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Abstract: Earthquakes lead to enormous harm to life and assets. The ability to quickly assess damage
across a vast area is crucial for effective disaster response. In recent years, social networks have
demonstrated a lot of capability for improving situational awareness and identifying impacted areas.
In this regard, this study proposed an approach that applied social media data for the earthquake
damage assessment at the county, city, and 10 × 10 km grids scale using Naive Bayes, support
vector machine (SVM), and deep learning classification algorithms. In this study, classification
was evaluated using accuracy, precision, recall, and F-score metrics. Then, for understanding the
message propagation behavior in the study area, temporal analysis based on classified messages was
performed. In addition, variability of spatial topic concentration in three classification algorithms
after the earthquake was examined using location quotation (LQ). A damage map based on the
results of the classification of the three algorithms into three scales was created. For validation,
confusion matrix metrics, Spearman’s rho, Pearson correlation, and Kendall’s tau were used. In this
study, binary classification and multi-class classification have been done. Binary classification was
used to classify messages into two classes of damage and non-damage so that their results could
finally be used to estimate the earthquake damage. Multi-class classification was used to categorize
messages to increase post-crisis situational awareness. In the binary classification, the SVM algorithm
performed better in all the indices, gaining 71.22% accuracy, 81.22 F-measure, 79.08% accuracy, 85.62%
precision, and 0.634 Kappa. In the multi-class classification, the SVM algorithm performed better in
all the indices, gaining 90.25% accuracy, 88.58% F-measure, 84.34% accuracy, 93.26% precision, and
0.825 Kappa. Based on the results of the temporal analysis, most of the damage-related messages
were reported on the day of the earthquake and decreased in the following days. Most of the
messages related to infrastructure damages and injured, dead, and missing people were reported on
the day of the earthquake. In addition, results of LQ indicated Napa as a center of the earthquake as
the concentration of damage-related messages in all algorithms were based there. This indicates that
our approach has been able to identify the damage well and has considered the earthquake center one
of the most affected counties. The findings of the damage estimation showed that going away from
the epicenter lowered the amount of damage. Based on the result of the validation of the estimated
damage map with official data, the SVM performed better for damage estimation, followed by deep
learning. In addition, at the county scale, algorithms showed better performance with Spearman’s
rho of 0.8205, Pearson correlation of 0.5217, and Kendall’s tau of 0.6666.

Keywords: damage estimation; multi-scale; location quotation (LQ); support vector machine (SVM);
beep learning; Naive Bayes

1. Introduction

Earthquakes occasionally happen unexpectedly with little alert; therefore, crisis man-
agement could be a challenging job [1]. Disasters or significant events, such as earthquakes,
lead to enormous harm to life and assets [2]. The capability to quickly assess the spatial
distribution of damage across a vast region subsequent to a considerable earthquake is
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crucial for effective disaster response. It also could be effective for the assessment of losses
and public communication [3]. Residents in the impacted areas are defenseless and demand
sufficient assistance and help from rescue workers (e.g., authorities’ organizations, and
non-governmental organizations). The number of the disaster-affected people, thus, has an
important effect on the proper timing to implement of rescue and assistance activities [4].
Authorities demand precise data regarding the spatial distribution of damages as soon as
possible so that they will be able to dispatch assistance rapidly to suitable regions [3].

Nonetheless, collecting these data rapidly is difficult, and significant amounts of
labor and assets are required to gather data in near real-time via conventional information
capturing activities, including observing inquiries, telephone reports, or remote sensing
images [1]. Traditional strategies for handling crises to deal with social and financial
casualties and mitigate the consequences of a catastrophe undergo a variety of deficien-
cies, such as extreme temporal delays or restricted temporal and spatial resolution [5].
Regardless of the existence of advanced satellite detectors, able to observe proper spatial
and spectral resolution, remote sensing image gathering and interpretation demand costly
resources, including costly instruments and sophisticated data preparation devices, also in
addition to fine weather circumstances. The remote sensing images need to be obtained
and interpreted quite quickly to help the rescue groups, which is not often feasible with
conventional acquisition and processing approaches [6].

Social media has grown to a main channel of communication over the last few years.
In crises, individuals not only use social media to collect and exchange information but
also to generate new data [7]. Social media offers several benefits and concerns to all
domains of application and research that are associated with applying social media content
for enhanced emergency management [8]. As a result of progress in technology and the
pervasive use of smartphones, social networks are continuing to develop and are often
used to disseminate, exchange, and gather information throughout crises [9]. A specific
benefit comes from local people in the surrounding of the incident using social networks
to express a specific view of reality. In the aftermath of crises such as earthquakes, social
media users publish messages about the potential damage, which can be used to estimate
the damage. Mostly, they are able to give unique information from their region, which is
not yet given by any other authority [7]. Social network data, in contrast to conventional
data, facilitate low-cost data gathering on a unique temporary resolution during emergency
situations; therefore, these kinds of data cannot be neglected in crisis-related deciding
efforts [1].

In damage assessment, different analyses perform differently in distinct scales (spatial
units). Therefore, it should be determined on which scale the analysis for each kind of data
source should be performed in order to have better performance. It will then be possible for
decision makers to choose what kind of data to analyze at each scale. This makes the results
closer to reality. Classification algorithms are needed to estimate the earthquake damage
based on social network data [10–24]. Another issue that affects the damage estimation is
the selection of the appropriate classification algorithm.

This study proposes an approach that applies social media data for earthquake damage
assessment in different spatial units using different classification algorithms. This cause is
enhancing situational awareness in disaster response and relief activities. For this purpose,
damage assessment in three spatial units, including county, city, and 10 × 10 km grids, was
performed. In this research, an attempt has been made to use both official spatial units
based on which government information is usually provided (county and city) and spatial
units that are homogeneous in terms of spatial coverage (10 × 10 km grids). The reason for
choosing 10 km for its grid size is that it is not so small that it is difficult to determine the
damage based on social network data, and it is not so large that it causes the aggregation of
information in the wrong spatial units. In addition, the performance of Naive Bayes, SVM,
and deep learning algorithms were compared.
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2. Literature Review

With the growth of smartphones and the popularity of social networks, social media
gives a new critical source of data for crisis management. Much of the current literature
on the use of social network data in natural disasters has concentrated on different facets,
including earthquake detection, situational awareness, and damage estimation [4].

The detection of earthquakes using social networks is an especially popular field of
research. Sasaki et al. [25] offered a system that applied social network users as earthquake
detectors. They concluded that their system notification was sent much quicker compared
to the warnings system by the Japan Meteorological Agency. Earle et al. [26] demonstrated
how instrument-based event detection and estimation of earthquake location and mag-
nitude could be supplemented by Twitter data. Huang et al. [27] showed that by using
clustering algorithms, the system facilitates instant identification of probable events.

Social networks would allow catastrophe managers to understand what is going on in
cases of catastrophe. Crisis managers need actionable disaster-related data to make sense
of the catastrophe and promote decision making, strategy formation, and execution of
responses. Previous researches have used different methods, such as supervised and unsu-
pervised classification kernel density estimation (KDE), to produce spatially appropriate
data for situational awareness and improved response to disasters [28]. Among supervised
algorithms, Naive Bayes and SVM are more widely used [29], and among unsupervised
algorithms, latent Dirichlet allocation (LDA) algorithms are more widely considered [30].

Different studies have used different methods to classify text messages. In Khare et al. [31],
the desirability of the SVM linear kernel for the classification of crisis-related messages
was verified across the RBF (Radial Basis Function) kernel, the polynomial kernel, and the
logistic regression. They assessed the models being trained by determining the precision
(P), recall (R), and F1 metrics. Neppalli et al. [32] applied deep neural networks and Naive
Bayes to classify Twitter messages throughout crises. Ragini et al. [33] introduced a mixed
approach for determining individuals at risk both during and after a crisis using real-time
classification. To evaluate the model’s efficiency, they applied three methods, including
Naive Bayes, decision tree, and SVM. Burel and Alani [34] developed an automated tool
that detected social network tweets associated with disasters. They applied Naive Bayes,
classification and regression trees (CART), SVM, and CNNs.

Qu et al. [35] investigated information trends in social networks during and after the
crisis, including how various kinds of information evolved over time and how information
was disseminated in the social networks. Yin et al. [29] evaluated the SVM and the Naive
Bayes algorithms for classifying crisis-related messages and concluded that the SVM had
better performance. Imran et al. [36], regarding the informational significance of social
networks, noted that tweets relevant to crises differ significantly in their utility for handling
crises. They used machine learning methods to differentiate between related and non-
related messages. Peters et al. [7] examined messages from social networks to handle crises.
They demonstrated that there is a strong relationship between messages relevant to a crisis,
which include photos and their distance to the incident. Therefore, the photo in a social
network message may represent an indicator of the high likelihood of related content.
These results could be applied to improve information exploitation from social networks in
order to increase situational awareness.

