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Featured Application: Enhances the performance, specifically the accuracy, of a collaborative
filtering-based recommender system, by exploiting textual data and filtering the initial input.

Abstract: Research regarding collaborative filtering recommenders has grown fast lately. However,
little attention has been paid to discuss how the input data quality impacts the result. Indeed, some
review-rating pairs that a user gave to an item are inconsistent and express a different opinion,
making the recommendation result biased. To solve the above drawback, this study proposes a
two-phase deep learning-based recommender system. Firstly, a sentiment predictor of textual reviews
is created, serving as the quality inspector that cleans and improves the input for a recommender.
To build accurate predictors, this phase tries and compares a set of deep learning-based algorithms.
Secondly, besides only exploiting the consistent review-rating pairs generated by the quality inspector,
this phase builds deep learning-based recommender engines. The experiments on a real-world
dataset showed the proposed data quality inspector, based on textual reviews, improves the overall
performance of recommenders. On average, applying deep learning-based quality inspectors result
in an above 6% improvement in RMSE, and more than a 2% boost in F1 score, and accuracy. This is
robust evidence to prove the importance of the input data cleaning process in this field. Moreover,
empirical evidence indicates the deep learning approach is suitable for modeling the sentiment
predictor, and the core recommendation process, clearly outperforming the traditional machine
learning methods.

Keywords: data quality; recommendation system; collaborative filtering; deep learning;
text classification

1. Introduction

Big data allows online vendors to offer immeasurable options of items and services
on their web pages. Normally, users feel overwhelmed by having more information than
needed to make a simple consumption or purchase decision and commonly experience
the information overload problem [1]. As a result, research regarding recommender
systems has rapidly grown in the past years, and many e-commerce industries, such as
music, movie, and tourism, have massively applied them. As personalization tools, the
recommender systems automatically adapt to a particular user owing to prior monitoring
of their interactions and needs, thus improving human-website interactions in the era of
information overload [2,3]. Typically, the three most popular approaches for recommender
implementation are: (a) content-based filtering, (b) collaborative filtering, and (c) hybrid
approach. Among them, collaborative filtering is the most popular since it does not need
to analyze the content of the items. Instead, it relies on the relationship between users and
items, which is typically encoded in a numeric rating matrix.

Currently, the latest investigation related to recommenders focuses on (a) the use of a
collaborative filtering strategy, or a hybrid recommender with collaborative filtering as the
main base, (b) the implementation of a deep learning technique to extract latent features,
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(c) the utilization of textual reviews, mouse clicks, triggered events, or eye-tracking as aux-
iliary information for personal interest verification, and (d) the recommendation accuracy
as the main challenge to enhance [1–14].

The up-to-date direction of researchers in a collaborative filtering strategy is to deal
with the recommendation accuracy by focusing on problems correlated to it, such as
sparsity or cold-start [1–14]. Less attention has been paid to an essential problem that is
highly correlated to accuracy: the quality of the ratings as input data. The authors of [15]
use the votes of readers that denote if a review was helpful or not to compute a quality
score. These quality scores are taken as weights assigned to the ratings in a probabilistic
matrix factorization for performing the rating prediction. The authors of [16] investigated
three ways of combining overall textual opinions with real ratings in a biased matrix
factorization model. The results showed that the opinion post-filtering method, compared
to the other two, and a standard algorithm based only on ratings, gives the best RMSE.
The authors of [17] proposed a user-based collaborative filtering approach that considers
explicit ratings and sentiment analysis extracted from users’ reviews. Results from the
collaborative filtering approach and sentiment analysis are combined to generate integrated
ratings and create a list of recommendations. Although these researchers tried to improve
the quality of the input, they only tuned the initial data, using as input a modified but
complete version of the original ratings. The task where the input data is truly filtered or
cleaned based on its quality was not conducted.

Commonly, e-commerce product platforms allow users to give feedback to items
through (a) a numeric rating and (b) a textual review. The main problem is that there are
cases where these two are inconsistent or in conflict [16], as the rating from a user reflects
a different opinion of his or her written review for the same item. These rating-review
pairs can be categorized as low-quality or noisy input data, and although this issue has
not been widely mentioned in the literature, plenty of these cases can be found on the web.
For example, a rating-review pair <1, “This movie is excellent”> might be conceptually
inconsistent since this user indicates low satisfaction with the item through a poor rating
“1”, but he or she also shows high satisfaction with the same item through his or her textual
opinion “This movie is excellent”. Similarly, a rating-review record <5, “I think it was a
little overhyped. To me, it wasn’t as good as everyone raves about.”> presents another
contradictory case.

Unsurprisingly, if the raw ratings are the unique input for a product or service rec-
ommender, the low-quality ratings would also be entered, increasing the probability to
generate biased results, bad recommendations, bad experiences for users, and a decrease in
revenue of e-companies. Therefore, using textual reviews to inspect the quality of numeric
ratings, separating the high-quality data from the noise, is a possible scenario worth to
be analyzed. To fulfill the need, this paper proposes a two-phase deep learning-based
approach: (1) use of textual reviews to create a sentiment predictor that serves as a raw
data quality inspector, preprocessing and cleaning the input data for a (2) collaborative
filtering recommender system, which consequently, boost its recommendation accuracy.

The main goal of our research is to create an input data quality inspector for the overall
performance enhancement of collaborative filtering engines. The proposed inspector should
be capable of differentiating between high-quality and noisy rating-review records well.
The realization of this goal has a significant impact since current research has given little
attention to discuss the effect of the rating quality as the input data for recommenders.
Moreover, the inspector described in this article can be directly and automatically applied
in collaborative filtering recommenders to boost their performance. This research allows
perceiving the importance of the data quality inspection process and data cleaning in this
field, guiding future research on directions to reduce bias.

The contributions of this study are the following:

(1) Develop a sentiment predictor of textual reviews that acts as a quality inspector of
the ratings.
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(2) Determine if a quality inspector based on textual comments truly enhances the perfor-
mance of a recommender system.

(3) Apply state-of-the-art deep learning algorithms for constructing effective sentiment
predictors and collaborative filtering recommenders.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
research. Section 3 introduces the proposed two-phase deep learning-based recommender
system: enhanced by the data quality inspector. Section 4 describes the evaluation process
to show the performance of the proposed system. Section 5 discusses the obtained results
and mentions future work suggestions. Finally, Section 6 presents the conclusions.

2. Literature Review

Undoubtedly, almost all the challenges of a collaborative filtering approach are highly
correlated with the accuracy of the recommender systems. Therefore, accuracy is the most
discussed issue, and as it directly influences user satisfaction, it has been the top desired
characteristic to enhance [1]. As a result, a present approach is to utilize deep learning
algorithms to model the user-item preference matrix by extracting latent factors [14]. On
the other hand, hybrid recommenders with a collaborative filtering strategy as a base, are
often combined with another strategy or algorithm to minimize its limitations by exploiting
the benefits of the other [1]. Nonetheless, the up-to-date scenario is to use deep learning
for extracting hidden features from the content or auxiliary information and integrating
them as inputs into the recommendation process [13,14].

2.1. Deep Learning-Based Collaborative Filtering

The following are some of the recent few studies, with the most impact, done for
the core recommendation process with deep learning. The authors of [18] proposed
AutoRec, which uses Autoencoders as a predictor for missing ratings. Their experimental
results showed their model outperforms Matrix Factorization and Restricted Boltzmann
Machine (RBM)-based collaborative filtering regarding accuracy on MovieLens and Netflix
datasets. The authors of [19] applied to user-item preferences the Neural Autoregressive
Distribution Estimation (NADE) algorithm. Compared to RBM, AutoRec, and several
Matrix Factorization-based approaches, NADE demonstrates to provide more accurate
recommendations and to be more efficiently optimizable. The authors of [20] also utilized
NADE by modeling ratings but across both all users and items simultaneously. Their
algorithm, CF-UserItem-CoAutoregressive, demonstrates to be a very successful model
that achieves higher accuracy than the original version. Recently, the authors of [21] utilized
a hybrid algorithm, composed of a Generalized Matrix Factorization component, which has
some tweaks from a classic Matrix Factorization, and a Multi-Layer Perceptron module, to
non-linearly model the interactions between users and items through the usage of implicit
information. This is different from the other works which use the typical ratings.

2.2. Deep Learning-Based Sentiment Analysis

Mining sentiments from natural language is challenging because it requires a deep
understanding of the explicit and implicit, regular and irregular, and syntactical and seman-
tic language rules [22]. Consequently, deep learning-based sentiment analysis has lately
received a lot of attention and can be divided into two steps: the first is text preprocessing
which was demonstrated to directly influence the classification accuracy, and the second is
the sentiment classifier which is the main core of sentiment analysis [23,24].

