of product delivery and box pickup
are complicated and generates high costs since boxes are subject to loss (according to
CHAHIA). Such losses could lead to stock shortages when filling and preparing products
for delivery. Therefore, these boxes require a full-fledged management process when
modeling the VRPPD for the company. The real VRPPD that we are dealing with differs
from traditional VRPPDs in several aspects. First, our proposed models allow multiple
visits to customers on the same day. In addition, each customer could be served by multiple
vehicles during the same day. Furthermore, we have included CHAHIA’s specificities,
which are not well addressed in the literature.

This paper develops three different Mixed Integer Linear Programming models (MILP)
for CHAHIA VRPPD, handling multiple points of view. The first model is a VRP with a
Simultaneous Pickup and Delivery (VRPSPD). It ensures that the pickup and delivery are
performed simultaneously, without leaving any empty boxes with any customers. The sec-
ond model is a flexible VRPPD. It provides two options for pickup and delivery operations,
separately and/or simultaneously. The third one is a VRPSPD ensuring simultaneous
pickup and delivery. However, it provides flexibility to drop and leave some boxes, which
will be consequently penalized. The proposed models are benchmarked based on data
provided by CHAHIA. We claim that in practice, defining a VRPPD problem is much
more laborious than solving it due to the fact that the same problem could be viewed
from different angles, observations, perspectives, and preferences. The multiple VRPPD
readings could lead to different objective functions by focusing or ignoring certain details,
data aggregations, and setting assumptions (see Figure 1).

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 describes the VRPSPD (MILP1). The flexible VRPPD (MILP2) is de-
tailed in Section 4. Section 5 describes the VRPSPD with two additional alternatives which
are, ignoring pickups and penalizing the loss (MILP3). Section 5 details the experimental
framework. Section 6 discusses the limitation of the paper. Finally, Section 7 concludes the
paper and opens new perspectives.

Figure 1. Multiple readings of the same problem.

2. Related Literature

The VRPPD could be classified into three different categories [8,9], which are as
follows:
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• Delivery first and pickup second: vehicles perform a pickup operation after the
delivery process. This category is called Vehicle Routing Problems with Backhauls
(VRPB).

• Mixed pickup and delivery: vehicles deliver or pickup in any sequence along their
routes. This category is called Mixed Vehicle Routing Problem with Backhauls
(MVRPB).

• Simultaneous Pickup and delivery: vehicles simultaneously perform the delivery
and pickup. This category is called Vehicle Routing Problems with Simultaneous
Pickup and Delivery (VRPSPD).

The majority of published VRPPD models assume that each customer is visited only
once [10]. Some exceptions have considered multi-customer visits, such as in [11] where
the authors developed a large-scale model, allowing two visits per customer for a many-to-
many pickup and delivery routing problem. In [12,13], the authors considered a VRPSPD
involving the delivery of full bottles and the collection of empty ones. The authors assumed
that such a problem is classified among reverse logistics operations.

Several real-life applications encountered in the beverage industry are described
in [14]. For example, in [15], authors considered a truck scheduling problem for container
transportation in a local area with multiple depots and terminals. They proposed an
approach based on an integer programming heuristic that determines pickup and delivery
sequences for daily drayage operations while ensuring a minimum transportation cost.
In the same context, the authors in [16] demonstrated that drayage operations could be
considered as a multi-stop VRPB. More details regarding VRPB and VRPPD can be found in
two comprehensive overviews provided in [17,18], respectively. The problem of container
drayage has been considered by other research work. For example, in [19], authors have
developed models capable of minimizing both present and future operating costs. The
authors in [20] modeled the container drayage problem as a pickup and delivery problem
and proposed Lagrangian relaxation to solve the problem. In [21], the authors proposed
three approaches for the container movement problem with time windows at origins and
destinations. These approaches are based on an asymmetric multiple traveling salesman
problem.

Some researchers have considered a single vehicle while modeling the VRPPD. For
example, the single-vehicle VRPPD with deterministic demands and predetermined cus-
tomer visit sequence has been considered in [22]. Authors in [22] have developed the
routing of a single-vehicle that delivers multiple products under stochastic demand. Other
researchers, such as [23,24], have considered a VRP with mixed pickup and delivery, called
(VRPM), where pickups are made before deliveries.

Recently, Zhang et al. [25] introduced a new VRP variant which encourages the reuse
of collected items. They developed a segment-based evaluation procedure to reduce the
computation time. They provided a mathematical formulation and a metaheuristic algo-
rithm, and analyzed several features of the problem. In [26], a hybrid heuristic algorithm
for the 3L-PDP problem is extended by using two key improvements: the first is the usage
of a tabu strategy for enlarging the local search space, the second is the employment of
complex block generation and depth-first heuristics for incrementally finding one proper
box at a time in the packing phase. The experimental results show that the improved hybrid
heuristic algorithm outperforms its origin regarding total travel distance on benchmark
state-of-the-art instances. More variants of VRPPD including MRVRP, VRPP, SDVRP, SVRP,
VRPSF, and VRPTZ can be found detailed in [27,28].

