friried applied
b sciences

Article

Models@Runtime: The Development and Re-Configuration
Management of Python Applications Using Formal Methods

Mohammed Mounir Bouhamed 10, Gregorio Diaz 2,*([), Allaoua Chaoui

and Radouane Nouara !

check for

updates
Citation: Bouhamed, M.M.; Diaz, G.;
Chaoui, A.; Kamel, O.; Nouara, R.
Models@Runtime: The Development
and Re-Configuration Management
of Python Applications Using Formal
Methods. Appl. Sci. 2021, 11, 9743.
https://doi.org/10.3390/
app11209743

Academic Editor: Alessandro Di

Nuovo

Received: 13 September 2021
Accepted: 9 October 2021
Published: 19 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1® and Oussama Kamel 13

MISC Laboratory, Department of Computer Science and Its Applications, University Constantine 2
Abdelhamid Mehri, Constantine 25016, Algeria; mohammed.bouhamed@univ-constantine2.dz (M.M.B.);
allaoua.chaoui@univ-constantine2.dz (A.C.); oussama.kamel@univ-constantine2.dz or
oussama.kamel@univ-constantine3.dz (O.K.); redouane.nouara@univ-constantine2.dz (R.N.)

Instituto de Investigacion en Informatica, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
Faculty of Medicine, University Constantine 3 Salah Boubnider, Constantine 25016, Algeria
Correspondence: gregorio.diaz@uclm.es; Tel.: +34-650-29-95-87

Abstract: Models@runtime (models at runtime) are based on computation reflection. Runtime
models can be regarded as a reflexive layer causally connected with the underlying system. Hence,
every change in the runtime model involves a change in the reflected system, and vice versa. To
the best of our knowledge, there are no runtime models for Python applications. Therefore, we
propose a formal approach based on Petri Nets (PNs) to model, develop, and reconfigure Python
applications at runtime. This framework is supported by a tool whose architecture consists of two
modules connecting both the model and its execution. The proposed framework considers execution
exceptions and allows users to monitor Python expressions at runtime. Additionally, the application
behavior can be reconfigured by applying Graph Rewriting Rules (GRRs). A case study using
Service-Level Agreement (SLA) violations is presented to illustrate our approach.

Keywords: models@runtime; python application; petri nets; formal methods; graph rewriting rules;
application re-configuration; application management

1. Introduction

This work is motivated by two interrelated necessities of software development:
computational reflection and change control. Computational reflection, as described by
Maes [1], is “the activity performed by a computational system when doing computations about
its own computation”. In other words, computational reflection is a program’s ability to
modify itself while running. Furthermore, software development is based on addressing
two problems already stated in the 1970s by the first two of Lehman’s laws: “continuous
change” and “increasing complexity” [2]. These problems arise from the need for the software
to be adapted to the new user requirements, leading to software changes that increase the
complexity unless measures are taken. The interrelation between both concepts, compu-
tational reflection and change control, can be observed when we analyze the connection
between the initial model designs and the software itself. They drift apart after changes are
performed in the original code. This situation complicates monitoring and controlling the
running instances of the developed software. Little research [3] has focused on bridging
this gap by enriching the connection between models and code.

Therefore, the complexity is increased in two different aspects in this context: the
change management and how to cope with the already running instances. Change manage-
ment involves not only updating the software but also analyzing whether the new software
version satisfies the new requirements. Another important aspect to be considered is those
instances that are being used: How can they be updated to attend the new requirements?
Traditional software development offers two different options: either wait until they finish

Appl. Sci. 2021, 11, 9743. https:/ /doi.org/10.3390/app11209743

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4171-8604
https://orcid.org/0000-0002-9116-9535
https://orcid.org/0000-0003-3751-8084
https://orcid.org/0000-0002-1297-6225
https://doi.org/10.3390/app11209743
https://doi.org/10.3390/app11209743
https://doi.org/10.3390/app11209743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209743
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209743?type=check_update&version=2

Appl. Sci. 2021, 11,9743

20f21

or kill their execution. The first option is not always available if we consider infinite
behaviors, which is omnipresent in the sever—client architecture.