Related to text preprocessing works, the authors of [25] presented the design of
a Convolutional Neural Network built on top of a Word2vec to allow for the use of
task-specific and static vectors. His results add to well-established evidence the use of
unsupervised pre-trained word vectors is an important ingredient for Natural Language
Preprocessing. Similarly, the authors of [26] proposed a new model called SO-SD to build a
classifier of Weibo messages using Word2vec. Likewise, the authors of [27] proposed a deep
Convolutional Neural Network that easily exploits the richness of a word embedding to
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perform a comment’s sentiment analysis. They showed that using only a word embedding
as input features is enough to achieve state-of-the-art results.

Regarding the last advances in sentiment classifier algorithms, the authors of [28]
performed sentiment analysis in short text answers with the use of a word embedding
followed by two deep textual views: a CNN and a DSCNN, which is constructed with
both a CNN layer and an LSTM layer. Their empirical evaluations proved that this method
significantly improves predictive performance. Nevertheless, a few years ago, the au-
thors of [29] introduced the attention concept to endow their translation method with the
ability to give higher weight to more important words while taking care of the sequence
structure of a text. Correspondingly, the authors of [30] implemented a hierarchical atten-
tion network for document classification, which consists of a word sequence encoder, a
word-level attention layer, a sentence sequence encoder, and a sentence-level attention
layer. Then, a new simple neural network architecture named the Transformer, based solely
on attention mechanisms and dispensing with recurrence and convolutions entirely was
proposed [31]. All these three attention neural networks are demonstrated to outperform
other deep learning-based algorithms in sentiment analysis tasks. Presently, the authors
of [32] introduced the Bidirectional Encoder Representations from Transformers (BERT)
model, which is also based on the attention idea. The pre-trained BERT model can be
fine-tuned with just one additional output layer to create simple and powerful algorithms
and it obtained new state-of-the-art results on eleven different natural language processing
tasks, including sentiment analysis. The authors of [33] proposed a movie recommender
system that uses sentiment analysis data from Twitter, along with movie metadata and a
social graph to recommend movies. Sentiment analysis provides information about how
the audience responds to a particular movie and about how helpful this information is.
The system used weighted score fusion to improve the recommendations. The authors
of [17] proposed a user-based collaborative filtering approach that considers explicit ratings
and sentiment analysis extracted from users’ reviews. They use Matrix Factorization (MF)
methods such as SVD, NMF, and SVD++ to predict explicit ratings, and use BERT, CNN,
and LSTM to build the sentiment model. Results from the collaborative filtering approach
and sentiment analysis are combined to generate integrated ratings and create a list of
recommendations. However, inconsistent review-rating pairs can be very harmful and
decrease the performance of the recommender system.

2.3. Use of Text Information in Collaborative Filtering

Collaborative filtering techniques perform well when there is sufficient rating informa-
tion, but their effectiveness decreased when the sparsity problem occurs [34]. Consequently,
in recent years, a variety of review-based recommender systems have been developed
to incorporate valuable information embedded in user-generated textual comments [11].
Although the reviews are in unstructured textual forms, the advances in sentiment analysis
make it possible to interpret and extract useful information [35].

Up until now, the information obtained from reviews is likely to benefit recommenders
in four ways: (a) infer the required ratings as inputs, especially when the dataset is sparse,
(b) determine the rating quality through the degree of the review’s helpfulness, (c) extract
a rating from the review and integrate it with the original rating, and (d) to provide
additional information about user preferences such as latent features or feature opinions.

The authors of [36] applied Part-of-Speech tagging to extract adjectives and verbs as
opinion words. Based on the relative strength into positive or negative classes of these
words, they inferred the rating by aggregating all the opinion words contained in one
review. Finally, using the inferred ratings, a collaborative filtering system was run. A
similar approach was taken by [37], with the only difference they aggregate the sentiments
expressed in emoticons and opinion words to infer an overall sentiment of a review. The
authors of [38] also attempted to derive overall ratings from reviews, but they used machine
learning to classify the opinions. Experimental results of the previous three studies indicate
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that collaborative filtering based on inferred ratings is comparable to the accuracy of a
traditional approach based on real ratings, and even outperforms it in some cases.

Ozsoy [39] employed Word2Vec’s skip-gram and CBOW techniques to make next
check-in venue (location) recommendations on Location Based Social Networks (LBSNs).
Unlike the previous works, this work used a non-textual feature, namely the past check-ins
of the users, to make recommendations. Ozsoy [40] also proposed a method to recommend
top-k venues. The method takes the sequentiality of check-ins into account and utilizes the
FastText method from the NLP domain to learn the vector space embeddings of venues.
The learned vector representations are used to calculate the similarity among venues and
recommend the most similar venues to the already visited ones. The authors of [41,42]
presented a new technique of incorporating reviews into collaborative filtering matrix
factorization algorithms. The text of each review, of arbitrary length, is mapped to a
continuous feature space of fixed length, using the Paragraph Vector model. Subsequently,
the resulting feature vectors (the neural embeddings) are used in combination with the
rating scores in a hybrid probabilistic matrix factorization algorithm, based on maximum
a-posteriori estimation.

The authors of [15] used the votes of readers that denote if a review was helpful or
not, to compute a quality score. These quality scores are taken as weights assigned to the
ratings in a probabilistic matrix factorization for performing the rating prediction. The
authors of [16] investigated three ways of combining overall opinions with real ratings in a
biased matrix factorization model: (1) opinion pre-filtering, in which opinions are used to
pre-process the whole real ratings, (2) opinion post-filtering, in which ratings and opinions
are first used independently to train two prediction models, and then a linear combination
is realized to obtain the final prediction, and (3) opinion modeling, in which opinions are
used implicitly in the training of one joint model. The results showed that the second
method, compared to the other two, and a standard algorithm based only on ratings, gives
the best RMSE performance. The latter two stated research indicate that fusing reviews
with ratings improves the accuracy of recommender systems relative to the standards that
consider ratings alone.

The authors of [43] integrated extracted features from text and images through
word2vec and Convolutional Neural Networks, respectively, into their proposed boosted
inductive matrix completion method. The authors of [44] used Convolutional Neural
Networks to extract latent factors from text data and integrate them into matrix factor-
ization. [45] integrated the features extracted from content information through Stacked
Denoising Autoencoders (SDAEs) with timeSVD++. The authors of [46] created a full
Convolutional Neural Network with attention (D-Atnn) to obtain meaningful embeddings
and an interpretable model mainly focusing on the words potentially important for the
user. Practically, they directly executed the task of recommendation with the reviews as
unique inputs. Similarly, the authors of [47] proposed a method based on embeddings
and sentiment analysis. Their TRANSREV model learns vector representations for users,
items, and reviews jointly, allowing the classifier to give a sentimental score for each review,
which corresponds to the recommendation score.

3. Materials and Methods
3.1. System Overview

The proposed framework was designed to counteract the following two problems:
(a) how to produce high-quality data, to be used as a boosted input for recommenders,
and (b) how to generate product recommendations with higher accuracy. Consequently, its
architecture comprises two main phases: (1) a quality inspector that assures that a rating
provided by a user is consistent with the textual review that the same user expressed
to a specific product, and (2) a recommender system that takes the preprocessed and
clean data produced by a quality inspector and generates suitable items recommendations.
Thus, the main functionality is to enhance the performance, specifically the accuracy, of a
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collaborative filtering-based recommender engine. Figure 1 illustrates the overall view of
the proposed two-phase deep learning-based framework.
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Figure 1. Overall view of the proposed framework.

Notice that two databases, one for each phase, are employed: dataset A and dataset
B. They have the same structure, identical features, and an equal total number of data
rows, but have different records. The main motivations to work with two sets are: (a) to
apply dataset A in the first phase mainly to determine the best algorithm to model a
sentiment predictor, and (b) to exploit dataset B in the second phase mostly to run the
complete proposed procedure, composed of a quality inspector plus a recommender engine,
completely from cero with a sole database.