Finally, we recall the main contributions of this paper. We have been motivated by
the large number of studies that tackled the VRPPD. It is worth noting that the majority of
possible constraints have already been suggested in the last two decades. However, our
work provides prototypes to solve the VRPPD based on CHAHIA’s needs. These needs
include three different variants of VRPPD. The first variant is a VRP with a Simultaneous
Pickup and Delivery (VRPSPD) without leaving any empty boxes at any customer. The
second variant is a flexible VRPPD that ensures separate and/or simultaneous pickup and
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delivery. The third one is a simultaneous pickup and delivery VRP allowing the flexibility
to drop and leave some boxes, which will be consequently penalized. More specificities
regarding the proposed models can be found in Section 3.

3. Problem Ingredients and Approach of the Proposed MILP Models

In order to state the problem more formally and clearly, we present our ideas which
are based on a real-life context. We have taken into account a set of assumptions, which are
as follows:

• Time window:
Includes the service time at each customer, loading time for each vehicle, travel
time between each couple of customers, time necessary to park the vehicle, and the
workday duration.

• Combined capacity; volume and weight:
The majority of VRP formulations consider the physical capacity of vehicles, which is
generally expressed in terms of weight. In our problem, goods are delivered using
boxes. Therefore, beside the capacity in terms of weight, we have to make sure that
each vehicle has the capacity in terms of number of boxes to be fitted into the vehicle.
Thus, we defined a new volume capacity that includes both loaded weight and box
numbers. We denote that we have considered the volume occupation in each vehicle
to be discrete. Motivated by this assumption, which complicates the use of vehicle
space, we assume that the combined capacity has not been addressed in the literature.

• Customer balance (stock) in terms of boxes:
We suppose, initially, that each customer has boxes ready for pickup. These boxes are
considered by our models before performing any delivery.

• Optimization choice:
Three different assumptions are considered. The first one guarantees that the pickup
and delivery are performed simultaneously, without leaving any empty boxes for any
customer. The second assumption is more flexible. It provides two choices of pickup
and delivery operation, separately and/or simultaneously. The third one ensures
that the pickup and delivery operation are performed simultaneously. However,
it provides a flexibility to drop and leave some boxes, which will be consequently
penalized.

• Heterogeneity of the fleet
Multiple vehicle types exist, having different sizes.

4. Mathematical Formulations

Three different formulations of the real-life VRPPD are detailed in this section.

4.1. Simultaneous Pickup and Delivery Vehicle Routing Problem: MILP 1

This section models the Simultaneous Pickup and Delivery Vehicle Routing Problem
variant (SPDVRP). In SPDVRP, the operations of pickup and delivery are performed
simultaneously at each customer node. Each customer is visited once, their order (in terms
of goods) is all delivered, and all boxes are picked up. The variables and parameters of the
proposed model are as follows:
- Indices and parameters:

• n: number of customers (i = 1, . . . , n).
• m: number of vehicles (i = 1, . . . , m).

• d(w)
i : customer i demand in Kg.

• d(c)i : volume demand of customer i in terms of number of boxes. This parameter is

deduced from the following relation: d(c)i =
d(w)

i
αi

.
• αi: average weight of a full loaded box dedicated for a customer i.
• Scini

i : initial balance of boxes that exists at the store of a customer i.
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• β: weight of an empty box.
• tij: travel time between two customers i and j.
• TSu: unitary time service expressed in minute per box.
• TS f : fixed service time.
• TSj: total service time at a customer i.
• TCj: time necessary to load each vehicle at the depot.
• TPCu: unitary time needed to prepare the boxes expressed in terms of minute per box.
• Tmax: maximum duration of a tour.

• Q(w)
k : weight capacity of a vehicle k expressed in numbero f boxes.

• Q(c)
k : volume capacity of a vehicle k expressed in Kg.

• Cij: travel cost from a customer i to another j.

- Decision variables:

• WJ : weight of the vehicle load before leaving a customer j.
• W(0,k): weight of goods at the depot for each vehicle k.
• Cj: number of boxes before leaving a customer j.
• C(0,k): number of boxes loaded at the depot for a vehicle k.
• Uj: variable used for sub-tours elimination.