Wang and Ye [28] examined the variability of spatial topic concentration before, during,
and after the crisis. They used the Markov transition probability matrix and LQ (location
quotation) to measure the spatial concentration of crisis-related topics on social networks
and their variability. Gründer-Fahrer et al. [8] investigated the topical and temporal
form of the German social network using unsupervised algorithms. They used the topic
model to examine what type of information was distributed during the incident on social
networks. Temporal clustering methods were applied to automatically identify the various
characteristics of disaster management phases. They offered methods for analyzing social
network data to obtain information relevant to the management of crises.
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For an in-depth analysis of multimodal social network data gathered during crises,
Alam et al. [10] proposed a methodological model based on machine learning techniques
ranging from unsupervised to supervised learning. They performed sentiments analysis to
understand how the thoughts and feelings of individuals change with time as disasters
progress. The mentioned study used topic modeling techniques to understand each day’s
various topics discussed. They applied supervised classification techniques to classify tex-
tual and image content into humanitarian subgroups to help aid agencies in meeting their
specific information requirements. Eivazy and Malek [11] used geospatial crowdsourcing
services for managing rescue operations. Wu et al. [12] examined the correlation between
social network activities and natural disasters. They applied the Naive Bayes to calculate a
population-adjusted disaster score.

For earthquake damage estimation, Corbane et al. [13] found that the geolocated
SMS can be used as early indices of the spatial distribution of building damage. They
used remote sensing data for building damage assessment. They used information from
remote sensing to assess the damage. Liang et al. [14] recognized three distinct tweet-
based characteristics for estimating the epicenter of earthquakes, including tweet density,
re-tweet density, and user tweeting, and compared them across text and media tweets.
Burks et al. [3] applied a method that incorporate the features of the earthquake, evaluated
by applying seismographs (including instant severity, distance from the center, and wave
speed) with Twitter information.

Cresci et al. [15] used Twitter features to estimate the intensity of the earthquake on
the Mercalli scale. They applied linear regression models over a set of features that were
extracted from user profiles, tweet content, and time-based features. Nguyen et al. [16]
identified damage-related photos and determined the amount of damage (i.e., serious,
moderate, or low) from Twitter images using deep convolutional neural networks (CNN).
Avvenuti et al. [17] designed Earthquake Alerts and Report System. The system pro-
duces interactive disaster maps that show regions that may have suffered significant
harm. They concluded that such a system has great importance for disaster management.
Avvenuti et al. [18] proposed a system based on customizable web-based dashboards and
maps for damage estimation. Their system then visualizes the collected data. Their evalua-
tions have determined that there is a considerable consensus between ratings relying on
tweets and those relying on official information on earthquake damage.

Zou et al. [19] proposed a method for identifying affected areas by the earthquake.
Their results indicated that Twitter could help identify affected areas faster than traditional
monitoring methods. Resch et al. [5] estimated Napa earthquake damage via a spatial grid
unit. They used the topic-modeling LDA for clustering damage-related messages. They did
not use multiple spatial scales to assess damage estimation and used only one algorithm
for classification. Mouzannar et al. [20] suggested a multimodal deep learning method that
integrates text and images for detecting damage in social network data.

Kropivnitskaya et al. [21] used social media information to complement physical
sensor information to produce more precise real-time intensity maps. They developed four
empirical predictive relationships (linear, two-segment linear, three-segment linear, and
exponential) that connected the tweet rates in the first 10 min after the earthquake with
the Mercalli intensity (MMI) scale in Napa earthquake. Their approach combines data
from both social and physical sensors for earthquake intensity prediction. Wang et al. [1]
measured the relationship between citizen–sensor data’s temporal development pattern
and the region of the effect of the earthquake. In addition, they integrated social media
data with other auxiliary data.

E2mC was designed by Fernandez-Marquez et al. [22] to explain how the region was
impacted by the earthquake and to determine the intensity of the damages. The main
idea with E2mC is the integration of automated evaluation of social network information
with crowdsourcing. Their main objective was to enhance the quality and reliability of
the information given to professional users in the Copernicus system. Mendoza et al. [23]
estimated damages in the Mercalli intensity scale based on social network posts. Li et al. [6]
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suggested a method to find construction damage in a disaster image and estimate damage
based on convolution neural networks. They investigated the utility of the suggested
method for other infrastructure damage classifications, specifically bridge and highway
damage. Shan et al. [9] assessed both physical and emotional earthquake damages. Physical
damage is associated with damage to infrastructure, people, assets, house, agriculture, and
industry. Emotional damage is associated with emotions reported by individuals after the
crisis, especially negative emotions. In our previous work ([24]), we used the SVM method
for creating earthquake damage map. The present article is a continuation of the mentioned
article and has completed it in terms of the number of spatial units and the evaluation of
different algorithms.

While damage assessment based on social network data has gained considerable
academic interest, little attention has been given to the effect of scale on the results. After
identifying the impact of the scale on social network performance in damage assessment,
decision makers can determine which scale can use social networks and which spatial unit
can use other data sources or integrate social networks with other data sources to achieve
the best results as quickly as possible. Another issue that has a great impact on the results
of the damage assessment is the algorithm for extracting the damage information. Due to
the fact that the damage assessment will be based on the damage-related extracted data, the
issue is the impact of the classification algorithm on the end result of damage assessment.
Therefore, the performance of different classification algorithms must be examined in the
damage assessment.

3. Data and Case Study

The study used Twitter data from the Napa earthquake on 24 August 2014, at 10:20:44
UTC (3:20 A.M local time). It was the biggest earthquake in the San Francisco Bay Area
after the 1989 Loma Prieta earthquake, with the maximum intensity of the Mercalli VIII (ex-
treme). The magnitude was 6.0, with 11.3 km depth [37]. The event’s epicenter was south
of Napa and northwest of the American Canyon (Figure 1). One individual died, about
200 individuals were wounded, and this incident resulted in more than $400 million in
damage [21]. In the period 17–31 August 2014, a number of 998,791 tweets were obtained [5].
Tweets, including keywords relevant to the earthquake, were kept and 26,942 tweets have
remained after the keyword filtering. For keyword filtering, words such as earthquake,
quake, etc. were considered. Population information, including population density per kilo-
meter according to the NASA website (https://beta.sedac.ciesin.columbia.edu/data/set/
gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals/data-download, ac-
cessed on 18 October 2019), was also used in order to remove the population effect while
preparing the damage map. In other words, the resolution of this layer was 1 km, which
was calculated by dividing the population by area. Figure 1 provides an overview of the
area of study on the Napa earthquake with tweet locations.

https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals/data-download
https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals/data-download
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4. Methodology

Figure 2 shows the proposed approach for damage assessment based on social network
data. Initially, pre-processing was done to remove irrelevant data as well as convert the
tweets’ text into a comprehensible structure for the computer. Then, the three algorithms
of Naive Bayes, SVM, and deep learning were used to classify the messages. Then, classifi-
cation was evaluated using accuracy, precision, recall, and F-score metrics. To understand
the message propagation behavior in the study area, temporal analysis based on classified
messages was performed. In addition, the variability of spatial topic concentrations in three
classification algorithms after the earthquake were examined using LQ. Then, the damage
map based on the results of the classification of the three algorithms into three spatial units
of city, county, and 10 × 10 km grids, wascreated. For validation, a FEMA HAZUS loss
model was used. HAZUS is a standardized model for evaluating losses from earthquake
and other crises [38]. In this regard, confusion matrix metrics, Spearman’s rho, Pearson cor-
relation, and Kendall’s tau were used to assess our approach damage map with the FEMA
HAZUS loss model (https://www.conservation.ca.gov/cgs/earthquake-loss-estimation,
accessed on 16 October 2019).

https://www.conservation.ca.gov/cgs/earthquake-loss-estimation
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4.1. Data Preprocessing

Policymakers and emergency services recently envisaged creative strategies to elicit
the information posted on social networks in crises such as an earthquake. These data,
however, are sometimes unstructured, diverse, and distributed over a great number of
tweets in such a manner that they could not be utilized explicitly. Thus, transforming
that chaotic information into a set of explicit and precise texts for a crisis manager is
necessary. In this study, data in a text format related to post-earthquake tweets were
used for damage assessment. Textual data are regarded as unstructured data that are
incomprehensible to computers. Therefore, in order to prepare these data for computer
analysis, they must be structured and computer-usable data. In this section, following
the process shown in Figure 3, the normalization of unstructured data was performed
manually after removing the missing values. At first, during the tokenization process, the
textual data were subdivided into smaller linguistic units called tokens. Words, numbers,
and punctuation are linguistic units known as tokens. Then, in order to integrate the text
in either uppercase or lowercase letters, all the letters in the textual data were converted to
lowercase letters. Next, numbers, punctuations and inappropriate letters were removed
from tweets. Then, ineffective words (stop words) that do not convey significant semantic
content (words like “The”, “On”, “Is”, “All”, and “an” in English) were deleted from the
textual data. Short words with three characters or less were removed. After that, stemming
was used to return words to their root form, for this purpose, the Porter algorithm, one of
the most popular algorithms for performing stemming operations, was used. Finally, using
n-Gram algorithms, the expressions and collocation words were removed from the text
data [5].