The first phase aims to identify, through dataset A, the most accurate algorithm, for a
sentiment predictor that predicts a rating from a textual review. In this study, it is assumed
that the rating is an integer on a scale from 1 to 5. Accordingly, the core of the quality
inspector is to check consistency between each review-rating record that a user gave to
an item, determining whether it is high-quality or low-quality input data. Let rs

i be the
sentiment rating predicted by the predictor for record i, re

i be the explicit rating for record i,
and k be the acceptable threshold defined by users. If

|(rs
i − re

i )| ≤ k (1)

the i-th review-rating pair is considered as high-quality data and will be conserved. On the
other hand, if

∣∣rs
i − re

i

∣∣ > k, the record is considered as inconsistent and will be discarded.
The following equation is used to calculate the accuracy of the sentiment predictor:

accuracy = |{i : | (rs
i − re

i ) | ≤ k} |/|{i : i ∈ dataset}| (2)

In the second phase, the best algorithm determined in the first phase is applied to
create from scratch, with dataset B, the quality inspector that produces a pruned high-
quality version of dataset B. Afterward, the explicit rating re

i will be integrated with the

predicted sentiment rating rs
i into an integrated preference rating rpre f

i as:

rpre f
i = α× re

i + (1− α)× rs
i (3)

where α is a weight factor ranging between 0 and 1. This integrated preference rating
combines knowledge from two sources: (1) a numeric explicit rating, and (2) a textual
sentiment review, being a robust input for a recommender system. Finally, to know the
performance of the proposed recommenders, the following metrics will be tested (a) RMSE,
(b) F1 score, (c) accuracy, and (d) running time. Naturally, the model with the highest
results in nearly all the indicators is considered as the best recommender engine.
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3.2. Deep Learning-Based Quality Inspector

In the first phase, the text preprocessing is applied to the text review of each record
in dataset A. After a set of preprocessing tasks, the output is a vector with unique integer
indexes (IDs). The obtained vector will be the input for a word embedding, which transfers
the IDs of each vector to semantically-meaningful dense real-valued vectors, allowing
words with similar meaning to have alike vectors and to position them close to each other
in a high-dimension semantic space. Finally, the real-valued vector of each review and its
explicit rating are the two inputs to train the sentiment predictor.

3.2.1. Text Preprocessing Tasks

Before applying the sentiment predictor to a dataset, which is composed of ratings and
reviews, it is indispensable to preprocess every textual review. A total of seven sequential
text preprocessing tasks were implemented to each textual opinion: (1) basic actions,
(2) tokenization, (3) stop words removing, (4) stemming, (5) dictionary construction, (6)
words transformation to unique integer indexes, and (7) the same length vector construction.
The first task, basic actions, refers to three simple tasks: delete numbers and integers, delete
the underscore symbol, and convert all the capital letters to lowercase. The second step is
tokenization. For this specific research, the tokens are represented by words as the smallest
indivisible units, and the tokenizer is conditioned to delete commas, apostrophes, and
dots. The third step is to stop word removal. Since they are the most common words in
a language and have a low contribution to the overall meaning of a sentence, they must
be filtered out [48]. The fourth step is stemming, which helps to reduce words into their
root forms by removing their prefixes and suffixes. As a result, a group of similar words is
mapped to the same stem, even if it is not a valid word in the language.

Afterward, the whole set of preprocessed reviews can be used to construct a particular
dictionary that allows preserving only the most important domain-specific words, and to
convert them into unique integer indexes (IDs). The dictionary construction is based on
the frequency count C of each unique word inside the entire set of preprocessed reviews.
Then, a term count threshold T, established by the users, regulates which words to keep
and to remove. If C of a word is higher than T, the token will be included in the dictionary
and preserved in all the reviews, if not, the token will be excluded from the dictionary
and removed from all the reviews. Next, a unique ID is assigned to every word of the
dictionary. The sixth step is to transfer the remaining words of each vector to unique IDs
through the use of the dictionary. The last task is to build all reviews to vectors of the same
length of tokens. This is achieved with a length threshold L, which is specified by the user.
If the real length R of a review is longer than L, the last words of the vector will be cut up.
On the other hand, if R is shorter than L, then the initial part of the review will be padded
with 0 s.

3.2.2. Deep Learning-Based Sentiment Predictor

The unique integer indexes, laying in the vectors of the same length, are projected to a
dense vector space through the word embedding layer. The real-value matrices generated
by the word embedding layer are the inputs of the deep learning network. Next to the deep
learning layer, a Multi-Layer Perceptron (MPL) is applied. Let ci be the i-th review vector,
and re

i be the explicit rating for record i. The deep learning-based sentiment predictor can
be then modeled as:

rs
i = φout

(
φx

(
. . . φ2

(
φ1

(
φdln

(
φembedding(ci)

)))
. . .
))

(4)

where rs
i is the predicted sentiment rating, φembedding is the embedding mapping function,

φdln is the deep learning network mapping function, φx is the mapping function for the
MLP x-th layer, and φout is the mapping function for the MLP output layer. The sentiment
predictor utilizes a supervised learning technique for training, called backpropagation,
where it tries to minimize the pointwise loss between rs

i and its re
i . The proposed deep
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learning-based sentiment predictor is illustrated in Figure 2, and its accuracy can be
determined using Equation (2).
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In this study, a total of five deep learning-based sentiment predictors are tested in
dataset A to create a highly accurate quality inspector: (1) LSTM, (2) Bidirectional LSTM,
(3) CNN, (4) Two Deep Views Ensemble method, and (5) BERT.

• Model 1: Long-Short Term Memory Network

Long-Short Term Memory (LSTM) [49] was mostly developed to counteract the main
constraint of Recurrent Neural Network (RNN). That is, as the words dependency in a
sequence is longer, and the gap between previous relevant data and the current position
grows, RNN becomes unable to learn to connect the information and often encounter
with exploding gradients problem [50]. LSTM has a chain-like structure and is capable of
learning long-term dependencies as a result of four interacting neural network layers set in
its repeating module: a forget gate, an input gate, a normal layer, and an output gate.

• Model 2: Bidirectional LSTM

Bidirectional LSTM (Bi-LSTM) [51] is an extension of a traditional LSTM. It trains two
LSTM layers on an input sequence: the first as-is from right to left and the second on a
reversed copy from left to right. This can provide additional context to the network and
result in even fuller learning on the problem, improving in some cases performance on
sequence classification problems. BI-LSTM can efficiently make use of past features via
forward states, and future features via backward states, using information from both ends
of the sequence to estimate the output.

• Model 3: Convolutional Neural Network

Convolutional neural network (CNN) is a category of deep learning neural networks
that were designed with the main purpose to solve image (characters) recognition and
classification tasks. It was developed by [52], and its architecture was called LeNet. After-
ward, many different CNNs, based on LeNet, were developed, resulting in many successful
applications in the computer vision field. Nowadays, it is also starting to be used in Natural
Language Processing (NLP) area and has gotten interesting and promising results [53]. For
the previous reason, it was selected as the third deep-learning model to being tested.

• Model 4: Two Deep Views Ensemble Method

Two Deep Views Ensemble method (TDVE) is a modified text classification model
inspired by the methodology proposed by [28]. Their suggested framework was adapted
to the specific case of this study. Thus, the factorization machines-based co-training compo-
nent is excluded, the prediction component is slightly modified, and the two deep views
module is used as the core idea of this fourth model. The two deep views are: (1) a CNN,
which focuses on extracting local features, and (2) a Dependency-Sensitive Convolutional
Neural Network (DSCNN), which focuses on capturing long-distance dependency data.
The attention of each one achieves the characteristic of two conditionally independent, and
sufficient views, to create a fused sentiment predictor through ensemble learning. Figure 3
shows the design of this method.
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• Model 5: BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language model
proposed by [32]. This algorithm is designed to pre-train deep bidirectional representations
from the unlabeled text by jointly conditioning on both the left and the right context in
all layers. As a result, the pre-trained BERT model can then be just fine-tuned with just
one additional output layer to create state-of-the-art models for a wide range of NLP
tasks. Since it was empirically proved to obtain top-of-the-line results on eleven natural
language processing problems, including pushing the GLUE score to 80.5%, MultiNLI
accuracy to 86.7%, SQuAD v1.1 question answering Test F1 to 93.2 and SQuAD v2.0 Test
F1 to 83.1, and to outperform many famous designs that only pre-train deep unidirectional
representations, it was chosen as the fifth model. Regarding its architecture, it relies on
the Transformer [31], an attention mechanism that learns contextual relations between
words in a text. A vanilla Transformer includes: (a) an encoder to read the text input, and
(b) a decoder to produce a prediction for the task. However, since the goal of BERT is to
generate a language representation model, it only needs the encoder, which reads the entire
sequence of words at once, and understands the relation weights between all the words in
the text, regardless of their position, as opposed to a directional strategy, which reads the
input sequentially. Moreover, during its pre-training, instead of predicting the next word
one by one, it uses two novel training techniques: (1) masked language model, and (2) next
sentence prediction. These three characteristics, allow BERT to learn the context of a word
based on all of its surroundings, taking both the previous and next tokens into account at
the same time. Therefore, although it is considered bidirectional, it would be more accurate
to say that it is a non-directional approach [54,55].