• xk
ij =


1 i f the vehicle travels f rom i to j.
i, j = 1, ..., n(i 6= j); ∀k = 1, ..., m

0 otherwise


The MILP1 formulation is as follows:

Min
m

∑
k=1

n

∑
j=0

n

∑
i=0i 6=j

cijxk
ij (1a)

m

∑
k=1

n

∑
i=0i 6=j

xk
ij = 1 (∀j = 1, ..., n) (1b)

n

∑
i=0i 6=j

xk
ji =

n

∑
i=0i 6=j

xk
ij (∀j = 1, ..., n; ∀k = 1, ..., m) (1c)

n

∑
j=0i 6=j

n

∑
i=0i 6=j

(tij + TSj + TCj)xk
ij 6 T(max) (∀k = 1, ..., m) (1d)

Wj 6
m

∑
k=1

Q(W)
K

n

∑
i=0i 6=j

xk
ij

(∀j = 1, ..., n) (1e)

W(0,k) ≤ Q(w)
k (∀k = 1, ..., m) (1f)

Cj ≤
m

∑
k=1

Q(c)
k

n

∑
i=0i 6=j

xk
ji

(∀j = 1, ..., n) (1g)

C(0,k) ≤ Q(c)
k (∀k = 1, ..., m) (1h)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β + (
m

∑
k=1

xk
ij − 1)M9 (∀i, j = 1, ..., n, i 6= j) (1i)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β + (1−
m

∑
k=1

xk
ij)M10(∀i, j = 1, ..., n, i 6= j) (1j)

W(0,k) =
n

∑
j=1

d(w)
j ∗

n

∑
i=0i 6=j

xk
ij(∀k = 1, ..., m) (1k)

Wj −W(0,k) ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β + (xk
0j − 1)M12(∀j = 1, ..., n; ∀k = 1, ..., m) (1l)

Wj −W(0,k) ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β + (xk
0j − 1)M13(∀j = 1, ..., n; ∀k = 1, ..., m) (1m)
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Cj − Ci ≤ Scini
j + (1−

m

∑
k=1

xk
ij)M14(∀i, j = 1, ..., n, i 6= j) (1n)

Cj − Ci ≤ Scini
j + (1−

m

∑
k=1

xk
ij)M15(∀i, j = 1, ..., n, i 6= j) (1o)

C(0,k) =
n

∑
j=1

d(c)j ∗
n

∑
i=0

xk
iji 6=j

(∀k = 1, ..., m) (1p)

Cj − C(0,k) > Scini
j + (xk

0j − 1)M17(∀j = 1, ..., n; ∀k = 1, ..., m) (1q)

Cj − C(0,k) > Scini
j + (1− xk

0j)M18(∀j = 1, ..., n; ∀k = 1, ..., m) (1r)

Uj −Ui +
m

∑
k=1

[
M19 + d(w)

i xk
ij + (−d(w)

j + M19)xk
ij

]
≤ M19 (∀i, j = 1, ..., n; i 6= j) (1s)

d(w)
j ≤ Uj ≤

m

∑
k=1

n

∑
i=0i 6=j

Q(w)
k xk

ij (1t)

Knowing that:

• TSj = TS(u)(2d(c)j + Scini
j ) + TS( f )

• TCj = TPc(u) ∗ d(c)j

• M9 = M10 = M12 = M13 = M19 = Maxk′Q
(w)
k′

• M14 = M15 = M17 = M18 = Maxk′Q
(c)
k′

According to the MILP1 formulation, the objective function (1a) seeks to minimize
the total transportation cost. Constraints (1b) and (1c) ensure that the first vertex (node)
associated with each customer is visited once for a simultaneous pickup and delivery.
Constraint (1d) is related to the time service. The latter includes the travel time between
two customers and the time necessary for loading goods into the vehicle. It prevent
exceeding the predefined time capacity. Constraint (1e) ensures that the weight of the
vehicle load before leaving a customer j does not exceed the vehicle capacity if there is a
path between customers i and j. Constraint (1f) ensures that the weight of goods required
by all customers does not exceed the vehicle capacity in terms of weight. Constraint (1g)
guarantees that the number of boxes loaded into the vehicle before leaving a customer
j does not exceed the vehicle volume whenever it travels from j to another customer i.
Constraint (1h) ensures that the number of boxes required by all customers does not exceed
the vehicle volume capacity. Constraints (1i) and (1j) express the relation between two
successive customers in terms of weight. We considered here two types of weight; one is
associated with the delivery boxes, while the other one is associated with the initial boxes
existing at each customer store. Constraint (1k) defines the vehicle load before leaving the
depot. Constraints (1l) and (1m) present the weight of goods loaded into the vehicle before
traveling from the depot to a customer j. Constraints (1n) and (1o) represent the relation
between two successive customers in terms of volume (number of boxes). Constraint (1p)
defines the boxes loaded into the vehicle before leaving the depot. Constraints (1q) and (1r)
show the relation between the depot and a customer j in terms of volume. Finally, (1s) and
(1t) represent the sub-tour elimination constraints.

4.2. Flexible VRPPD: MILP 2

MILP2 is more flexible than MILP1. It considers a different representation of customer
services. We associate two vertices i and i + n with each customer i, where i and i + n are
the same, but have different types of service operations.

In reality, customers can be classified into two types according to the way of required
services. Indeed, MILP2 allows two types of services for customer i. The first type assumes
that the pickup and delivery are performed simultaneously. In such cases, vertex i is visited
and vertex i + n is left. The second type ensures that a customer i is visited twice, where the
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delivery is performed at vertex i, while pickup is done at vertex i + n. Figure 2 illustrates
the representation of customers based on a virtual replica.