4.2. Classification

Social networks have a crucial function in the dissemination of information through-
out crises. Regrettably, the enormous amount and diversity of data produced on social
networks make it difficult to manually search through this content and specify its relevance
for damage estimation. Though, with many social network opportunities, real challenges
arise, such as handling such large quantities of messages, which make manual processing
extremely insufficient. The information overburden throughout crises could be equal to the
lack of information for the emergency management. Therefore, classification algorithms
can be used to solve these problems and extract useful information. In this study, binary
classification and multi-class classification have been done. Binary classification is used
to classify messages into two classes of damage and non-damage so that their results can
finally be used to estimate the earthquake damage. Multi-class classification is used to
categorize messages to increase post-crisis situational awareness and to monitor the process



Appl. Sci. 2021, 11, 9737 8 of 30

of changing conditions over time and determine the concentration of various topics in
different locations.
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Previous research has used SVM, Naive Bayes, and deep learning algorithms to classify
crisis-related messages and performed better [31–34]. In this regard, in this research, SVM,
Naive Bayes, and deep learning algorithms have been used. These three algorithms are
described below.

• Naive Bayes

The Naive Bayes algorithm is regarded as a Bayesian algorithm. The Naive Bayes
is a big-bias, small-variance classification algorithm, and even with a small set of data,
it can build a good model. It is so simple to use and affordable to compute. A Naive
Bayes classification algorithm is a simplistic probabilistic classifier based on the theory of
Bayes (from Bayesian statistics) with powerful (Naive) hypotheses of independence. A
Naive Bayes classification algorithm assumes that the existence (or absence) of a specific
element of a class is irrelevant to the existence (or absence) of any other element [39].
The presumption of independence greatly makes simpler the computations required to
create the probability model for the maive Bayes. The Naive Bayes has the benefit of not
demanding hyper-parameter tuning as a comparison with other methods. In addition,
Li et al. [40] showed that the results of tweet classification for disasters extracted with The
Naive Bayes are analogous and often better than those acquired with other more complex
algorithms used with predefined variables.

• SVM

The SVM is a supervised method that is applied for classification and regression
analysis. The SVM removes the requirement to reduce the space of the higher feature
dimension and has an automated variable-adjusting property that is appropriate for text
classifying. This is a functional-based classification algorithm that is created on the basis of
decision planes specifying class boundaries [41]. The fundamental concept is to discover a
hyperplane that segregates the d-dimensional information efficiently into its two classes.
Since all of the data are not always linearly distinguishable, the SVM comprises the concept
of a kernel-induced feature space that projects the information into a higher-dimensional
space in which the data are easier to separate [39]. After optimizing the SVM parameters, a
linear the SVM kernel has been used.

• Deep learning

An emerging availability of various labeled datasets recently enabled the successful
application of deep learning for crisis-related messages classification. The deep learning
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algorithm used in this study is, in fact, a multi-layer feed-forward artificial neural network
algorithm that uses a stochastic gradient descent approach via back-propagation to predict
labels of classes. This network can contain a large number of hidden layers, including
layers with rectifier neurons and maxout activation functions. The most important features
of this algorithm are adaptive learning rate, rate annealing, momentum training coefficient,
dropout, and adjustment of L1 or L2 parameters. Proper adjustment of these parameters
can improve the performance of the predictive algorithm. Each computational node
trains a copy of the general model parameters on its local data with a multi-threading
(asynchronous) approach and periodically helps to predict the model. The two most
important parameters in this algorithm are the number of epochs, as well as the number of
hidden layers. Experimentally, and considering the results obtained, the number of epochs,
as well as the number of hidden layers, were set to 10 and 3 hidden layers, respectively [20].

4.3. Assessment Performance of Classification

Comparing different classification algorithms is no unimportant issue. The efficiency
of classification algorithms can be assessed in a variety of ways and relies on several
parameters, such as training data, learning strategy, target categories, and, in several
situations, the language in which a classification algorithm is constructed. A central idea for
identifying classification algorithms’ effectiveness is its confusion matrix, which is a table
portraying right and wrong categorizations. The quantitative measurements, including
precision, accuracy, recall, kappa, and F-measure, are computed from the confusion matrix.
Accuracy is the total of the values in the confusion matrix diagonal, divided by the total of
all cells’ values. In general, it is a global value that relates to the information percentage
exactly classified. Precision is the percentage of appropriately classified items that amount
to the total amount of classified items. It refers to the possibility that an object practically
belongs to the class that we have classified it as being a member of Recall is the percentage
of the amount of correctly classified tweets out of the total amount of tweets in the test sets
belonging to a specific class. F-score is the precision and recall geometric mean [42]. Kappa
is a measure that compares computed (observed) accuracy with expected accuracy (random
chance). Kappa is almost equal to or below 1. The closer to 1 indicates a better performance.
Values of 0 or less demonstrate the uselessness of the classification algorithm [43].

4.4. Temporal and Spatial Analysis

Exchanging crucial information on social networks creates proper options for raising
awareness of the disaster circumstance among individuals, and allows for more effective
targeting of their attempts by officials and relief organizations. So, in this section, based on
the results of multi-class classification, the temporal and spatial analysis will be introduced.

• Temporal analysis

Topics of the conversation differ on social networks throughout various crises. One
variable that could lead the conversation topic to vary is the different support demands
of the impacted individuals. To comprehend the temporal variability among various
classes of information, the distribution of categorized tweets was examined over time. The
classes incorporated in this research classification, which depict multiple requirements for
situational awareness, were injured, dead, and missing people; infrastructure; donation;
response effort; and other relevant information (this included information are about shelter
and supplies, caution and advice, and so on) [10].

• Spatial analysis (identifying region-particular topic)

LQ historically has been applied to measure manufacturing or job requirements in the
local and national economies. LQ could be used to identify the concentration of phenomena
of interest in relation to other events in the special region. In this study, LQ was used to
analyze the spatial concentration of discussion topics relating to earthquake crises on the
social network. LQ is depicted as a percentage proportion of a specific topic at spatial
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county unit as compared to the proportion of that exact topic in the state of California in
total. LQ is calculated according to Equation (1):

LQk
i =

Xk
i

∑n
i Xk

i
/

Yk
i

∑n
i Yk

i
(1)

where Xk
i represents the number of messages with particular topic k in county i, Yk

i rep-
resents the total number messages in county i, and n is the total number of counties in
California state. In other words, LQ analyzes the comparative concentration of particular
topics in a county in the state of California divided to other counties. A value of LQk

i higher
than 1 represents the concentration of particular topic k in county i was lower than other
counties in the state of California; and, a LQk

i lower than 1 shows a lesser concentration of
particular topic k in county i than the state. Hence, the particular subject with the greatest
LQ value greater than 1 is the most concentrated one for a specified county. In this regard,
in this study, the topic with the greatest LQ value was chosen as the topic particular to
the county.

4.5. Damage Assessment

Damage assessment based on social networks can be obtained by the activity-based
approach [4]. A standard activity measure is the ratio of messages posted for each scale
(spatial unit), which is substantially associated with per capital official damage [21]. In this
research, the number of damage-related tweets per population of each spatial unit was
applied for the estimation of earthquake damage in three spatial units, which included
county, city, and 10 × 10 km grids.

4.6. Validation

For validation, the damage identified by our approach was compared with the offi-
cial map by the US Geological Survey (USGS), which it was obtained from their portal.
The FEMA (Federal Emergency Management Agency) HAZUS loss model was used for
earthquake damage validation. We used fundamental Equation (2) to create a simulated
earthquake official damage map.

Loss = Hazard × Vulnerability × Exposure (2)

In Equation (2), Hazard represents earthquake intensity by USGS. The intensity of
the earthquake takes into account the magnitude of ground shaking at a distance from the
epicenter and offers a specific estimate of the probable damage. The HAZUS building grid
was applied for exposure and vulnerability variables, which included data on the compiled
building category and building costs [5]. The HAZUS map consists of two fields, AEL and
APEL. AEL has estimated annualized earthquake losses for a specific spatial unit. APEL is
annualized earthquake loss ratio (AELR), which is computed as the AEL proportion of a
particular spatial unit compared to that unit’s complete building value. AELR is multiplied
by 100 to enable analysis and conversation and is called an annualized earthquake loss
(APEL) percent. Therefore, the APEL field information, along with the PGA data layer, was
used to evaluate the results of the damage map with the HAZUS map [38].

To validate the produced damage map by each algorithm at a 10 × 10 km grid
spatial unit, confusion matrix, Spearman’s Rho, Kendall’s tau, and Pearson correlation
were applied. To validate the produced damage map at the city and county spatial units,
Spearman’s Rho, Kendall’s tau, and Pearson correlation were applied. The 10 × 10 km
grid spatial unit produced a damage map based on our approach, and the official map
was classified into 4 classes (weak, strong, very strong, and severe). Then, the statistical
indices, including accuracy, precision, recall, and F-measure, were computed based on the
confusion matrix according to Equations (3)–(6):

Overall Accuracy = TP+TN/(TP + FP+ TN+ FN) (3)
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Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F-score = 2 × ((Precision × Recall)/(Precision + Recall)) (6)

where:

• True Positives (TP): These are items in which predicted damage was also damage in
reality.