3.2.3. Process to Build a Quality Inspector

The visual guide regarding the process and the terminology used to create a quality
inspector model, functional for both the first and second phases, is presented in Figure 4.
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In the following discussion, either dataset A or dataset B is denoted as the initial
dataset DATAinit.−all . Note this process, founded on three sequential tasks, will be applied
for each of the five deep learning-based models mentioned in Section 3.2.2.

In the first task, we randomly select 80% of records from DATAinit.−all to form
DATAinit.−train. The DATAinit.−train, a dataset containing noise, is used to train and pro-
duce a MODELinitial by using the reviews as features and the ratings as labels. In the
second task, MODELinitial will be used for rating predictions using DATAinitial−all . As
mentioned in Equation (1), if

∣∣(rs
i − re

i
)∣∣ ≤ k, the i-th review-rating record is considered as

high-quality data and will be conserved and saved in the dataset DATApruned. On the other
hand, if

∣∣rs
i − re

i

∣∣ > k, the record is considered inconsistent and will be discarded. Here,
the threshold k must be equal to 0, as it is critical to be strict and just keep the data that
have high probabilities of being consistent. In the third task, DATAprun.−train, randomly
derived from the high-quality dataset DATApruned, is utilized to construct a MODEL f inal
for each algorithm. Naturally, MODEL f inal is tested using the DATAprun.−test to report the
performance indicators.

The last explained three tasks create a powerful sentiment predictor. Once our
MODEL f inal is created, it can be successfully used as a highly accurate quality inspector
to prune DATAinitial−all , producing an enhanced input for a recommender engine. Here,
the threshold k used is 1, as this tolerance achieves a suitable balance between discarding
an appropriate amount of noisy data while remaining a pertinent number of total records.
Thus, the quality of the dataset is improved while its initial sparsity is not affected.

3.3. Deep Learning-Based Product Recommender

Three inputs are used to generate an accurate product recommendation: (a) user
identification, (b) item identification, and (c) rpre f , which is an integer value between 1 and
5 derived by Equation (3). Formally, let uj be the user ID vector of record j, ij be the item

ID vector of record j, and rpre f
j be the preference rating of record j. The vectors uj and ij

are then projected to a dense vector space as real-value vectors puj
and qij

, respectively,
through an embedding layer. The interaction between the characteristics of u and i is then
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modeled and captured by an interaction function. This is the input for the deep neural
network. The deep learning-based rating predictor of a product recommender can then be
modeled as follow:

r̂pre f
j = φout

(
φx

(
. . . φ2

(
φ1

(
φint

(
φembedding

(
uj, ij

))))
. . .
))

(5)

where r̂pre f
j is the predicted preference rating, φembedding is the embedding mapping function,

φint is the mapping function to model the interaction between a user and an item, φx is
the mapping function for the MLP x-th layer, and φout is the mapping function for the
MLP output layer. The rating predictor of a recommender also utilizes for training, a
backpropagation supervised learning technique, where it tries to minimize the pointwise
loss between the predicted preference rating r̂pre f

j and its target rpre f
j . Figure 5 shows the

framework of the proposed deep learning-based product recommender.

Appl. Sci. 2021, 11, 9667 11 of 25 
 

and i is then modeled and captured by an interaction function. This is the input for the 

deep neural network. The deep learning-based rating predictor of a product recommender 

can then be modeled as follow: 

�̂�𝑗
𝑝𝑟𝑒𝑓

= 𝜙𝑜𝑢𝑡(𝜙𝑥(… 𝜙2(𝜙1(𝜙𝑖𝑛𝑡(𝜙𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝒖𝑗, 𝒊𝑗)))) … )) (5) 

where �̂�𝑗
𝑝𝑟𝑒𝑓  is the predicted preference rating, 𝜙𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔  is the embedding mapping 

function, 𝜙𝑖𝑛𝑡 is the mapping function to model the interaction between a user and an 

item, 𝜙𝑥 is the mapping function for the MLP x-th layer, and 𝜙𝑜𝑢𝑡 is the mapping func-

tion for the MLP output layer. The rating predictor of a recommender also utilizes for 

training, a backpropagation supervised learning technique, where it tries to minimize the 

pointwise loss between the predicted preference rating �̂�𝑗
𝑝𝑟𝑒𝑓 and its target 𝑟𝑗

𝑝𝑟𝑒𝑓 . Figure 

5 shows the framework of the proposed deep learning-based product recommender. 

 

Figure 5. Architecture of the deep learning-based recommender. 

Lastly, to recommend a product i to a user u, two criteria must be fulfilled: (a) the 

predicted preference rating �̂�𝑗
𝑝𝑟𝑒𝑓 must be equal or higher than 4, and (b) the user u must 

have not rated product i before. Only if these two conditions are satisfied, product i is 

recommended to user u. Two deep learning-based recommender models are applied in 

this study: (1) NNMF, and (2) DLbR. 

• Model 1: Neural Network Matrix Factorization 

Neural Network Matrix Factorization (NNMF) is an adapted version of the neural 

collaborative filtering-based recommender model [21]. The model is composed of a Gen-

eralized Matrix Factorization (GMF) component, and a Multi-Layer Perceptron (MLP) 

module, unifying linearity strength with non-linearity characteristics. Therefore, it was 

selected as the base, and slightly modified, to create the first deep-learning recommender. 

The following are the performed tweaks done to the NNMF model: (a) the explicit ratings 

were directly used as the inputs, instead of converting them to implicit information, (b) 

the model addresses a 5 label, instead of a binary, classification problem, (c) it uses a cat-

egorical, instead of a binary, cross-entropy loss function, (d) it utilizes softmax, instead of 

sigmoid, as the activation function of the output layer, and (e) it realizes a direct training 

with random weight initializations of the global model, instead of previously pre-train the 

two components separately. Figure 6 summarizes the architecture of the recommender. 

As a collaborative filtering approach, the inputs for the two components are just basic 

information: a user ID and a product ID. Note that each component has its own embed-

ding layer, and thus, a different user latent feature vector 𝒑𝑢, and a different item latent 

feature vector 𝒒𝑖, are created for each component, where 𝒑𝑢 and 𝒒𝑖 describe every user 

u and item i, respectively. 

Figure 5. Architecture of the deep learning-based recommender.

Lastly, to recommend a product i to a user u, two criteria must be fulfilled: (a) the
predicted preference rating r̂pre f

j must be equal or higher than 4, and (b) the user u must
have not rated product i before. Only if these two conditions are satisfied, product i is
recommended to user u. Two deep learning-based recommender models are applied in
this study: (1) NNMF, and (2) DLbR.

• Model 1: Neural Network Matrix Factorization

Neural Network Matrix Factorization (NNMF) is an adapted version of the neural
collaborative filtering-based recommender model [21]. The model is composed of a Gen-
eralized Matrix Factorization (GMF) component, and a Multi-Layer Perceptron (MLP)
module, unifying linearity strength with non-linearity characteristics. Therefore, it was
selected as the base, and slightly modified, to create the first deep-learning recommender.
The following are the performed tweaks done to the NNMF model: (a) the explicit rat-
ings were directly used as the inputs, instead of converting them to implicit information,
(b) the model addresses a 5 label, instead of a binary, classification problem, (c) it uses a
categorical, instead of a binary, cross-entropy loss function, (d) it utilizes softmax, instead
of sigmoid, as the activation function of the output layer, and (e) it realizes a direct training
with random weight initializations of the global model, instead of previously pre-train the
two components separately. Figure 6 summarizes the architecture of the recommender.
As a collaborative filtering approach, the inputs for the two components are just basic
information: a user ID and a product ID. Note that each component has its own embedding
layer, and thus, a different user latent feature vector pu, and a different item latent feature
vector qi, are created for each component, where pu and qi describe every user u and
item i, respectively.



Appl. Sci. 2021, 11, 9667 12 of 24
Appl. Sci. 2021, 11, 9667 12 of 25 
 

 

Figure 6. Architecture of the modified NNMF model [21]. 

• Model 2: Deep Learning-based Recommender 

Deep Learning-based Recommender (DLbR) model is a neural network approach for 

movie recommenders [56]. It is suggested to take a product ID and a user ID as inputs. 

Both IDs are just single numbers and are turned into dense vector representations with an 

embedding layer. These two feature latent vectors are merged by concatenating them. The 

concatenation result is the input fed into an MLP network. Finally, the classification pre-

diction is done with softmax as an activation function. It is easy to perceive that DLbR is 

exactly the same as the second component (MLP) of the NNMF model. 