Figure 2. Representation of the virtual customers (n + 1, ..., 2n).

Figure 3 represents two feasible tours for the same vehicle trip. The solution includes
nodes visited once with simultaneous pickup and delivery (black nodes), and nodes visited
twice due to two separated operations (encircled black nodes). The originality in the
proposed configuration is that certain feasible subtours must be allowed in appearance.
However, thanks to the duplication of nodes, it became easy to model the problem by con-
serving classical subtour elimination principles, while using a subtle manner of formulation
that takes into account the non-conservative progression of vehicle load.

Figure 3. Overview of the flexible vehicle routing problem with pickup and delivery (VRPPD):
MILP2.

For MILP2 formulation, we define additional parameters and variables, which are as
follows.
Additional parameters for MILP2:

• T(0,k): vehicle availability time at the depot. ∀k = 1, ..m.
• Tj: flow time at customer j.

Additional variables for MILP2:

• yi =

{
1 i f pickup and delivery are per f ormed simultaneously at customer j.(j = 1, ..., n)

0 otherwise,

}

• yi =


1 i f the vehicle travels f rom i to j

(j = n + 1, ..., 2n; ∀i = 1, ..2n; i 6= j; ∀k = 1, ..m)
0 otherwise,


MILP2 formulation is as follows:

Min
m

∑
k=1

n

∑
j=0

n

∑
i=0i 6=j

cijxk
ij (2a)
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m

∑
k=1

n

∑
i=0i 6=j

xk
ij = 1 (∀j = 1, ..., n) (2b)

2n

∑
i=0

xk
ji =

2n

∑
i=0

xk
ij ∀j = 1, ..., 2n; ∀k = 1, ..., m (2c)

m

∑
k=1

2n

∑
i=0i 6=j

xk
ij = 1− yj−n ∀j = n + 1, ..., 2n (2d)

2n

∑
j=n+1

 0

∑
j=0j 6=i

(tij + TS( f ))xk
ij +

n

∑
j=1j 6=i

(TS(u) ∗ d(c)j + yj(d
(c)
j + Scini

j ) ∗ TS(u))xk
ij+

2n

∑
j=n+1

(tij + 1(1− yj−1) ∗
[

TS( f ) + TSTS(u)(d
(c)
j + Scini

j )
]
+ TCj)xk

ij

]
≤ T((max))

∀(k = 1, ..., m) (2e)

Wj ≤
m

∑
k=1

Q(w)
k

2n

∑
i=0i 6=j

xk
ij

 (∀j = 1, ..., 2n) (2f)

W(0,k) ≤ Q(w)
k (∀k = 1, ..., m) (2g)

Cj ≤
m

∑
k=1

Q(c)
k

2n

∑
i=0i 6=j

xk
ij

 (∀j = 1, ..., 2n) (2h)

C(0,k) ≤ Q(c)
k (∀k = 1, ..., m) (2i)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β ∗ yi + (
m

∑
k=1

xk
ij − 1)M10

(∀j = 1, ..., 2n; ∀i = 1, ..., n; i 6= j) (2j)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β ∗ yi + (1−
m

∑
k=1

xk
ij)M11

(∀j = 1, ..., 2n; ∀i = 1, ..., n; i 6= j) (2k)

Wj −Wi ≥ (Scini
j−n + d(c)j−n) ∗ β + (1−

m

∑
k=1

xk
ij + yj−n)M12

(∀j = n + 1, ..., 2n; ∀i = 1, ..., 2n; i 6= j) (2l)

Wj −Wi ≥ (Scini
j−n + d(c)j−n) ∗ β + (

m

∑
k=1

xk
ij + yj−n − 1)M13

(∀j = n + 1, ..., 2n; ∀i = 1, ..., 2n; i 6= j) (2m)

W(0,k) =
n

∑
j=1

d(w)
j ∗

n

∑
i=0i 6=j

xk
ij (∀k = 1, ..., m) (2n)

Wj −W(0,k) ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β ∗ yi + (xk
0j − 1)M15

(∀j = 1, ..., n; ∀k = 1, ..., m) (2o)

Wj −W(0,k) ≥ −d(w)
j + (Scini

j + d(c)j ) ∗ β ∗ yi + (1− xk
0j)M16

(∀j = 1, ..., n; ∀k = 1, ..., m) (2p)

Wj −W(0,k) ≥ (Scini
j−n + d(c)j−n) ∗ β + (1− xk

0j + yj−n)M17

(∀j = n + 1, ..., 2n; ∀k = 1, ..., m) (2q)
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Wj −W(0,k) ≥ (Scini
j−n + d(c)j−n) ∗ β + (xk

0j − 1− yj−n)M18

(∀j = n + 1, ..., 2n; ∀k = 1, ..., m) (2r)

Cj − Ci ≤ Scini
j ∗ yi + (

m

∑
k=1

xk
ij − 1)M19 (∀j = 1, ..., n; ∀i = 1, ..., 2n; i 6= j) (2s)