• True Negatives (TN): Predicted non-damage was, in reality, non-damage.
• False Positives (FP): Predicted damage was, in reality, non-damage.
• False Negatives (FN): Predicted non-damage was, in reality, damage.

The Pearson correlation is a commonly utilized index of correlation. It is a metric of
the linear correlation of two, i and j, parameters. Where i is the anount of damage estimated
by our approach at three spatial units and j is the value of official loss model at three
scales (spatial units). The range of values are among +1 to −1, in which 1 is a complete
positive linear correlation, 0 is no linear correlation, and −1 is a complete negative linear
correlation [44].

The Spearman’s Rho among two parameters is identical to the Pearson among these
two parameters’ rank values. Though Pearson’s evaluates linear relations, Spearman’s
evaluates monotonous (linear or non-linear) relations. Spearman’s Rho is computed as
Equation (7):

ρ = 1 −
6 ∑i F2

i
N(N2 − 1)

(7)

where N is the number of spatial units (city, county, and grids) and Fi = ri − si is the
difference between the factual ranking (damage ranking based on our approach at each
of the three spatial units) and the expected ranking (damage ranking based on official
loss model data at each of the three spatial units). It could be any value between −1
to 1, and the nearer the measure’s absolute value to 1, the greater the relationship and
−1 indicates a strong negative correlation. In addition, the value of 0 indicates a lack of
correlation. In contrast to the Pearson coefficient, the Spearman coefficient is not sensitive
to outliers since it works computations on the ranks, so the distinction among actual values
is meaningless [17].

Kendall’s tau is a non-parametric metric of the connection among the ranked data
columns. It is applied to assess the ordinal relation among two observed quantities. The
index gets back a value of 0 to 1, where 0 is no relationship, 1 is a complete relationship.
This coefficient considers two concepts of concordant and discordant. Concordant pairs are
how many larger ranks are below a certain rank, and discordant pairs are how many lower
ranks are below a certain rank. Kendall’s tau is computed according to Equation (8) [44]:

Kendall’s tau = (C − D/C + D) (8)

where, C and D, respectively, depict the sum of concordant and discordant columns.
Using these coefficients, we evaluated the validity of our approach at three scales

(spatial units) in identifying the most damaged regions compared to the official loss
model map.

5. Results

In this section, results of classification; temporal and spatial analysis; damage estima-
tion at the county-, city-, and grid-level via three algorithms; and damage map validation
are presented.

5.1. Classification

In this study, binary classification and multi-class classification have been done. Binary
classification is used to classify messages into two classes of damage and non-damage
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so that their results can finally be used to estimate the earthquake damage. Multi-class
classification is used to categorize messages to increase post-crisis situational awareness and
to monitor the process of changing conditions over time and to determine the concentration
of various topics in different locations.

For classification, the pre-processed data were divided into training and test data.
Then, based on the training data of each trained classification model and then using the
test data, the accuracy of the prediction models were evaluated.

• Binary classification

For binary classification, the final dataset comprised 26,942 tweets that were man-
ually labeled to produce the training dataset of 5038 (including 4031 non-damage and
1007 damage) tweets. This dataset was divided into two sections. 70% of them were
used for training and 30% of them are used for testing. Precision, accuracy, recall, Kappa,
and F-measure were used for evaluating the performance of binary classification algo-
rithms. Table 1 demonstrates the performance of Naive Bayes, SVM, and deep learning
binary classification.

Table 1. Performance of Naive Bayes, SVM, and deep learning binary classification.

Binary Classification
Algorithm Accuracy F-measure Recall Precision Kappa

Naive Bayes 71.22% 63.03% 64.91% 61.25% 0.249

Deep Learning 84.74% 76.17% 75.64% 76.71% 0.520

SVM 89.30% 81.22% 79.08% 85.61% 0.634

In Table 1, precision and recall were obtained from the average of two damage and
non-damage classes by equal weight. The results of Table 1 show that the SVM algorithm
performed better in all the indices and Naive Bayes algorithm performed poorly in all the
indices. The deep learning algorithm also performed moderately in all of the indicators.
However, its results were closer to SVM than to Naive Bayes.

• Multi-class classification

For multi-class classification, Neguyan et al. [16] datasets, including 14,006 earthquake-
labeled tweets (Napa and Nepal earthquake labeled datasets (https://crisisnlp.qcri.org/),
accessed on 16 October 2019) were used to create the training dataset. This dataset was
split into two categories—60% of them were applied for training and 40% of them were
applied for testing. The results show SVM classifier accurately identified damage-related
messages. Precision, accuracy, recall, Kappa, and F-measure were used for evaluating the
performance of multi-class classification algorithms. Table 2 demonstrates the performance
of Naive Bayes, SVM, and deep learning multi-class classification.

Table 2. Performance of Naive Bayes, SVM, and deep learning multi-class classification.

Multi-Class Classification
Algorithm Accuracy F-Measure Recall Precision Kappa

Naive Bayes 79.81% 78.46% 81.33% 75.79% 0.662

Deep Learning 86.76% 83.43% 80.26% 86.86% 0.762

SVM 90.25% 81.22% 88.58% 93.26% 0.825

In Table 2, precision and recall were obtained from the average of all five classes by
equal weight. The results of Table 1 show that the SVM algorithm performed better in all
the indices and maïve Bayes algorithm performed relatively poorly in all the indices. The
deep learning algorithm also performed moderately in all of the indicators.

https://crisisnlp.qcri.org/
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5.2. Temporal and Spatial Analysis

In this section temporal and spatial analysis are presented.

• Temporal analysis

Individuals’ concerns about a disaster will vary as the disaster evolves. For example,
at the beginning of an earthquake, most of the messages may be related to damage and
infrastructure, followed by discussions about donations and endowments. The topics
shared on social networks are almost an example of the public’s thoughts. In this study,
temporal patterns of binary classification topics (damage and non-damage) and multi-class
classification topics (injured, dead, and missing people; infrastructure; donation; response
effort; and other relevant information) via three classification algorithms were investigated.

Figure 4 shows the number of tweets classified using three classification algorithms,
Naive Bayes, SVM, and deep learning, on two classes of damage and non-damage on
each day one week after the earthquake (August 24). Naive Bayes classification algorithm
(Figure 4) showed that among the tweets collected on the day of the earthquake, 26.05% of
the tweets (4698 tweets) reported earthquake damage and the rest (13,336 tweets) did not
report damage. In addition, most of the damage-related messages related to the earthquake
day and decreased in the following days. In addition, the results of the SVM classification
algorithm (Figure 4) showed that among the tweets collected on the day of the earthquake,
6.61% of tweets (1193 tweets) reported earthquake damage and the rest of the tweets
(16,841 tweets) did not report damage. After the day of the earthquake, 5185 tweets were
collected, out of the tweets collected after the day of the earthquake, 12.44% of the tweets
(645 tweets) showed damage caused by the earthquake and the rest (4540 tweets) reported
no damage. The results of the deep learning algorithm (Figure 4) also showed that 13.36% of
tweets (2410 tweets) reported damage from earthquakes on the day of the earthquake and
the rest of tweets (15,624 tweets) did not show damage. Among the tweets collected after
the day of the earthquake, 25.86% of tweets (equivalent to 1341 tweets) reported damage
caused by the earthquake and the rest of tweets (3844 tweets) did not show damage.

In general, in all three classification algorithms, most of the damage-related messages
corresponded to the earthquake day and decreased in the following days. In addition,
Naive Bayes extracted the most damage-related messages and SVM has extracted the least
damage-related messages.
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Figure 4. Number of tweets classified using the three, classification algorithms, Naive Bayes, SVM and deep learning, in
damage and non-damage classes on each day one week after the earthquake.