4. Results 

4.1. Data Collection and Datasets Preparation 

The data used in this research is the Amazon Review Data (2018) [57]. It is available 

on the web for public use in two versions: (a) Complete Review Data and (b) Small Subset 

for Experimentation. The Movies and TV database, located in the K-Cores files of the 

Small Subset for Experimentation, is selected for all the experiments. Naturally, not all the 

columns in each record are necessary for the proposed framework and thus seven features 

were omitted. Additionally, the records with information older than the year 2010 were 

excluded, and therefore, the preliminary dataset contains 2.92 M rows with five features. 

Table 1 shows the first 5 rows of this preliminary dataset. 

Table 1. First 5 rows example of the preliminary dataset of 2.92 M rows with 5 columns. 

Review Time User ID Item ID Rating Textual Review 

2012 A2M1CU2IRZG0K9 5089549 2 So sorry I didn’t purchase this years ago… 

2011 AFTUJYISOFHY6 5089549 3 Believe me when I tell you that you will… 

2005 A3JVF9Y53BEOGC 503860X 5 I have seen X live many times, both in… 

2005 A12VPEOEZS1KTC 503860X 4 I was so excited for this! Finally, a live… 

2010 ATLZNVLYKP9AZ 503860X 5 X is one of the best punk bands ever. I do… 

Unsurprisingly, the records in the preliminary dataset may contain many no valuable 

data such as (a) records with only a numeric value as the review, (b) rows with only two 

or one character in total as the review, (c) reviews with specific characters that generate 

an error in their specific cells when exporting the data file to Excel, or (d) rows with just a 

Figure 6. Architecture of the modified NNMF model [21].

• Model 2: Deep Learning-based Recommender

Deep Learning-based Recommender (DLbR) model is a neural network approach for
movie recommenders [56]. It is suggested to take a product ID and a user ID as inputs.
Both IDs are just single numbers and are turned into dense vector representations with
an embedding layer. These two feature latent vectors are merged by concatenating them.
The concatenation result is the input fed into an MLP network. Finally, the classification
prediction is done with softmax as an activation function. It is easy to perceive that DLbR
is exactly the same as the second component (MLP) of the NNMF model.

4. Results
4.1. Data Collection and Datasets Preparation

The data used in this research is the Amazon Review Data (2018) [57]. It is available
on the web for public use in two versions: (a) Complete Review Data and (b) Small Subset
for Experimentation. The Movies and TV database, located in the K-Cores files of the
Small Subset for Experimentation, is selected for all the experiments. Naturally, not all the
columns in each record are necessary for the proposed framework and thus seven features
were omitted. Additionally, the records with information older than the year 2010 were
excluded, and therefore, the preliminary dataset contains 2.92 M rows with five features.
Table 1 shows the first 5 rows of this preliminary dataset.

Table 1. First 5 rows example of the preliminary dataset of 2.92 M rows with 5 columns.

Review Time User ID Item ID Rating Textual Review

2012 A2M1CU2IRZG0K9 5089549 2 So sorry I didn’t purchase this years ago . . .
2011 AFTUJYISOFHY6 5089549 3 Believe me when I tell you that you will . . .
2005 A3JVF9Y53BEOGC 503860X 5 I have seen X live many times, both in . . .
2005 A12VPEOEZS1KTC 503860X 4 I was so excited for this! Finally, a live . . .
2010 ATLZNVLYKP9AZ 503860X 5 X is one of the best punk bands ever. I do . . .

Unsurprisingly, the records in the preliminary dataset may contain many no valuable
data such as (a) records with only a numeric value as the review, (b) rows with only two
or one character in total as the review, (c) reviews with specific characters that generate
an error in their specific cells when exporting the data file to Excel, or (d) rows with just a
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blank cell instead of a review. Consequently, a data cleaning process that includes three
filters, and one preprocessing task is conducted. Figure 7 details the data cleaning process.
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A final dataset of 2.90 M rows with five features is obtained. To facilitate the two-phase
experiments, 600,000 records, 120,000 rows for every rating label, are randomly selected
from the final dataset to create dataset A. Similarly, another 600,000 rows, 120,000 records
per rating class, were randomly extracted from the final dataset to form dataset B.

4.2. Deep Learning-Based Sentiment Inspector
4.2.1. Performance Measures

The first phase experiments are divided into two steps. The first step aims to find the
parameters that achieve the best rating prediction results for each model by performing
various fast experiments. To fulfill the need, a smaller version of dataset A is employed.
Once the parameters of each proposed algorithm are established and its best version is
well-defined, the second step is executed, where the complete dataset A is exploited to test
the quality inspectors. Remark that for each of these two steps, all the three tasks explained
in Section 3.2.3, were run.

Three indicators are used to determine the performance of the different quality inspec-
tor models: (a) accuracy0, (b) accuracy1, and (c) total time to run each model. The first two
indicators can be derived using Equation (2) where k is the allowed prediction threshold.
Accordingly, accuracy0 is calculated when k = 0, and accuracy1 when k = 1. The third
indicator is modeled as:

total time to run each model
= MODELinitial training time with DATAinit.−train
+MODELinitial prediction time to DATAinit.−all
+pruning time o f DATAinit.−all
+MODEL f inal training time with DATAprun.−train

(6)

4.2.2. Text Preprocessing Tasks

The first four text preprocessing tasks, described in Section 3.2.1, generates a set
of preprocessed reviews. Subsequently, the entire set of preprocessed texts, with T = 4,
is utilized to construct dataset A dictionary, which has 49,726 unique tokens. Remark
that dataset B dictionary was also constructed with T = 4 and possesses 49,688 singular
tokens. Finally, the entire set of preprocessed texts are modified through the last two
text preprocessing tasks, producing the required input for a word embedding. Since the
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preprocessed reviews of dataset A averaged 41 ± 84 tokens per review, and the ones of
dataset B averaged 41 ± 83 tokens per review, it was decided to use an L = 125.

4.2.3. Predictors Comparison

From dataset A, a total of 75,000 rows, 15,000 rows per rating, were extracted to create
a smaller version, which allows fast experimenting of each model through an iterative
parameter adjustment process. Specifically, 3 to 6 scenarios (versions) with different
parameters were tested for every model. For example, five versions of LSTM were tried in
which the length threshold L, the LSTM layer output size, the embedding layer output size,
and the number of training epochs were adjusted. After that, the best version per model,
based on the three evaluation indicators, was selected. The best architectures of the five
deep learning-based sentiment predictors are detailed in Table 2.

Table 2. Parameter settings for the best version of deep learning-based models.

Model Parameters

Model 1: LSTM (version 5) 1 embedding layer (32)—1 lstm layer (32)—1 hidden lay. (256)—
1 output lay. (softmax)—batch: 500—epochs: 30—optimizer: adam

Model 2: Bi-LSTM (version 2) 1 embedding layer (32)—1 bi-lstm layer (32)—1 hidden lay. (256)—
1 output lay. (softmax)—batch: 500—epochs: 30—optimizer: adam

Model 3: CNN (version 5) 1 emb. lay. (32)—1 cnn lay.—100 filters—filt. size: 10—1 max pool.—1 hidden
lay. (256)—1 out. lay. (softmax)—batch: 500—epochs: 30—optimizer: adam

Model 4: TDVE (version 3)

CNN view
1 emb. lay. (32)—1 cnn with l2 (0.01) const.—100 filters with size:

3, 4, 5—1 max pooling—1 hidden lay. (256)—1 out. lay. (softmax)—batch:
500—epochs: 30—optimizer: adadelta

DSCNN view
1 emb. (32)—1 lstm (32)—1 cnn without l2–100 filters with size:

3, 4, 5—1 max pooling—1 hidden lay. (256)—1 out. lay. (softmax)—batch:
500—epochs: 30—optimizer: adadelta

Model 5: BERT (version 2) 1 bert layer—1 avg. pooling—1 dropout: 0.2—1 hidden lay. (256)—
1 out. lay. (softmax)—batch: 16—epochs: 8—optimizer: adam

The best version of each algorithm presented in Table 2 was preserved for the following
model comparison, where the complete dataset A is applied.

The final results and the ranking of every algorithm per indicator are summarized
in Table 3. Note a traditional machine learning model, Support Vector Machine (SVM),
is included as a comparison base. Its design relies on an rbf kernel and a regularization
parameter C = 1. The first sub-table contains the accuracy0 results of the particular six
versions, sorted from the best to the worst. Similarly, the second sub-table comprises
accuracy1 results, and the third sub-table the total running time in hours. It can be concluded
that the best model related to accuracy0 is BERT-2, i.e., version 2 of BERT. Regarding
accuracy1 the best model is also BERT-2. However, concerned with the total running time,
the best model is CNN-5, i.e., version 5 of CNN.