We propose to address these two issues by providing a middleware technology able to
orchestrate the execution of a Python program using a Model-Driven Engineering (MDE)
approach based on the Petri Net formalism bridging the gap between models and its
execution. MDE aims to design complex software systems in terms of models to reduce
the complexity of modern systems. Among the advantages of MDE, we can cite the higher
productivity, abstraction, etc. In the literature, models are one of the best tools to analyze
and verify software. For instance, Bucchiarone et al. [4] presented models@runtime as one
of the challenges of MDE. It can analyze software at runtime when they cope with ever-
changing software using models@runtime. Guérin et al. [3], as well as other works [5-8],
used models@runtime as a technique for monitoring and changing systems. Hence, the
main advantage of models@runtime is the use of an abstraction of the running software
in the form of a model to enable its reconfiguration by changing its behavior while the
software is still running. To achieve this goal, the approach must enable the technology to
make reflections in both directions possible. It must also enable technologies to visualize
and analyze the software at runtime. In this work, the proposed technology can change
the behavior of a running Python program to attend new incoming requirements and to
inspect the new execution to analyze whether these new requirements are being satisfied.
In addition, the ability to interact with a running instance using its model means that it can
be updated at runtime. The model proposed is based on one of the most used formalisms,
Petri Net (PN), combined with Graph Rewriting Rules (GRRs), bringing mathematical
rigor and reconfiguration capabilities, respectively.

However, this benefit comes at a cost. Developers need to acquire knowledge about
the model used and the technology implementing the proposal. Furthermore, the software
execution is more complex, because the model orchestrates the execution using the imple-
mented middleware. Therefore, the execution performance will be affected by the time
used in the communication process.

The contributions are the following:

e We extend the Petri Net (PN) formalism with Python statements that are executed
when transitions are fired.

¢ We enrich these transitions with guards (Python conditions). Guards are Boolean
expressions that evaluate true or false to check which transitions are enabled. The
evaluation considers the runtime data of the Python program.

® The behavior of Python applications are modeled using the extended PN.

¢ We provide a tool to apply the approach with a Client/Server architecture (loosely
coupled) to implement the models@runtime technique.

* Developers are able to monitor and evaluate the values of Python expressions at runtime.

® The behavior of applications can be changed by applying Graph Rewriting Rules (GRRs).

¢ We describe several examples, including a use case, to study the service reconfigura-
tion in the context of Service-Level Agreement (SLA) violations [9].

2. Background

This section outlines the background concepts used in this work. First, the Python
language is described, and we then focus on the PN formalism used in this paper to
model Python applications. We also present Graph Rewriting, which is used to model the
reconfigurations in Python applications. Finally, we explain the necessary concepts related
to the models@runtime.

2.1. Python

Python (www.python.org, accessed on 1 August 2021) is a high-level general-purpose
language. It is an interpreted programming language. It was first released in 1991 by Guido
Van Rossum. It is currently considered one of the most popular programming languages. It
is used in many areas, such as big data analysis and server-side programming. Server-side

www.python.org

Appl. Sci. 2021, 11,9743

3of21

executions may contain several running instances where the change of the running code
may be inevitable due to the change in requirements [10]. Moreover, Python may cause
runtime errors, as it is a dynamic typing language where the type of variable is associated at
runtime. Therefore, change and monitor programs at runtime can alleviate these problems.

The present work is based on the use of two built-in Python functions, which are
exec and eval. exec is a Python function that takes a piece of Python code as an input and
executes it. For instance, when executing exec('print(2 + 3)’), Python prints 5. eval is a
Python function that evaluates a Python expression. For instance, the output of
eval(‘math.sqrt(25)’) is 5.

We illustrate the use of Python with an example that is part of the PROGRES platform.
This software platform is used by the Algerian Ministry of Higher Education to manage
student records, e.g., to assess their academic performance every year. In this example, we
consider only the annual assessment. The Python application shown in Listing 1 encodes
this assessment. First, it reads the averages obtained for both semesters. Students pass if
they achieve an average of 50 or above (50 out of 100) in both semesters. This decision is
evaluated in a variable called decision. The program will print “passed” or “failed” based on
the value of this variable. Figure 1 shows the different dialogues obtained by the sequential
execution of this example in the case of a student failing.

Listing 1. Grading example in Python.

from example import Grade_Frame
from example import Passed_Frame

grade_average_1 = Grade_Frame.enter_grade_average(1)
grade_average_2 = Grade_Frame.enter_grade_average(2)
decision = grade_average_1 >= 50 and grade_average_2 >= 50

if decision:
Passed_Frame.show_decision(*’Passed!”)

else:
Passed_Frame.show_decision(*‘Failed!”")