Cj − Ci ≤ Scini
j−n ∗ yj + (1−

m

∑
k=1

xk
ij)M20 (∀j = 1, ..., n; ∀i = 1, ..., 2n; i 6= j) (2t)

Cj − Ci ≤ Scini
j−n + (1−

m

∑
k=1

xk
ij + yj−n)M21 (∀j = 1, ..., n; ∀i = 1, ..., 2n; i 6= j) (2u)

Cj − Ci ≥ Scini
j−n + (

m

∑
k=1

xk
ij − 1− yj−n)M22

(∀j = n + 1, ..., 2n; ∀i = 1, ..., 2n; i 6= j; k = 1, ..., m (2v)

C(0,k) =
n

∑
j=1

d(c)j ∗
n

∑
i=0i 6=j

xk
ij (∀k = 1, ..., m ) (2w)

Cj − C(0,k) ≥ Scini
j ∗ yj + (xk

0j − 1)M24

(∀j = 1, ..., n; ∀i = 1, ..., n; ∀k = 1, ..., m; i 6= j) (2x)

Cj − C(0,k) ≤ Scini
j ∗ yj + (1− xk

0j)M25

(∀j = 1, ..., n; ∀i = 1, ..., n; ∀k = 1, ..., m; i 6= j) (2y)

Cj − C(0,k) ≥ Scini
j−n(xk

0j − 1)M26

(∀j = 1, ..., n; ∀j = n + 1, ..., 2n; ∀k = 1, ..., m) (2z)

Cj − C(0,k) ≤ Scini
j−n(1− xk

0j)M27

(∀j = 1, ..., n; ∀j = n + 1, ..., 2n; ∀k = 1, ..., m) (2aa)

Tj − Ti ≤ TSi +
m

∑
k=1

tijxk
ij + (1−

m

∑
k=1

xk
ij)M28(∀j = 1, ..., n; ∀i, j = 1, ..., 2n; i 6= j) (2ab)

Tj − Ti ≥ TSi +
m

∑
k=1

tijxk
ij + (

m

∑
k=1

xk
ij − 1)M29(∀j = 1, ..., n; ∀i, j = 1, ..., 2n; i 6= j) (2ac)

Tj ≤
[

m

∑
k=1

n

∑
i=0

2n

∑
i′=0

xk
i′iTCi + TS0 +

M

∑
K=1

(t0j + T(0,k)x
k
0j)

]
+ (1−

m

∑
k=1

xk
0j)M30

(∀j = 1, ..., 2n) (2ad)

Tj ≥
[

m

∑
k=1

n

∑
i=0

2n

∑
i′=0

xk
i′iTCi + TS0 +

M

∑
K=1

(t0j + T(0,k)x
k
0j)

]
+ (

m

∑
k=1

xk
0j − 1)M31

(∀j = 1, ..., 2n) (2ae)

Tj ≤ Tj+n + yjTmax(∀j = 1, ..., n) (2af)

Tj+n ≤ (1− yj)Tmax(∀j = 1, ..., n) (2ag)

Uj −Ui +
m

∑
k=1

(M34 + 1)xk
ij + (M34 − 1)xk

ij ≤ M34 (∀i, j = 1, ..., 2n; i 6= j) (2ah)

1 ≤ Uj ≤ 2n∀i, j = 1, ..., 2n) (2ai)

Knowing that:

• TCj = TPcu ∗ d(c)j

• M10 = M11 = M12 = M13 = M14 = M15 = M16 = M17 = M18 = M28 = M29 =

M30 = M31 = M34 = Maxk′Q
(w)
k′

• M19 = M20 = M21 = M22 = M24 = M25 = M26 = M27 = M34 = Maxk′Q
(c)
k′
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MILP2 shares the same objective function as MILP1. However, constraints (2b) and
(2c) mean that the first vertex associated with each customer must be visited once, either
for a single operation of delivery or for a simultaneous pickup and delivery. Constraint (2d)
ensures that the second vertex associated with the customer is visited only if a combined
pickup and delivery do not occur at the first vertex. Constraint (2e) defines the time capacity.
It contains three parts which are; the time capacity at the depot, the time capacity when
the pickup and delivery are performed simultaneously, and the time capacity when the
pickup are performed separately. Both Constraints (2l) and (2m) define Wj in terms of Wi
whenever j is visited immediately after i, knowing that i and j are two virtual customers.
Constraints (2q) and (2r) express the relation between a customer j and the depot in terms
of weight. Both constraints define Wj in terms of W(0, k) whenever j is visited immediately
after the depot, knowing that j represents a virtual customer. Constraints (2z) and (2aa)
express the link between a customer j and the depot in terms of volume (number of boxes).
Constraints (2ab) and (2ac) define Tj in terms of Ti whenever j is visited immediately after
i. Both constraints represent the time left between i and j. Constraints (2ad) and (2ae)
express the time relation between a customer j and the depot. Constraints (2af) and (2ag)
represent the time relation at a customer j. Both constraints reveal whether the pickup and
delivery are performed simultaneously or not. Finally, Constraints (2ah) and (2ai) represent
the subtour elimination constraints. We note that yj is considered in MILP1 to make sure
of whether the pickup and delivery are performed simultaneously or not.