The process to determine the best algorithm is described with the help of Table 4. The
first sub-table has the ranking positions of each model for the three indicators, and it is
based on the information in Table 3. For example, TDVE-3 is in ranking 2 respecting the 1st
indicator, but in ranking 3 regarding the 2nd indicator, and in ranking 4 regarding the 3rd
indicator. The first sub-table also contains the weights of importance, related to this study,
for each indicator. Since the proposed framework is supposed to work offline, time is not a
critical factor and that is why the total running time has only 15% of importance weight. On
the other hand, to create an efficient data quality inspector, it is essential to create a model
able to predict accurately the sentiment of a review. As a result, the sum of the importance
weights of the two accuracy indicators is equal to 85%, where accuracy0 has a 35% of
importance weight and accuracy1 has a 50% of importance weight. The second sub-table
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has the final score for each method. The final score is easily obtained by applying the sum
product of the rankings per indicator of each model by the weights of each indicator. The
six models were sorted, from the lowest to highest score, based on the second sub-table.
Since BERT-2 achieves the closest score to 1.0 points, it is considered as the overall best
quality inspector. LSTM-5 accomplishes second place, TDVE-3 earns the third position,
and SVM-1 is the worst model.

Table 3. Performance results summary of the models per indicator.

1st Indicator 2nd Indicator 3rd Indicator

Ranking Accuracy 0 Ranking Accuracy 1 Ranking Time (h)

1 BERT-2 94.37% 1 BERT-2 99.12% 1 CNN-5 2.5

2 TDVE-3 92.02% 2 LSTM-5 99.04% 2 LSTM-5 3.6

3 LSTM-5 91.02% 3 TDVE-3 98.94% 3 BILSTM-2 4.7

4 BILSTM-2 89.90% 4 BILSTM-2 98.80% 4 TDVE-3 8.4

5 CNN-5 88.30% 5 CNN-5 98.44% 5 BERT-2 23.2

6 SVM-1 37.36% 6 SVM-1 69.53% 6 SVM-1 147.4

Table 4. Overall ranking of the models with weights per indicator.

Weights of Ind. 35% 50% 15%
Final Score Final Ranking of Models

Models 1st Ind. 2nd Ind. 3rd Ind.

BERT-2 1 1 5 1.60 BERT-2 1st place

LSTM-5 3 2 2 2.35 LSTM-5 2nd place

BILSTM-2 4 4 3 3.85 TDVE-3 3rd place

CNN-5 5 5 1 4.40 BILSTM-2 4th place

SVM-1 6 6 6 6.00 CNN-5 5th place

TDVE-3 2 3 4 2.80 SVM-1 6th place

Moreover, Figure 8 shows four scenarios, where the weight distribution of the three
indicators, critical to computing the final ranking of the models, is varied. The sensitivity
analysis demonstrates that the final ranking of the six models is stable and not affected by
tweaks in the weight distribution of the three metrics. It is concluded BERT-2 and LSTM-5
are the two best models and both are chosen to be tested as the algorithm behind the quality
inspector of the second phase: deep learning-based product recommender.

Appl. Sci. 2021, 11, 9667 15 of 25 
 

5 CNN- 5 88.30% 5 CNN- 5 98.44% 5 BERT- 2 23.2 

6 SVM- 1 37.36% 6 SVM- 1 69.53% 6 SVM- 1 147.4 

The process to determine the best algorithm is described with the help of Table 4. The 

first sub-table has the ranking positions of each model for the three indicators, and it is 

based on the information in Table 3. For example, TDVE-3 is in ranking 2 respecting the 

1st indicator, but in ranking 3 regarding the 2nd indicator, and in ranking 4 regarding the 

3rd indicator. The first sub-table also contains the weights of importance, related to this 

study, for each indicator. Since the proposed framework is supposed to work offline, time 

is not a critical factor and that is why the total running time has only 15% of importance 

weight. On the other hand, to create an efficient data quality inspector, it is essential to 

create a model able to predict accurately the sentiment of a review. As a result, the sum of 

the importance weights of the two accuracy indicators is equal to 85%, where accuracy0 

has a 35% of importance weight and accuracy1 has a 50% of importance weight. The second 

sub-table has the final score for each method. The final score is easily obtained by applying 

the sum product of the rankings per indicator of each model by the weights of each indi-

cator. The six models were sorted, from the lowest to highest score, based on the second 

sub-table. Since BERT-2 achieves the closest score to 1.0 points, it is considered as the 

overall best quality inspector. LSTM-5 accomplishes second place, TDVE-3 earns the third 

position, and SVM-1 is the worst model. 

Table 4. Overall ranking of the models with weights per indicator. 

Weights of ind. 35% 50% 15% 
Final Score Final Ranking of Models 

Models 1st ind. 2nd ind. 3rd ind. 

BERT- 2 1 1 5 1.60 BERT- 2 1st place 

LSTM- 5 3 2 2 2.35 LSTM- 5 2nd place 

BILSTM- 2 4 4 3 3.85 TDVE- 3 3rd place 

CNN- 5 5 5 1 4.40 BILSTM- 2 4th place 

SVM- 1 6 6 6 6.00 CNN- 5 5th place 

TDVE- 3 2 3 4 2.80 SVM- 1 6th place 

Moreover, Figure 8 shows four scenarios, where the weight distribution of the three 

indicators, critical to computing the final ranking of the models, is varied. The sensitivity 

analysis demonstrates that the final ranking of the six models is stable and not affected by 

tweaks in the weight distribution of the three metrics. It is concluded BERT-2 and LSTM-

5 are the two best models and both are chosen to be tested as the algorithm behind the 

quality inspector of the second phase: deep learning-based product recommender. 

 

Figure 8. Final ranking of models through sensitivity analysis of the three indicators’ weight distri-

bution. 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

0

1

2

3

4

5

6

7

Original: 35% – 50% 

– 15%

Scenario1: 40% –

45% – 15%

Scenario2: 45% –

40% – 15%

Scenario3: 50% –

35% – 15%

Scenario4: 40% –

40% – 20%

BERT- 2 LSTM- 5 TDV- 3 BILSTM- 2 CNN- 5 SVM- 1

Figure 8. Final ranking of models through sensitivity analysis of the three indicators’ weight distribution.



Appl. Sci. 2021, 11, 9667 16 of 24

4.3. Deep Learning-Based Product Recommender
4.3.1. Performance Measures

Four indicators were used to determine the performance of the recommender engines.
The first is the Root Mean Square Error (RMSE) and its formula is:

RMSE =

√
1
N ∑

u,i

(
rpre f

ui − r̂pre f
ui

)2
(7)

where N denotes the total number of review-rating pairs that the dataset contains, rpre f
ui is

the preference rating that user u gave to item i, and r̂pre f
ui is the predicted preference rating

of u for i, done by the recommender engine.
The second indicator is the F1 score, which takes recall and precision into consideration.

The equation is as follow:

f 1 score = (2 ∗ precision ∗ recall)/(precision + recall) (8)

precision = (rec. relevant items)/(total o f items recommended) (9)

recall = (rec. relevant items)/(total o f relevant items) (10)

where rec. relevant items refers to the number of item recommendations made by the
algorithm that are truly relevant for the user, i.e., rpre f

ui is equal to or higher than 4.0 points.
The precision can be defined as, from the total of item recommendations produced, how
many are truly relevant for the users. On the other hand, recall expresses, from the total of
truly relevant items that must be suggested, how many were actually recommended.

The third indicator is the recommendation accuracy. Its math formula can be expressed as:

accuracy = (rec. relevant items + not rec. not relevant items)/N (11)

where not rec. not relevant items denotes the number of items not recommended by the
algorithm that are truly not relevant for the user, i.e., rpre f

ui is lower than 4.0 points. Finally,
the fourth indicator is the required time to run the recommender, which is composed of the
time of learning the patterns of the input data, plus the time of predicting r̂pre f

ui for each

rpre f
ui located in the dataset.

4.3.2. Quality Inspector Results

The second phase experiments of the proposed framework run the complete pro-
cess, which is composed of two parts. The first part applies the three sequential tasks
described in Section 3.2.3 with BERT-2 and LSTM-5, to produce from dataset B, two dif-
ferent quality inspectors. Subsequently, these two are exploited to prune and clean, with
k set to 1, the initial dataset B, also denoted as DATAinit.−all (600,000 records). The out-
put of the LSTM-5 quality inspector is denominated DATApruned LSTM5 and consists of
547,032 records (91.17% of 600,000). Similarly, the output of the BERT-2 quality inspector
is named DATApruned BERT2 and has a total of 505,269 records (84.21% of 600,000). Then,
the second part is executed, which consists to test the different recommender systems with
these three databases generated from dataset B: (1) DATAinit.−all : no quality inspector
applied, (2) DATApruned LSTM5: LSTM quality inspector applied, and (3) DATApruned BERT2:
BERT quality inspector applied.