Figure 5 shows the distribution of tweets classified in five classes on each day a week
before and after the earthquake (24 August) for the Naive Bayes, SVM, and deep learning
classification algorithms. According to the results of Naive Bayes (Figure 5), it can be seen
that the tweets collected on the day of the earthquake had the lowest number of tweets for
the “Injured_Dead_and_Missing_people”, “Donation”, and “Infrastructure” classes, respec-
tively with 1.54 percent (279 tweets), 4.82 percent (869 tweets), and 5.27 percent (951 tweets).
The highest number of tweets also belonged to the “Other_relevant_information” and “Re-
sponse_efforts” classes, with 80.71% (14,556 tweets) and 7.64% (1379 tweets), respectively.
In addition, among the tweets collected in the days following the earthquake, 0.62%
(32 tweets), 0.73% (39 tweets), and 4.32% (224 tweets) belonged to the “Donation”, “In-
jured_Dead_and_Missing_people”, and “Infrastructure” classes, and 5.57% (289 tweets)
and 88.74% (4601 tweets) tweets belonged to the “Injured_Dead_and_Missing_people” and
“Other_relevant_information” classes, respectively. According to SVM algorithm results
(Figure 5), no tweets collected on the day of the earthquake were classified in the “In-
jured_Dead_and_Missing_people”, “Donation”, and “Infrastructure” classes. The number
of tweets in the “Other_relevant_information” and “Response_efforts” classes was 99.97%
(18,030 tweets) and 7.64% (1379 tweets), respectively, among the tweets collected on the day
of the earthquake. The results of the deep learning model (Figure 5) also showed that the
number of tweets collected on the day of the earthquake had the lowest number of tweets
for the “Donation”, “Infrastructure”, and “Response_efforts” classes, respectively, with
0.38% (104 tweets), 2.96% (797 tweets), and 6.62% (1779 tweets). The highest number of tweets
also belonged to the “Other_relevant_information” and “Injured_Dead_and_Missing_people”
classes, with 80.79% (21,711 tweets) and 9.23% (2482 tweets), respectively. In addition, the
tweets collected in the days after the earthquake, amounting to of 0.6% (31 tweets), 4.38%
(227 tweets), and 5.01% (260 tweets), related to classes “Donation”, “Infrastructure”, and
“Response_efforts”, respectively. In addition, 5.09% (264 tweets) and 84.92% (4403 tweets) be-
longed to the classes “Injured_Dead_and_Missing_people” and “Other_relevant_information”,
respectively.
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Figure 5. Distribution of classified tweets in 5 classes on different days, a week after the earthquake (August 24) in the
three—Naive Bayes, SVM, and deep learning—classification algorithms.

Overall, most of the messages classified in the three algorithms were in the class
“Other_relevant_information”. Additionally, most of the messages related to infrastructure
damages and injured, dead, and missing people were reported on the day of the earthquake.

Figure 6 shows the total distribution of classified tweets into the two classes of damage
and non-damage at each hour of the earthquake day, by the three Naive Bayes, SVM,
and deep learning classification algorithms. In total, 42% (11,293 tweets) of tweets were
collected between 9 am and 12 pm. The results of Naive Bayes classification algorithm
(Figure 6) showed that 25.61% of the collected tweets from 9 am to 12 noon (2893 tweets)
reported damage, and the rest of the tweets (8403 tweets) reported no damage. In addition,
28.39 percent of the tweets (7630 tweets) were collected between the hours of 14 and 19, of
which 24.66 percent (1882 tweets) reported earthquake damage and 5748 tweets reported
no damage. The SVM algorithm’s results (Figure 6) showed that of the 1293 tweets collected
between 9 am and 12 noon, 4.77 percent of tweets (539 tweets) reported damage and the
rest of the tweets (including 10,757 tweets) reported no damage. In addition, 28.39 percent
of tweets (7630 tweets) were collected between the hours of 14 and 19, of which 9.22 percent
(704 tweets) reported earthquake damage and 6926 reported no damage. The results
of the deep learning algorithm also showed that of the 11,293 tweets collected between
9 am and 12 pm, 10% of tweets (1119 tweets) reported damage, and the rest of the tweets
(10,174 tweets) reported no damage. A total of 28.39% of the tweets (7630 tweets) were
collected between the hours of 14 and 19, of which 18.6% (1422 tweets) reported earthquake
damage and 6208 reported no damage.
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Figure 6. Number of tweets classified using the three Naive Bayes, SVM, and deep learning classification algorithms in two
damage and non-damage classes in each hour on the day of earthquake.

In general, all algorithms had a sudden increase in the number of tweets at the time of
the earthquake (10 am). There was also another increase in the number of messages at 4 pm,
which may be related to the end of office hours and increased activity on social media.

Figure 7 shows the distribution of tweets, classified into five classes, by hour on the
day of the earthquake (24 August) for the three—Naive Bayes, SVM, and deep learning—
classification algorithms. Examination of the results of Naive Bayes classification al-
gorithm (Figure 7) showed that most tweets classified between 9 am and 12 pm be-
longed to the classes “Other_relevant_information” and “Response_efforts” with 79.04%
(8929 tweets) and 7.26% (821 tweets), respectively. In addition, tweets for the “Donation”,
“Infrastructure”, and “Injured_Dead_and_Missing_people” classes amounted to 6.94%
(785 tweets), 5.01% (566 tweets), and 1.72% (195 tweets), respectively. According to SVM
algorithm results (Figure 7), it can be seen that all tweets classified between 9 am and
12 pm belonged to the “Other_relevant_information” class and only one tweet belongs
to the “Infrastructure” class. In addition, the deep learning algorithm results (Figure 7)
showed that most tweets classified between 9 am and 12 pm belonged to the classes
“Other_relevant_information” and “Injured_Dead_and_Missing_people”, with 33.64%
(9041 tweets) and 6.58 percent (1770 tweets), respectively. Additionally the tweets for
the “Infrastructure”, “Response_efforts”, and “Donation” classes were 0.98% (265 tweets),
0.67% (182 tweets), and 0.13% (35 tweets) respectively

Figure 7 shows a sudden increase in the number of tweets, at the time of the earthquake
(10 am). In addition, the highest increase was for high-urgency classes.

• Spatial topic concentration

The spatial analysis of social networks could assist us in comprehending the spatial
distribution and concentration of emergency topics. For policymakers, this would be
helpful for responding to the disaster in a timely manner and with a full understanding of
the public concern.



Appl. Sci. 2021, 11, 9737 17 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 31 
 

“Other_relevant_information” and “Injured_Dead_and_Missing_people”, with 33.64% 

(9041 tweets) and 6.58 percent (1770 tweets), respectively. Additionally the tweets for the 

“Infrastructure”, “Response_efforts”, and “Donation” classes were 0.98% (265 tweets), 

0.67% (182 tweets), and 0.13% (35 tweets) respectively 

Figure 7 shows a sudden increase in the number of tweets, at the time of the 

earthquake (10 am). In addition, the highest increase was for high-urgency classes. 

 

Figure 7. Distribution of classified tweets, in 5 classes, per hour on the day of the earthquake (August 24) according to the 

Naive Bayes, SVM, and deep learning classification algorithms. 

• Spatial topic concentration 

The spatial analysis of social networks could assist us in comprehending the spatial 

distribution and concentration of emergency topics. For policymakers, this would be 

helpful for responding to the disaster in a timely manner and with a full understanding 

of the public concern. 

Figure 8 shows the LQ analysis of the tweets’ spatial topic concentration at the county 

scale, classified by Naive Bayes (a), SVM (b), and deep learning (c) in the two classes of 

damage and non-damage. According to Figure 8a, most tweets collected from the counties 

of Napa, Yolo, Solano, Contra Costa, San Joaquin, San Francisco, Almeda, and Santa Clara 

showed damage. However, according to Figure 8b, the results of the SVM algorithm 

showed that most tweets collected from Napa, Lake, Solano, San Francisco, and Santa 

Clara counties and other counties reported no damage. In addition, according to the LQ 

map derived from the deep learning algorithm results (Figure 8c), most damage tweets 

were reported in Napa, Lake, San Francisco, and Santa Clara counties. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
:0
0

1
:0
0

2
:0
0

3
:0
0

4
:0
0

5
:0
0

6
:0
0

7
:0
0

8
:0
0

9
:0
0

1
0
:0
0

1
1
:0
0

1
2
:0
0

1
3
:0
0

1
4
:0
0

1
5
:0
0

1
6
:0
0

1
7
:0
0

1
8
:0
0

1
9
:0
0

2
0
:0
0

2
1
:0
0

2
2
:0
0

2
3
:0
0

N
u

m
b

er
 o

f 
tw

ee
ts

Donation Naïve Bayes

Donation SVM

Infrastructure Deep Learning

Infrastructure Naïve Bayes

Infrastructure SVM

Injured_Dead_and_Missing_people Deep

Learning

Injured_Dead_and_Missing_people Naïve

Bayes

Injured_Dead_and_Missing_people SVM

Other_relevant_information Deep Learning

Other_relevant_information Naïve Bayes

Other_relevant_information SVM

Response_efforts Deep Learning

Response_efforts Naïve Bayes

Response_efforts SVM

Response_efforts SVM

Figure 7. Distribution of classified tweets, in 5 classes, per hour on the day of the earthquake (August 24) according to the
Naive Bayes, SVM, and deep learning classification algorithms.

Figure 8 shows the LQ analysis of the tweets’ spatial topic concentration at the county
scale, classified by Naive Bayes (a), SVM (b), and deep learning (c) in the two classes of
damage and non-damage. According to Figure 8a, most tweets collected from the counties
of Napa, Yolo, Solano, Contra Costa, San Joaquin, San Francisco, Almeda, and Santa Clara
showed damage. However, according to Figure 8b, the results of the SVM algorithm
showed that most tweets collected from Napa, Lake, Solano, San Francisco, and Santa
Clara counties and other counties reported no damage. In addition, according to the LQ
map derived from the deep learning algorithm results (Figure 8c), most damage tweets
were reported in Napa, Lake, San Francisco, and Santa Clara counties.