4.3. Flexible VRPSPD: MILP 3

MILP3 represents a simultaneous pickup and delivery operation such as the one
in MILP1. However, the novelty in MILP3 is its flexibility, which allows the drop-
ping/releasing of some boxes. Thus, a partial collection of boxes is acceptable due to
either a limited vehicle capacity and/or the high cost of collecting all boxes. Despite
MILP3 being more realistic in terms of collecting flexibility, several trips become necessary
to collect all boxes, which could be high in terms of cost. To deal with this issue, we added
a penalty cost to the objective function that penalizes the process of leaving boxes. Figure 4
represents an overview of MILP3.

Figure 4. Overview of the flexible VRPSPD: MILP3.

We define the following additional variables for MILP3.

• Scend
j : boxes left at customer j.

• cca: penalizing cost associated to the left boxes.
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MILP3 formulation is as follows:

Min
m

∑
k=1

n

∑
j=0

n

∑
i 6=j

cijxk
ij +

n

∑
j=1

ccaScend
j (3a)

m

∑
k=1

n

∑
i=0i 6=j

xk
ij = 1 (∀j = 1, ...n) (3b)

n

∑
i=0i 6=j

xk
ji =

n

∑
i=0i 6=j

xk
ij (∀j = 1, ...n; ∀k = 1, ...m) (3c)

n

∑
i=0i 6=j

xk
ji =

n

∑
i=0i 6=j

xk
ij (∀j = 1, ...n; ∀k = 1, ...m) (3d)

n

∑
j=0

n

∑
i=0i 6=j

(tij + TSj + TCj)xk
ij ≤ Tmax ( ∀k = 1, ...m) (3e)

Wj ≤
m

∑
k=1

Q(w)
k

n

∑
i=0i 6=j

xk
ij

 (∀j = 1, ..., n) (3f)

W(0,k) ≤ Q(w)
k (∀k = 1, ..., m) (3g)

Cj ≤
m

∑
k=1

Q(c)
k

n

∑
i=0i 6=j

xk
ij

 (∀k = 1, ..., n) (3h)

C(0,k) ≤ Q(C)
k (∀j = 1, ..., m) (3i)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j − Scend
j ) ∗ β + (

m

∑
k=1

xk
ij − 1)M9

(∀i, j = 1, ..., n; i 6= j) (3j)

Wj −Wi ≥ −d(w)
j + (Scini

j + d(c)j − Scend
j ) ∗ β + (1−

m

∑
k=1

xk
ij)M10

(∀i, j = 1, ..., n; i 6= j) (3k)

W(0,k) =
n

∑
j=1

d(w)
j

n

∑
i=0i 6=j

xk
ij (∀k = 1, ..., m) (3l)

Wj −W(0,k) ≥ −d(w)
j + (Scini

j + d(c)j − Scend
j ) ∗ β + (xk

0j − 1)M12

(∀j = 1, ..., n; ∀k = 1, ..., m) (3m)

Wj −W(0,k) ≤ −d(w)
j + (Scini

j + d(c)j − Scend
j ) ∗ β + (1− xk

0j)M13

(∀j = 1, ..., n; ∀k = 1, ..., m) (3n)

Cj − C(i) ≥ (Scini
j − Scend

j ) + (
k

∑
k=1

xk
0j − 1)M14

(∀i, j = 1, ..., n; i 6= j) (3o)

Cj − C(i) ≤ (Scini
j − Scend

j ) + (1−
k

∑
k=1

xk
0j)M14

(∀i, j = 1, ..., n; i 6= j) (3p)

C(0,k) =
n

∑
j=1

d(c)j

n

∑
i=0i 6=j

xk
ij (∀k = 1, ..., m) (3q)
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Cj − C(0,k) ≥ (Scini
j − Scend

j ) + (xk
0j − 1)M17

(∀j = 1, ..., n; ∀k = 1, ..., m) (3r)

Cj − C(0,k) ≤ (Scini
j − Scend

j ) + (1− xk
0j)M17

(∀j = 1, ..., n; ∀k = 1, ..., m) (3s)

Scend
j ≤ Scini

j + d(c)j (∀j = 1, ..., n) (3t)

Uj −Ui +
m

∑
k=1

[
(M20 + d(w)

i )xk
ij + (−d(w)

i + M20)xk
ij

]
≤ M20

(∀i, j = 0, ..n; i 6= j) (3u)

d(w)
j ≤ Uj ≤

m

∑
k=1

n

∑
i=0i 6=j

Q(w)
k xk

ij(∀j = 1, ..n) (3v)

Knowing that:

• TSj = TS(u) ∗ (2d(c)j + Scini
j − Scend

j ) + TS( f )

• TCj = TPc(u) ∗ d(c)j

• M9 = M10 = M12 = M13 = M20 = Maxk′Q
(w)
k′

• M14 = M15 = M17 = M18 = Maxk′Q
(c)
k′

It is worth noting that MILP3 and MILP1 are quite similar. As mentioned earlier in
this section, MILP3 allows leaving some boxes due to either vehicle capacity or trip cost.
To satisfy this flexibility, we added constraint (3s), which ensures that boxes related to
customer demand plus initial balance must not exceed total required boxes.