4.3.3. Recommenders Comparison

Table 5 displays the architecture of the NNMF model and Table 6 exhibits the design
of the DLbR model. Besides, two traditional machine learning models, Singular Value
Decomposition (SVD) and SVD++, are included as a comparison base. SVD is mainly based
on 100 latent factors for users and items, a total of 20 training epochs, and is trained and
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tested with 100% of the dataset. In contrast, SVD++ is mostly based on 20 latent factors for
users and items, a total of 20 training epochs, and is trained and tested with 100% of the
dataset. It is remarked that the key objectives of this study are to identify if a recommender
system works more accurately with or without a quality inspector, and to determine if
deep learning algorithms for collaborative filtering recommenders are more efficient than
traditional methods. Therefore, it is not necessary to have a fair comparison, none of these
four methods was severely optimized.

Table 5. Architecture of NNMF recommender engine.

Users Inputs (IDs) Items Inputs (IDs)

GMF block MLP block

embedding layer (32)—user
latent vectors.

embedding layer (32)—item
latent vectors.

embedding layer (32)—user
latent vectors.

embedding layer (32)—item
latent vectors.

dropout layer: 0.5 dropout layer: 0.5

GMF layer: inner product of user and item vectors.

MLP layer: concatenate user and item vectors.

dropout: 0.5—1 hidden lay. (128) with relu.

dropout: 0.5—1 hidden lay. (128) with relu.

dropout: 0.5—1 hidden lay. (128) with relu.

concatenation layer to concatenate GMF and MLP feature vectors into a unique one.

1 output layer (5) with softmax as activation function—Optimizer: adam—batch size: 500

epochs: 20–100% (0% val.) trained and tested with the 100% of data.

Table 6. Architecture of DLbR recommender system.

Users Inputs (IDs) Items Inputs (IDs)

embedding layer (32)—user latent vectors. embedding layer (32)—item latent vectors.

dropout layer: 0.5—concatenation layer to concatenate user and item vectors into a unique one.

1 dropout layer: 0.5—1 hidden layer (128)—activation function: relu—1 batch normalization layer.

1 dropout layer: 0.5—1 hidden layer (128)—activation function: relu—1 batch normalization layer.

1 hidden layer (128)—activation function: relu.

1 output layer (5) with softmax as activation function—Optimizer: adam—batch size: 500

epochs: 20–100% (0% val.) trained and tested with 100% of data.

Table 7 illustrates the results that the recommendation engines achieved in each of
the three datasets. It can be perceived that the table is divided into three parts: (1) the
indicators of the four models with DATAinit.−all , (2) the results of all the methods with
DATApruned LSTM5, and (3) the indicators of every single algorithm with DATApruned BERT2.
As shown in Table 7, it can be established that the best recommender is NNMF. It achieves
the highest F1 score, the highest accuracy, and the lowest RMSE. Although it is the model
that took the longest time to run its algorithm, the time is not taken as a critical factor
because the proposed framework is supposed to work offline. The second position as the
best recommender is assigned to DLbR since even though its RMSE is the worst of the four
models, and its total running time is in the third position, it achieves a good F1 score and
a suitable accuracy. Moreover, SVD++ earns the third position, as it achieves the second
position in total running time, and the third position in RMSE, F1 score, and accuracy. Finally,
SVD is concluded as the worst model.



Appl. Sci. 2021, 11, 9667 18 of 24

Table 7. Results achieved per each model with three datasets generated from Movies and TV.

NNMF DLbR SVD SVD++

DATAinit.-all

RMSE 0.294 0.962 0.814 0.920
F1 score 98.48% 83.07% 50.42% 60.67%
accuracy 98.79% 84.69% 73.38% 76.15%

time (min) 26.44 24.72 4.22 6.82

DATApruned LSTM5

RMSE 0.287 0.902 0.801 0.894
F1 score 98.71% 86.95% 52.35% 61.81%
accuracy 98.82% 87.17% 75.57% 77.90%

time (min) 23.71 23.09 3.79 5.94

DATApruned BERT2

RMSE 0.284 0.869 0.805 0.892
F1 score 98.62% 88.37% 53.45% 63.00%
accuracy 98.75% 88.73% 77.00% 79.28%

time (min) 22.19 21.13 3.48 5.24

As mentioned before, the F1 score is calculated by using precision and recall as inputs.
Since recall is based on the list of relevant items to users within a dataset, it is important
to clarify that the size of this list is different for each dataset. For example, DATAinit.−all
possesses 240,000 items (40% of 600,000) that are relevant to users, DATApruned LSTM5 has
205,126 items (38% of 547,032) that must be recommended to users, and DATApruned BERT2
holds 180,981 items (36% of 505,269) that are relevant to users.

The performance trend per indicator for every method, produced when using LSTM-5
or BERT-2 against the results obtained with DATAinit.−all , is clarified from Figures 9–12. For
instance, as shown in Figure 9, SVD++ improves RMSE by 3.09% and 2.87% when executing
BERT-2 and LSTM-5, respectively. The highest decrease is reported in DLbR, reducing
RMSE by 9.60% and 6.25% when using DATApruned BERT2 and DATApruned LSTM5, respec-
tively. Lastly, although SVD stated the lowest decrease, it still experienced satisfactory
enhancements when using the two quality inspectors.
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Figure 9. Comparison of the variations produced when using LSTM-5 or BERT-2 against the dataset
DATAinit.−all , of the four models in the RMSE indicator.

Similarly, Figure 10 reports that DLbR enhances the F1 score by 5.30% and 3.89%
when exploiting BERT-2 and LSTM-5, respectively. The lowest boost is generated by
NNMF, which improves the F1 score by 0.14% when using DATApruned BERT2 and 0.23%
when utilizing DATApruned LSTM5. Regarding SVD++ and SVD, both experienced a regular
F1 score increase between 1.13% and 3.03% when applying BERT-2 or LSTM-5 quality
inspectors. Likewise, Figure 11 proves the positive impact on accuracy when applying a
quality inspector, where all the models, except for NNMF, reported a steady accuracy boost
between 1.74% and 4.04%. Finally, as shown in Figure 12, total running time is the indicator
that encountered the best enhancements, as the four models report a total running time
reduction between 6.60% and 23.23% when using a cleaned version of the data.
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DATAinit.−all , of the four models in the F1 score parameter.

Appl. Sci. 2021, 11, 9667 19 of 25 
 

inspectors. Likewise, Figure 11 proves the positive impact on accuracy when applying a 

quality inspector, where all the models, except for NNMF, reported a steady accuracy 

boost between 1.74% and 4.04%. Finally, as shown in Figure 12, total running time is the 

indicator that encountered the best enhancements, as the four models report a total run-

ning time reduction between 6.60% and 23.23% when using a cleaned version of the data. 

 
 

Figure 10. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in the F1 score parameter. 

 

Figure 11. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in accuracy indicator. 

 

Figure 12. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in total running time. 

Figure 13 shows the average percent variations experienced by the four methods, per 

indicator, and for every quality inspector. For example, all recommenders averaged an 

accuracy increase of 2.69% when applying BERT- 2, but an increase of 1.61% when using 

0.23%

3.89%

1.93%

1.13%

0.14%

5.30%

3.03%

2.33%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00%

Model 1: NNMF

Model 2: DLbR

Model 3: SVD

Model 4: SVD++

± F1 score BERT-2 vs initial-all ± F1 score LSTM- 5 vs initial-all

0.04%

2.48%

2.19%

1.74%

-0.04%

4.04%

3.62%

3.13%

-1.00% 0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

Model 1: NNMF

Model 2: DLbR

Model 3: SVD

Model 4: SVD++

± accuracy BERT-2 vs initial-all ± accuracy LSTM5 vs initial-all

Figure 11. Comparison of the variations produced when using LSTM-5 or BERT-2 against the dataset
DATAinit.−all , of the four models in accuracy indicator.

Appl. Sci. 2021, 11, 9667 19 of 25 
 

inspectors. Likewise, Figure 11 proves the positive impact on accuracy when applying a 

quality inspector, where all the models, except for NNMF, reported a steady accuracy 

boost between 1.74% and 4.04%. Finally, as shown in Figure 12, total running time is the 

indicator that encountered the best enhancements, as the four models report a total run-

ning time reduction between 6.60% and 23.23% when using a cleaned version of the data. 

 
 

Figure 10. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in the F1 score parameter. 

 

Figure 11. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in accuracy indicator. 