In all algorithms, Napa, as a center of the earthquake, was considered as having the
primary concentration of damage-related messages in all algorithms. This indicates that
our approach has been able to identify the damage well and has considered the earthquake
center one of the most affected counties. In addition, San Francisco and Santa Clara
counties were considered to be damage concentration counties. This may be due to the
high urbanization in these two cities, which has led to increased use of social networks
and, consequently, more damage-related messages. It is, therefore, suggested that future
research consider the effects of urbanization and eliminate its impact on damage estimation.
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Figure 9 shows the LQ analysis of the tweets’ spatial topic concentration at the county
scale, classified by Naive Bayes (a), SVM (b), and deep learning (c) in the two classes of
damage and non-damage. According to the results of the Naive Bayes algorithm (Figure 9a),
most of the tweets collected from the Lake, Sonoma, and Santa Clara counties belonged to
the “Injured_Dead_and_Missing_people” class, and most of the tweets reported by Marin,
Solano, Contra Costa, and Stanislaus were in the “Response_efforts” class. Most of the
tweets reported in Napa were of the “Infrastructure” class, and the tweets in Yolo, Almeda,
San Francisco, and San Mateo were in the “Donation” class. This indicates that in the center
of the earthquake and nearby counties, most of the messages focused on infrastructure
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damage, injured people, and response, but moving away from the earthquake center, other
issues, such as donations, arose.
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While according to the LQ map of the SVM algorithm (Figure 9b), most of the tweets
collected in San Francisco and San Mateo belonged to the “Response_efforts label” class,
and most of the tweets reported in Napa belonged to the “Infrastructure” class. In other
counties, most of the reported tweets belonged to the “Other_relevant_information” class.
The LQ map of the deep learning algorithm showed that most of the tweets collected from
the Almeda and San Francisco counties belonged to the “Injured_Dead_and_Missing_people”
class and most of the tweets reported in Yolo, Placer, El Dorado, Sacramento, San Joaquin,
Stanislaus, Santa Clara, and San Mateo belonged to the “Response_efforts” class. In
addition, most of the tweets in the Marin and Contra Costa counties were from the “Infras-
tructure” class, and the Lake, Napa, and Sonoma tweets were from the “Donation” class.

Based on Figure 9, it can be generally acknowledged that most of the infrastructure
damage-related messages focused on Napa County. This indicates that most damages to
infrastructure, buildings, and roads occurred in the center of the earthquake.

5.3. Damage Estimation

• Damage Estimation at the county scale

Figure 10 shows the estimated damage map from Naive Bayes, SVM, and deep
learning algorithms at the county scale. Based on the results of the three predictive
algorithms, Napa and Sonoma counties had the most damage, and San Joaquin and
San Mateo had the least damage. The results from both Naive Bayes and deep learning
algorithms showed the “violent” damage class for San Francisco and “strong” damage
class for Lake; while the results of the SVM algorithm predicted the “strong” earthquake
damage class for San Francisco and “violent” and “strong” earthquake damage classes for
Lake. Generally, according to Figure 10, with the distance from the earthquake center, the
amount of damage was reduced, so because of the distance from the epicenter, people were
less affected by the earthquake and published fewer earthquake-related messages.
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• Damage Estimation at the city scale

Figure 11 shows the estimated damage map from Naive Bayes, SVM, and deep
learning at the city scale. Based on Figure 11, the estimated damage map for all three
predictive algorithms showed most of the earthquake losses were in cities located in
the counties of Napa, San Francisco, Contra Costa, Almeda, Santa Clara, and Solano.
In addition, the results of the SVM classification model showed that little damage was
estimated for the cities located in San Joaquin, whereas the results from the Naive and deep
learning models have predicted a great deal of damage for these cities.
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• Damage Estimation at the 10 × 10 km grids scale

Figure 12 shows the estimated damage map from Naive Bayes, SVM, and deep
learning algorithms at the 10 × 10 km grids scale. The results of earthquake damage
estimation by three predictive algorithms showed that with increasing distance from the
center of the earthquake, the intensity of earthquake damage was reduced.
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5.4. Damage Validation

In this section, the estimated damage maps from each of the Naive, SVM, and deep
learning algorithms were validated using the official damage map at three county, city, and
10 by 10 km grids scales. The official damage map, which was computed based on the
FEMA HAZUS loss model, is shown at the three, county, city, and 10 by 10 km grid, scales
in Figure 13.
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• Damage validation at the county scale

Table 3 presents the results of the validation of the estimated damage map from
Naive Bayes, SVM, and deep learning at the county scale with official data. Based on the
validation results by the three indices of Kendall’s tau, Pearson correlation, and Spearman’s
rho, the deep learning classifier was selected as the best model at the county scale. In
additino, Kendall’s tau and Spearman’s rho indexes, which were used to rank values,
performed better than Pearson indices, which worked with the values themselves.

Table 3. The results of validation of the estimated damage map from Naive Bayes, SVM, and deep
learning at the county scale.

Algorithm Spearman’s Rho Pearson Correlation Kendall’s Tau

Naive Bayes 0.647 0.539 0.550

Deep Learning 0.8205 0.5217 0.6666

SVM 0.6655 0.5191 0.5714

• Damage validation at city scale

Table 4 presents the results of the validation of the estimated damage map from Naive
Bayes, SVM, and deep learning at the city scale with official data. Based on the validation
results by the three indices of Kendall’s tau, Pearson correlation, and Spearman’s rho, the
SVM classifier was selected as the best model at the city scale.
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Table 4. The results of validation of the estimated damage map from Naive Bayes, SVM, and deep
learning at the city scale.

Algorithm Spearman’s Rho Pearson Correlation Kendall’s Tau

Naive Bayes −0.2132 0.4485 −0.1424

Deep Learning 0.3216 0.4705 0.1975

SVM 0.4131 0.53 0.3607

• Damage Validation at the 10 × 10 km grids scale

Table 5 presents the results of the validation of the estimated damage map from Naive
Bayes, SVM, and deep learning at the 10 × 10 km grids scale with official data. Based
on the validation results by the three indices of Kendall’s tau, Pearson correlation, and
Spearman’s rho, the SVM classifier was selected as the best model at the city scale.

Table 5. The results of validation of the estimated damage map from Naive Bayes, SVM, and deep
learning at the 10 × 10 km grids scale.

Algorithm Spearman’s Rho Pearson Correlation Kendall’s Tau

Naive Bayes 0.90 0.18 0.79

Deep Learning 0.9065 0.1821 0.7983

SVM 0.922 0.157 0.824

Table 6 presents the results of validation of the estimated damage map from Naive
Bayes, SVM, and deep learning at the 10 × 10 km raster grids scale with accuracy, precision,
recall, and F-score indices. These indices were obtained from the confusion matrix. Based
on the validation results by the four indices of accuracy, precision, recall, and F-score, the
Naive Bayes classifier was selected as the best model at the 10 × 10 km raster grids.

Table 6. The results of validation of the estimated damage map from Naive Bayes, SVM, and deep
learning at the 10 × 10 km raster grids scale with accuracy, precision, recall, and F-score indices.

Algorithm Accuracy Precision Recall F-Score

Naive Bayes 35.20% 35% 42.7% 38.66%

Deep Learning 30.20% 30.2% 32.85% 31.47%

SVM 29.40% 29.69% 32% 30.80%

Figure 14 shows the area values (km2) included by each class in our estimated damage
map and FEMA HAZUS loss model map for the Naive Bayes, SVM, and deep learning
algorithms. Obviously, the area covered by the four classes in the FEMA HAZUS loss
model map for all three algorithms must be equal. In addition, the areas covered by the
four classes in the estimated damage map for the two Naive Bayes and SVM algorithms
were approximately equal. However, the obtained area corresponded to the results of the
four classes in the damage map for the deep learning algorithm, on average 2.8 times more
than the same value in the two Naive Bayes and SVM algorithms. In general, the results of
the deep learning algorithm in the area covered by four classes were closer to the FEMA
HAZUS loss model map (official damage map).
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Figure 14. The area values (km2) included by each class in our estimated damage map and FEMA HAZUS loss model map
for the Naive Bayes (a), SVM (b), and deep learning (c) algorithms.

Figure 15 shows the population (in units of a thousand) covered by each class in our
estimated damage map and FEMA HAZUS loss model map for the Naive Bayes, SVM,
and deep learning algorithms. Obviously, the areas covered by the four classes in the
FEMA HAZUS loss model map for all three algorithms must be equal. The populations
encompassed by the three classes of weak, strong, and violent were approximately equal
in the estimated damage map for the Naive Bayes and SVM algorithms. However, the
population size of the moderate class in the Naive Bayes algorithm was almost 800,000 units
higher than the similar value in the SVM algorithm.
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Additionally, the covered populations corresponded to the results of the four classes
in the estimated damage map for the deep learning algorithm, on average 0.18 times lower
than the same value in the Naive Bayes and SVM algorithms. In general, the results of the
SVM algorithm in the populations covered by three classes of weak, moderate, and strong
were closer to the FEMA HAZUS loss model map (official damage map).