5. Computational Study

We adopted a configuration quite similar to the one considered in [29], where authors
have implemented their models in the IBM ILOG CPLEX Optimization Studio (Version:
12.6). All the experiments were conducted on a computer with an Intel(R) Core (TM) i7-7700
CPU@3.6 GHz and 8 GB memory under the Windows 10 Pro system. As we highlighted
earlier in the introduction section, our work is dedicated to a poultry company in Tunisia,
called CHAHIA. Due to a confidentiality issue, CHAHIA has fed our research work with
limited data. Based on the collected data, we created a set of instances. To make sure that
data features are diversified, we created 44 instances. Several factors have been used to
calibrate the quality of solutions, enhance the solving process, and diversify the benchmark
of instances. These factors are as follows:

• The types of demands, i.e., the quantities of required goods (low/medium/high).
• The number of boxes for customers (delivery and initial balance) and their dispersion.
• The number of customers to be served.
• The geographic dispersion of customer locations (distance between customers).
• The number of vehicles.
• The vehicle capacities: we considered, small (S) with 1.4 tons, and big (B) with 3 tons.

Tables 1–3 represent the computational results provided by our proposed models. The
results are shown in terms of objective function value (cost), computational time to reach
solutions, and number of iterations.

Results show that MILP2 achieves the lowest objective function values compared to
both MILP1 and MILP3. This achievement is mainly due to its flexibility and high number
of specifications that it covers.

In case of low demand or low number of boxes to be picked up, both MILP1 and
MILP3 provide similar costs. However, if the demand or box numbers increase, MILP3
outperforms MILP1 and provides the lowest travel cost. This fact shows that sometimes it
would be more profitable to leave some boxes instead of collecting them. We recall that
the left boxes could be collected in future trips, otherwise, a penalization is considered.
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In case we reduce the cost of left boxes by relying on the possibility to recover them in
the future with better conditions, MILP3 will provide the lowest cost for the majority
of instances. Moreover, if we change the capacity of vehicles from small to big, such
as in instances “inst5.2.004” and “inst5.2.005”, which are the same in fact, MILP1 and
MILP3 diversify and provide different value costs, however, MILP2 remains unchangeable.
Furthermore, if we increase both, the demand to be between 151 Kg and 500 Kg per
customer, and the number of customers to exceed 18, MILP3 becomes the most efficient
model. With regard to the computational time performance indicator, MILP3 converges
quickly. Contrariwise, MILP2 consumes more time to provide optimal solutions. In case
the number of customers exceeds six, MILP2 remains incapable of retrieving an optimum
solution during a reasonable period of time (i.e., less than 3600 min). With regard to the
number of served customers, MILP1 and MILP3 provide a better performance compared
to MILP2.

It is noticeable that when the number of vehicle stops for pickup or delivery increase,
it will affect the quality of poultry products from CHAHIA. This affection is related to the
unstable air conditioning of the vehicle refrigeration cabin. Therefore, it is recommended
to reduce the number of load breaks.

The different readings of the same problem led to an interesting diversification in
terms of travel cost, computational time, and number of served customers.

Table 1. Low demand and customers number instances.

n m Type Instances
MILP1 MILP2 MILP3

OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes

5

1 S Inst5.1.001 1.780 0.03 49 1.200 0.48 589 1.780 0.03 52

- B Inst5.1.002 1.780 0.08 55 1.200 4.32 5701 1.780 0.09 55

2 S Inst5.1.003 1.780 0.1 128 1.200 39.17 16,901 1.780 0.1 133

- B Inst5.1.004 2.660 0.3 528 1.200 53.83 26,082 2.660 0.3 687

- B Inst5.1.005 1.780 0.1 127 1.200 67.72 19,848 1.780 0.1 145

5

1 S Inst5.1.006 3.980 0.09 38 2.770 2729.4 5,099,447 3.980 0.09 37

- B Inst5.1.007 4.030 0.06 47 2.770 251.3 427,744 3.980 0.08 24

2 S Inst5.1.008 3.980 0.05 32 2.770 309.8 410,657 3.980 0.09 32

- B Inst5.1.009 4.700 0.2 260 2.770 3899.9 2,764,520 3.980 0.17 75

6

1 S Inst6.1.001 2.200 0.1 155 1.510 267 232,811 2.200 0.2 173

- B Inst6.1.002 2.200 0.1 139 1.510 0.8 405 2.200 0.1 158

2 S Inst6.2.003 2.600 1 1630 1.510 42.9 13,972 2.200 0.5 668

- B Inst6.2.004 3.010 0.9 1263 1.510 499.4 230,267 2.600 1 1515

- B Inst6.2.005 3.010 1.3 2401 1.510 255.6 101,203 2.200 0.3 366

Table 2. Medium demand and moderate number of customers instances.