 

Figure 12. Comparison of the variations produced when using LSTM-5 or BERT-2 against the da-

taset 𝐷𝐴𝑇𝐴𝑖𝑛𝑖𝑡.−𝑎𝑙𝑙, of the four models in total running time. 

Figure 13 shows the average percent variations experienced by the four methods, per 

indicator, and for every quality inspector. For example, all recommenders averaged an 

accuracy increase of 2.69% when applying BERT- 2, but an increase of 1.61% when using 

0.23%

3.89%

1.93%

1.13%

0.14%

5.30%

3.03%

2.33%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00%

Model 1: NNMF

Model 2: DLbR

Model 3: SVD

Model 4: SVD++

± F1 score BERT-2 vs initial-all ± F1 score LSTM- 5 vs initial-all

0.04%

2.48%

2.19%

1.74%

-0.04%

4.04%

3.62%

3.13%

-1.00% 0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

Model 1: NNMF

Model 2: DLbR

Model 3: SVD

Model 4: SVD++

± accuracy BERT-2 vs initial-all ± accuracy LSTM5 vs initial-all
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DATAinit.−all , of the four models in total running time.

Figure 13 shows the average percent variations experienced by the four methods, per
indicator, and for every quality inspector. For example, all recommenders averaged an
accuracy increase of 2.69% when applying BERT- 2, but an increase of 1.61% when using
DATApruned LSTM5. BERT- 2 outperforms the results of LSTM- 5 in all the four indicators,
and thus, it is considered the best quality inspector.
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Additionally, popular rank-based metrics for Top-K lists, which are Normalized
Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP), were evaluated
using DATApruned BERT2. Table 8 summarizes the experiment results where K = 5, 10, and
15. It is noted that NNMF is the algorithm that achieved the best performance in NDCG,
while DLbR is the algorithm performing the best in MAP for all K. SVD achieved the
second-best outputs in NDCG but the lowest ones in MAP, and SVD++ accomplished
the third position in both NDCG and MAP. These outcomes also indicate the benefits of
applying deep learning to model the algorithm of recommender engines.

Table 8. Rank-based metrics for the four models using DATApruned BERT2 dataset.

NNMF DLbR SVD SVD++

K = 5
NDCG 99.77% 91.37% 95.90% 91.50%
MAP 40.00% 55.00% 28.00% 28.00%

K = 10
NDCG 99.77% 91.37% 95.90% 91.50%
MAP 20.00% 33.21% 14.00% 19.29%

K = 15
NDCG 99.77% 91.37% 95.90% 91.50%
MAP 13.33% 22.14% 9.33% 9.33%

4.3.4. Other Datasets

Except for the Amazon Movies and TV data, another popular dataset is experimented
with to show the efficiency of the proposed framework. This database is the Amazon Kindle
Store [57], which is also located in the K-Cores files of the Small Subset for Experimentation.
Just as with the Movies and TV data, 7 columns were omitted, and the records with
information older than the year 2010 were excluded. Accordingly, the preliminary dataset
contains 2,219,176 rows with the five identical features shown in Table 1. Subsequently, the
data cleaning process presented in Figure 7 was applied to this preliminary set, obtaining a
final dataset of 2,216,008 rows with five features. Out of these data records, only 47,954
have a rating equal to 1, and therefore, a total of 235,000 records, 47,000 rows for every
rating label, were randomly chosen to form dataset B.

The two best quality inspectors, BERT-2 and LSTM-5, are rebuilt using dataset B of
the Kindle Store. Afterward, these two are executed to prune and clean, with k set to 1,
the initial dataset B denoted as DATAinit.−all (235,000 records). The output of LSTM-5,
DATApruned LSTM5, consists of 214,166 records (91.13% of 235,000), and the output of BERT-
2, DATApruned BERT2, has a total of 202,124 records (86.01% of 235,000). Finally, the different
four recommender systems are tested with these three databases. The outcomes shown in
Table 9 illustrate similar trends with the Movies and TV dataset in which NNMF, DLbR,
SVD++, and SVD, rank in the first, second, third, and fourth positions, respectively.
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Table 9. Results achieved per each model with three datasets generated from Kindle Store.

NNMF DLbR SVD SVD++

DATAinit.-all

RMSE 0.097 0.792 0.832 0.844
F1 score 99.86% 88.58% 28.83% 37.63%
accuracy 99.89% 89.80% 66.71% 69.17%

time (min) 10.67 10.75 1.46 1.92

DATApruned LSTM5

RMSE 0.092 0.695 0.818 0.827
F1 score 99.87% 89.98% 29.91% 39.50%
accuracy 99.90% 91.04% 70.00% 72.43%

time (min) 9.03 8.58 1.21 1.69

DATApruned BERT2

RMSE 0.079 0.703 0.826 0.834
F1 score 99.89% 90.94% 31.60% 40.77%
accuracy 99.91% 91.91% 68.39% 70.94%

time (min) 10.00 8.32 1.15 1.58

Moreover, Figure 14 reveals comparable tendencies with the Movies and TV database
in which applying a quality inspector impacts all recommendation metrics positively, and
in which the results of the BERT quality inspector outperform the improvements of the
LSTM quality inspector in almost all the recommendation indicators.
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5. Discussion

After conducting several experiments, it can be concluded that the application of a
data quality inspector, based on textual reviews, truly enhances the overall performance of
a collaborative filtering recommender system. When exploiting the BERT quality inspector
in two datasets, on average, it was registered a 17% decrease in the total time to run the
algorithm, a 6% percentage enhancement in RMSE, and a percentage boost of between 2%
and 3% in F1 score and accuracy. To assess the statistical significance of the obtained results,
four recommender systems were run one time within six different data subsets: three
generated from the Movies and TV data, and the other three from the Kindle Store data.
The results show similar trends and comparable improvements when using the datasets
pruned by LSTM5 and BERT2. The standard deviations (SD) of the percent improvements
experienced by the four models when using the two subsets of DATApruned LSTM5 (pro-
duced from Movies and TV and from the Kindle Store), are an SD of 3.4% in RMSE, 1.1%
in F1 score, 1.2% on accuracy, and 4.1% in total running time. Similarly, the SD of the
percent improvements experienced by the four models when using the two subsets of
DATApruned BERT2, are an SD of 5.9% in RMSE, 1.6% in F1 score, 1.4% on accuracy, and
5.1% in total running time.

Since the experiments were run within two datasets, it is robust evidence to prove the
importance of the data quality inspection process, data cleaning, and the use of textual
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reviews as auxiliary data in the field of recommenders. Moreover, it can be determined
that the five deep learning-based sentiment predictors (LSTM, Bi-LSTM, CNN, TDVE,
and BERT) outperform the traditional machine learning algorithm (SVM). Similarly, it
can be found that the two deep learning-based recommenders (NNMF and DLbR) exceed
the performance of the two traditional machine learning methods (SVD and SVD++).
Unquestionably, the deep learning approach is very suitable for these two kinds of tasks.
Furthermore, comparing the results between the two deep learning-based recommenders,
it is important to emphasize the leverage power of using a hybrid strategy. It was shown
that NNMF, which is a mixture of one approach and two techniques, achieves better
recommendation outcomes than DLbR, which is based only on MLP.

6. Conclusions

This work addresses one of the core and current challenges in a collaborative filtering
recommender: accuracy enhancement. However, instead of specializing in the common
cold-start or sparsity problems, it focuses on the quality of the ratings as input data, a critical
issue highly correlated to the recommendation accuracy, which receives little attention
in the research field. To our knowledge, this is the first study that truly filters or cleans
the input ratings based on their quality. The authors of [15–17] took a similar approach,
but they only preprocessed the ratings and used the complete records as input. It was
demonstrated that working towards this problem promises encouraging results and that
the application of hybrid recommenders and deep learning techniques to (a) model the key
factor of recommenders and (b) extract features from auxiliary data, to integrate them with
the input, are potent remedies to counteract the already mentioned difficulty.

In the future, more attention to the data quality inspection process and data cleaning
of the input should be placed, and not only through the use of textual reviews, but with
other methods or auxiliary data that does not exclusively depend on the users. For exam-
ple, mouse clicks, triggered events, or eye-tracking should be helpful auxiliary sources
for assisting data quality inspection. Furthermore, research related to the integration of
multi-deep learning algorithms to build hybrid recommenders should be interesting. It is
suggested to not only try hybrid recommenders with one approach and two techniques,
but also with a mixture of two strategies, like collaborative filtering with content filtering
or with context-aware recommenders. Finally, popular ranking metrics for top-N lists such
as MRR (Mean Reciprocal Rank), MAP (Mean Average Precision), and NDCG (Normal-
ized Discounted Cumulative Gain) should be applied to validate the performance of the
proposed framework.
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