6. Conclusions and Suggestions

The earthquake severity is among the significant elements of the crisis response and
crisis services decision-making procedures. Precise and quick estimates of the severity will
assist in lessening the total damage and the number of fatalities following an earthquake.
Current severity evaluation techniques manage several different sources of data, which
could be split into two major groups. The first group of information is that collected from
physical instruments, including seismographs and accelerometers, whereas the second
group including information achieved from social monitors, such as eyewitness reports of
the earthquake’s effects. Therefore, social networks have evolved as a vital information
source that could be utilized to boost emergency management. In this regard, this study
proposed an approach that applied social media data for an earthquake damage assessment
at the county, city, and 10 × 10 km grids scale using Naive Bayes, SVM, and deep learning
classification algorithms.

In this study, binary classification and multi-class classification have been done. Binary
classification was used to classify messages into two classes of damage and non-damage so
that their results could be used to estimate the earthquake damage. Multi-class classification
was used to categorize messages to increase post-crisis situational awareness and to monitor
the process of changing conditions over time and to determine the concentration of various
topics in different locations. For binary classification and multi-class classification, the
SVM algorithm performed better in all the indices, and Naive Bayes algorithm performed
poorly in all the indices. The deep learning algorithm also performed moderately in all
of the indicators. This may be due to the small size of the training dataset. Therefore, for
better evaluation of deep learning performance, the larger dataset is recommended for
future research. In social network studies, classification accuracies mentioned throughout
disasters vary from 0.6 to 0.9. Therefore, all three classification algorithms performed well.

Investigating the temporal dissemination of the topics of the messages being debated
will assist in comprehending the disaster evolvement and how the individual perceives the
disaster and responds to it. Based on the results of three binary classification algorithms,
it can be concluded that most of the damage-related messages were sent on the day of
the earthquake and gradually decreased in the days following the earthquake. Therefore,
in the early days of the earthquake, people are more concerned about damage and as
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time passes, other issues are more important to them. Based on the results of multi-class
classification algorithms, most of the messages classified in the three algorithms were
in the class “Other_relevant_information”. In addition, most of the messages related to
infrastructure damages and injured, dead and missing people were reported on the day of
the earthquake. This indicates that after the crises that have not been highly destructive,
more people follow incident reports and share most of the post-accident alert tips. Based
on the results of the hourly temporal pattern analysis, all algorithms had a sudden increase
in the number of tweets, at the time of the earthquake (10 am).

More attention is being paid to integrating the spatial and content data of social
networks. LQ could offer extra perspectives by integrating spatial and content data that go
beyond the common point pattern analysis and simple mapping. In this study, LQ was
used for identifying area-specific topics. Based on the results of LQ at the county scale in
all algorithms, Napa, as the center of the earthquake, was considered as having the greatest
concentration of damage-related messages in all algorithms.

In this study, disaster-related messages during and after the earthquake were used for
damage estimation at three scales. According to county, city, and 10 × 10 km grid scale
damage assessment results, Napa (as the earthquake center) suffered the most damage,
and with the distance from the earthquake center, the amount of damage was reduced.

Based on the results of the validation of the estimated damage map with official data,
SVM performed better for damage estimation, followed by deep learning. In addition,
at the county scale, algorithms showed better performances. This indicates that when
analyzing the amount of damage based on social networks, it is better to use the county
scale because the results will be more reliable. In addition, Kendall’s tau and Spearman’s
rho indexes, which were used to rank values, performed better than Pearson correlation,
which worked with the values themselves. This suggests that rather than using social
networks to assess the amount of the damage, use it to prioritize areas and rank them
against each other. This issue is very important in the early stages of earthquake relief.

The present research has several limitations. In this study, the five-tier classification
was applied for classifying earthquake-related messages, Whereas a fine-grained classifying
scheme with more classes leads to a lot of comprehensive social reactions to the catastrophe.
In addition, an external dataset was used as a training dataset to train the classifying
algorithms for multi-class classification, and we did not manually check the resulting
dataset to find any incorrectly labeled texts. This is recommended for future researches.

This method is essentially based on the topics with the highest LQ value and other
topics with lower LQ values in that spatial scale were dismissed. Such topics, however,
could also have a crucial effect in exposing situational awareness.

In addition, social network detectors are distinct from real detectors, and among
many other variables, their propagation will be influenced by demographic financial and
societal differences. Additional research is, therefore, needed to examine the feasibility of
integrating more variables into our approach to make it more logical and to provide even
more tangible information to assist disaster response efforts more effectively.

Additionally, our approach would take into consideration more sources of data re-
garding the various facet of disaster situations. Social networks are only one of the various
sources of information for damage assessment, and data from other sources could also
be very useful for emergency management, including remote sensing images, seismic
networks, and so on.

Author Contributions: Conceptualization, S.A. and M.R.M.; methodology, S.A.; software, S.A.;
validation, S.A., and M.R.M.; formal analysis, S.A.; investigation, S.A. and M.R.M.; resources, M.R.M.;
data curation, M.R.M.; writing—original draft preparation, S.A.; writing—review and editing, S.A.
and M.R.M.; visualization, S.A.; supervision, M.R.M.; project administration, M.R.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2021, 11, 9737 29 of 30

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This project was partially supported by Iran National Science Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Ruan, S.; Wang, T.; Qiao, M. Rapid estimation of an earthquake impact area using a spatial logistic growth model based

on social media data. Int. J. Digit. Earth 2018, 12, 1–20. [CrossRef]
2. Musaev, A.; Pu, C. Landslide information service based on composition of physical and social sensors. In Proceedings of the 2017

IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; IEEE: Piscataway, NJ,
USA; pp. 1415–1416.

3. Burks, L.; Miller, M.; Zadeh, R. Rapid estimate of ground shaking intensity by combining simple earthquake characteristics with
Tweets. In Proceedings of the Tenth US National Conference on Earthquake Engineering Frontiers of Earthquake Engineering,
Anchorage, USA, 21–25 July 2014.

4. Cheng, C.; Zhang, T.; Su, K.; Gao, P.; Shen, S. Assessing the Intensity of the Population Affected by a Complex Natural Disaster
Using Social Media Data. ISPRS Int. J. Geo-Inf. 2019, 8, 358. [CrossRef]

5. Resch, B.; Usländer, F.; Havas, C. Combining machine-learning topic models and spatiotemporal analysis of social media data for
disaster footprint and damage assessment. Cartogr. Geogr. Inf. Sci. 2018, 45, 362–376. [CrossRef]

6. Li, X.; Caragea, D.; Zhang, H.; Imran, M. Localizing and quantifying infrastructure damage using class activation mapping
approaches. Soc. Netw. Anal. Min. 2019, 9, 44. [CrossRef]

7. Peters, R.; de Albuquerque, J.P. Investigating images as indicators for relevant social media messages in disaster management. In
Proceedings of the ISCRAM 2015 Conference, Kristiansand, Norway, 24–27 May 2015.

8. Gründer-Fahrer, S.; Schlaf, A.; Wiedemann, G.; Heyer, G. Topics and topical phases in German social media communication
during a disaster. Nat. Lang. Eng. 2018, 24, 221–264. [CrossRef]

9. Shan, S.; Zhao, F.; Wei, Y.; Liu, M. Disaster management 2.0: A real-time disaster damage assessment model based on mobile
social media data—A case study of Weibo (Chinese Twitter). Safety Sci. 2019, 115, 393–413. [CrossRef]

10. Alam, F.; Ofli, F.; Imran, M. Descriptive and visual summaries of disaster events using artificial intelligence techniques: Case
studies of Hurricanes Harvey, Irma, and Maria. Behav. Inf. Technol. 2019, 39, 1–31. [CrossRef]

11. Eivazy, H.; Malek, M.R. Simulation of natural disasters and managing rescue operations via geospatial crowdsourcing services in
tensor space. Arab. J. Geosci. 2020, 13, 1–15. [CrossRef]

12. Wu, K.; Wu, J.; Ding, W.; Tang, R. Extracting disaster information based on Sina Weibo in China: A case study of the 2019 Typhoon
Lekima. Int. J. Dis. Risk Reduct. 2021, 60, 102304. [CrossRef]

13. Corbane, C.; Lemoine, G.; Kauffmann, M. Relationship between the spatial distribution of SMS messages reporting needs and
building damage in 2010 Haiti disaster. Nat. Hazards Earth Syst. Sci. 2012, 12, 255–265. [CrossRef]

14. Liang, Y.; Caverlee, J.; Mander, J. Text vs. images: On the viability of social media to assess earthquake damage. In Proceedings
of the 22nd international conference on world wide web, Rio de Janeiro, Brazil, 13–17 May 2013; ACM: New York, NY, USA;
pp. 1003–1006.