n m Type Instances
MILP1 MILP2 MILP3

OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes

8

1 S Inst8.1.001 3.810 9.4 13,954 - - - 3.818 9.2 13,726

- B Inst8.1.002 3.810 1.3 1275 - - - 3.818 7 12.425

2 S Inst8.2.003 5.770 81.6 92,173 - - - 5.580 145.7 187,467

- B Inst8.2.004 10.750 120.7 137,284 - - - 7.540 515.7 506,652

3 S Inst8.3.005 5.580 220.8 299,822 - - - 3.810 47.5 60,144

- B Inst8.3.006 5.580 138.5 12,515.5 - - - 5.580 349 410,268

10

2 S Inst10.2.001 2.870 17 1810 - - - 2.750 25.32 26,275

- B Inst10.2.002 3.170 394.5 418,597 - - - 3.160 2030.4 2,181,194

3 S Inst10.3.003 3.170 6176.4 3,682,568 - - - 2.750 242.4 196,425

- B Inst10.3.004 3.170 1619.2 1,134,364 - - - 3.160 5337.8 3,738,052

12

2 S Inst12.2.001 3.270 3464 2,127,116 - - - 2.860 57.2 32,994

- B Inst12.2.002 4.020 9002.5 7,765,020 - - - 2.860 45 37,430

3 S Inst12.3.003 3.270 5327.2 2,369,060 - - - 2.860 244.9 92,847

- B Inst12.3.004 3.730 39,770.9 24,454,247 - - - 2.860 101.25 51,634
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Table 3. High demand and customers number instances.

n m Type Instances
MILP1 MILP2 MILP3

OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes OF (TND) CPU (Sec) Nodes

15

2 S Inst5.2.001 5.380 24,453.7 12,171,800 - - - 5.060 1110.6 654,979

- B Inst5.2.001 5.5510 29,199.2 16,852,192 - - - 5.060 437 2,448,044

3 S Inst5.3.003 5.060 2714.4 1,311,100 - - - 5.060 2548.8 835,035

18

2 S Inst18.2.001 3.630 4959.2 1,834,815 - - - - - -

- B Inst18.2.002 - - - - - - 3.630 4475.7 1,830,280

3 S Inst18.3.003 3.630 9512.2 3,381,239 - - - - - -

- B Inst18.3.004 - - - - - - 3.630 6081.3 1,780,109

20

2 S Inst20.2.001 3.580 916.1 254,457 - - - - - -

- B Inst20.2.002 - - - - - - - - -

3 S Inst20.3.003 3.580 4472.9 893,970 - - - 3.580 4208.4 1,128,435

- B Inst20.3.004 - - - - - - - - -

23

2 S Inst23.2.001 4.290 4396.2 851,800 - - - - - -

- B Inst23.2.002 - - - - - - 4.290 26,413.7 3,834,209

3 S Inst23.3.003 - - - - - - - - -

- B Inst23.3.004 - - - - - - - - -

6. Discussion of Limitations

Our contribution develops a ‘proof of concept’ useful to establish better awareness
and foresight in decision-making processes. It provides flexibility in reacting against
miscellaneous realistic situations in transportation and goods delivery activities. However,
the major limitations of this work could be summarized as follows:

• Due to a confidentiality issue, CHAHIA has fed our research work with limited data.
Therefore, bigger data is required for a more relevant benchmark.

• CHAHIA has refused to reveal all serve stores, customers, and quantities, due to
confidentiality.

• CHAHIA was looking for a prototype that could be enhanced in the future by its
engineers.

• Due to lack of equipment, we were not able to perform any experiments with more
than 23 customers for MILP1 and MILP3, and 6 customers for MILP2.

• Exact methods considered in this work are incapable of solving large instances. There-
fore, integrating heuristics is highly recommended.

7. Conclusions and Future Work

In this paper, the Vehicle Routing Problem (VRP) with Pickup and Delivery (VRPPD)
was addressed based on real-life perceptions. Three different VRPPD models have been
developed based on Mixed Integer Linear Programming approaches. The first model is
designed as a VRP with simultaneous pickup and delivery. The second one is modeled
as a VRP with either simultaneous and/or separated pickup and delivery. The last one is
modeled as a VRP with simultaneous and flexible delivery and pickup allowing both partial
pickups and penalized losses. In addition, this study proposes a proof of concept based on a
rich benchmark. The data adopted in this work were provided by a poultry company in
Tunisia, called CHAHIA. The developed models have been compared against each other
using multiple state-of-the-art key performance indicators. Based on the presented richness
in term of modeling, interesting perspectives could be considered in the future, such as
matching operational issues with tactical planning elements in order to make the models
more dynamic and robust facing various demand scenarios. Finally, various heuristics
could be proposed in order to solve large instances and enable quicker convergence towards
the optimum.
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