15. Cresci, S.; Avvenuti, M.; La Polla, M.; Meletti, C.; Tesconi, M. Nowcasting of earthquake consequences using big social data. IEEE
Int. Comput. 2017, 21, 37–45. [CrossRef]

16. Nguyen, D.T.; Ofli, F.; Imran, M.; Mitra, P. Damage assessment from social media imagery data during disasters. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney, Australia,
31 July 2017; ACM: New York, NY, USA; pp. 569–576.

17. Avvenuti, M.; Cresci, S.; Del Vigna, F.; Tesconi, M. On the need of opening up crowdsourced emergency management systems. AI
Soc. 2017, 33, 55–60. [CrossRef]

18. Avvenuti, M.; Cresci, S.; Del Vigna, F.; Fagni, T.; Tesconi, M. CrisMap: A big data crisis mapping system based on damage
detection and geoparsing. Inf. Syst. Front. 2018, 20, 993–1011. [CrossRef]

19. Zou, L.; Lam, N.S.; Cai, H.; Qiang, Y. Mining Twitter data for improved understanding of disaster resilience. Ann. Am. Assoc.
Geogr. 2018, 108, 1422–1441. [CrossRef]

20. Mouzannar, H.; Rizk, Y.; Awad, M. Damage Identification in Social Media Posts using Multimodal Deep Learning. In Proceedings
of the 15th ISCRAM Conference, Rochester, NY, USA, 20–23 May 2018.

21. Kropivnitskaya, Y.; Tiampo, K.F.; Qin, J.; Bauer, M.A. Real-time earthquake intensity estimation using streaming data analysis
of social and physical sensors. In Earthquakes and Multi-Hazards Around the Pacific Rim; Birkhäuser: Cham, Switzerland, 2018;
pp. 137–155.

22. Fernandez-Marquez, J.L.; Francalanci, C.; Mohanty, S.; Mondardini, R.; Pernici, B.; Scalia, G. E 2 mC: Improving Rapid Mapping
with Social Network Information. In Organizing for the Digital World; Springer: Cham, Switzrtland, 2019; pp. 63–74.

23. Mendoza, M.; Poblete, B.; Valderrama, I. Nowcasting earthquake damages with Twitter. EPJ Data Sci. 2019, 8, 3. [CrossRef]
24. Ahadzadeh, S.; Malek, M.R. Earthquake Damage Assessment Based on User Generated Data in Social Networks. Sustainability

2021, 13, 4814. [CrossRef]

http://doi.org/10.1080/17538947.2018.1497100
http://doi.org/10.3390/ijgi8080358
http://doi.org/10.1080/15230406.2017.1356242
http://doi.org/10.1007/s13278-019-0588-4
http://doi.org/10.1017/S1351324918000025
http://doi.org/10.1016/j.ssci.2019.02.029
http://doi.org/10.1080/0144929X.2019.1610908
http://doi.org/10.1007/s12517-020-05402-x
http://doi.org/10.1016/j.ijdrr.2021.102304
http://doi.org/10.5194/nhess-12-255-2012
http://doi.org/10.1109/MIC.2017.265102211
http://doi.org/10.1007/s00146-017-0709-4
http://doi.org/10.1007/s10796-018-9833-z
http://doi.org/10.1080/24694452.2017.1421897
http://doi.org/10.1140/epjds/s13688-019-0181-0
http://doi.org/10.3390/su13094814


Appl. Sci. 2021, 11, 9737 30 of 30

25. Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes Twitter users: Real-time event detection by social sensors. In Proceedings
of the 19th international conference on World wide web, Raleigh North Carolina USA, 26–30 April 2010; ACM: New York, NY,
USA; pp. 851–860.

26. Earle, P.S.; Bowden, D.C.; Guy, M. Twitter earthquake detection: Earthquake monitoring in a social world. Ann. Geophys. 2012, 54,
708–715.

27. Huang, Q.; Cervone, G.; Jing, D.; Chang, C. DisasterMapper: A CyberGIS framework for disaster management using social media
data. In Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, Seattle, WA,
USA, 3 November 2015; ACM: New York, NY, USA; pp. 1–6.

28. Wang, Z.; Ye, X. Space, time, and situational awareness in natural hazards: A case study of Hurricane Sandy with social media
data. Cartogr. Geogr. Inf. Sci. 2019, 46, 334–346. [CrossRef]

29. Yin, J.; Lampert, A.; Cameron, M.; Robinson, B.; Power, R. Using social media to enhance emergency situation awareness. IEEE
Int. Syst. 2012, 27, 52–59. [CrossRef]

30. Kireyev, K.; Palen, L.; Anderson, K. Applications of topics models to analysis of disaster-related Twitter data. In NIPS Workshop
on Applications for Topic Models: Text and Beyond; NIPS: Whistler, BC, Canada, 2009; Volume 1.

31. Khare, P.; Burel, G.; Maynard, D.; Alani, H. Cross-Lingual Classification of Crisis Data. In International Semantic Web Conference;
Springer: Cham, Switzerland, 2018; pp. 617–633.

32. Neppalli, V.K.; Caragea, C.; Caragea, D. Deep Neural Networks versus Naive Bayes Classifiers for Identifying Informative Tweets
during Disasters. In Proceedings of the 15th ISCRAM Conference, Rochester, NY, USA, 20–23 May 2018.

33. Ragini, J.R.; Anand, P.R.; Bhaskar, V. Mining crisis information: A strategic approach for detection of people at risk through social
media analysis. Int. J. Disaster Risk Reduct. 2018, 27, 556–566. [CrossRef]

34. Burel, G.; Alani, H. Crisis Event Extraction Service (CREES)-Automatic Detection and Classification of Crisis-related Content on
Social Media. In Proceedings of the 15th ISCRAM Conference, Rochester, NY, USA, 20–23 May 2018.

35. Qu, Y.; Huang, C.; Zhang, P.; Zhang, J. Microblogging after a major disaster in China: A case study of the 2010 Yushu earthquake.
In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, Hangzhou, China, 19–23 March 2011;
ACM: New York, NY, USA; pp. 25–34.

36. Imran, M.; Elbassuoni, S.; Castillo, C.; Diaz, F.; Meier, P. Extracting information nuggets from disaster-related messages in social
media. In Proceedings of the 10th International ISCRAM Conference, Baden-Baden, Germany, 20–23 May 2013.

37. USGS (US Geological Survey). M6.0 South Napa, California Earthquake–August 24, 2014. Available online: https:
//www.usgs.gov/natural-hazards/earthquake-hazards/science/m60-south-napa-california-earthquake-august-24-201
4?qt-science_center_objects=0#qt-science_center_objects (accessed on 20 November 2019).

38. Chen, R.; Jaiswal, K.S.; Bausch, D.; Seligson, H.; Wills, C.J. Annualized earthquake loss estimates for California and their
sensitivity to site amplification. Seismol. Res. Lett. 2016, 87, 1363–1372. [CrossRef]

39. Parilla-Ferrer, B.E.; Fernandez, P.L.; Ballena, J.T. Automatic classification of disaster-related Tweets. In Proceedings of the
International Conference on Innovative Engineering Technologies (ICIET), Barcelona, Spain, 16–17 December 2014.

40. Li, H.; Caragea, D.; Caragea, C.; Herndon, N. Disaster response aided by tweet classification with a domain adaptation approach.
J. Conting. Crisis Manag. 2018, 26, 16–27. [CrossRef]

41. Joachims, T.A. support vector method for multivariate performance measures. In Proceedings of the 22nd International Conference
on Machine Learning, Lausanne, Switzerland, 11–14 September 2005; pp. 377–384.

42. Cresci, S.; Cimino, A.; Dell’Orletta, F.; Tesconi, M. Crisis mapping during natural disasters via text analysis of social media
messages. In Proceedings of the International Conference on Web Information Systems Engineering, Miami, FL, USA, 1–3
November 2015; Springer: Cham, Switzerland, 2015; pp. 250–258.

43. Ben-David, A. Comparison of classification accuracy using Cohen’s Weighted Kappa. Exp. Syst. Appl. 2008, 34, 825–832.
[CrossRef]

44. Bica, M.; Palen, L.; Bopp, C. Visual representations of disaster. In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing, Jersey City, NJ, USA, 3–7 November 2017; pp. 1262–1276.

http://doi.org/10.1080/15230406.2018.1483740
http://doi.org/10.1109/MIS.2012.6
http://doi.org/10.1016/j.ijdrr.2017.12.002
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/m60-south-napa-california-earthquake-august-24-2014?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/m60-south-napa-california-earthquake-august-24-2014?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/m60-south-napa-california-earthquake-august-24-2014?qt-science_center_objects=0#qt-science_center_objects
http://doi.org/10.1785/0220160099
http://doi.org/10.1111/1468-5973.12194
http://doi.org/10.1016/j.eswa.2006.10.022

	Introduction 
	Literature Review 
	Data and Case Study 
	Methodology 
	Data Preprocessing 
	Classification 
	Assessment Performance of Classification 
	Temporal and Spatial Analysis 
	Damage Assessment 
	Validation 

	Results 
	Classification 
	Temporal and Spatial Analysis 
	Damage Estimation 
	Damage Validation 

	Conclusions and Suggestions 
	References