DECiSiDn

Grade1: 45 Grade2: 56 Eailed!

o] [(o]

Figure 1. The sequential execution of the grading example.

2.2. Petri Nets (PN)

A PN [11] is a graphical formalism used for modeling the behavior of systems. It is
a bipartite graph composed of two types of nodes, which are linked using weighted arcs.
Nodes are places and transitions represented as circles and rectangles, respectively. Places
can contain a finite number of tokens.

Definition 1. Petri Net (PN)

APNisatupleT = (P,L,F), where

(i) P = (Py, Py - - - Py,) is a finite ordered set of places;

(ii) T = (To, T1 - - - Ty) is a finite set of transitions;

(iii) F:(PxT)U(T x P) — {0,1,2,--- } is a set of directed weighted arcs that represent
flow relations.

Appl. Sci. 2021, 11, 9743

4 0f 21

A marking m denotes the current state that is represented by tokens in each place of P. For
instance, let P = { Py, P; } be a set of places, and m = [0,2] denotes that Py and Py contain 0 and 2
tokens, respectively. In this paper, we represent this marking using m = {Py, Py /.

A transition T} is enabled if and only if all its input places P € (P, x T;) — j contain

a sufficient number of tokens, j. Firing Tj, denoted as m BRI , consumes and produces new
tokens. Firing Ty consumes the corresponding j tokens from each input place and produces new
tokens in the out places of T, respectively. The number of tokens produced is the weight of the arc
(T X Pout) —> k. This firing leads to a new marking m’ including the new tokens of every output

place {Pc}ut' Pozut' ce Pgut}'

Example 1. Figure 2 depicts the initial structure of the grading example. Each arc has a weight
equal to one.

Delay: 0

not decjsion

Figure 2. A snapshot of the tool showing a state of the grading example.

2.3. Graph Rewriting

Graph Rewriting [12,13] applies GRRs to rewrite the structure/flow of a graph—in
this case, the PN structure.

Definition 2. A graph G is a pair (V,E), where

e Visa set of nodes (i.e., vertices);
. E is a set of links (i.e., edges), which connect nodes.

Definition 3. A GRR r; isa pair (LHS;, RHS;), where LHS; and RHS; are graphs that represent
the Left-Hand Side (LHS) and the Right-Hand Side (RHS), respectively. Rewriting a graph G using
r; replaces a sub-graph LHS; from G with RHS;. The existence of LHS; inside G is mandatory to

apply r;.

Example 2. The application of the GRRs ry, depicted in Figure 3, on the PN from Figure 2,
produces the PN illustrated in Figure 4.

Appl. Sci. 2021, 11,9743

50f21

LHS r RHS

pa T4 P5 P4 T7 P5

O >0 | O O

A new transition
A new arc
A removed transition

A removed arc <€-----

Figure 3. A GRR ry to replace transition T4 with T;.

PO TO P1 T1 P2 T2

OO~

T6

Figure 4. The rewritten structure of the grading example.

2.4. Models@Runtime

MDE constitutes a software abstraction paradigm, in their building, maintenance, and
reasoning, to increase productivity. It is an iterative and incremental software development
process based on the notion of a model. A model [14] is an abstraction of a system,
where models@runtime [15,16] is a solution of a running system. The system and its
corresponding model are causally connected, so the model is updated according to the
current state of the system, and vice versa. “A key benefit of using models@runtime is they
can provide a richer semantic base for runtime decision-making related to runtime system concerns
associated with autonomic and adaptive systems” [16]. For instance, the PN presented in
Figure 2 shows a state of the Python program shown in Listing 1, where the system has
successively executed the first three instructions represented by Ty, T1, and T, and is ready
to execute the third, T3. Orange represents an executable transition.

Thus, the adoption of the models@runtime will support the development of Python
applications. The general principal of this paradigm is to offer an accurate model reflection
of the running system at any moment. The models@runtime offers new techniques to
deal with the dynamic adaptation of systems and satisfy the increasing complexity of user
requirements. Therefore, in our work, it enables the dynamic re-configuration management
of Python applications.

The models@runtime vision consists in the use of models not only at the design time
but also during runtime. The underlying systems and their corresponding models evolve
together and affect each other during the execution of these systems. The models@runtime
paradigm enables the running systems to cope with the dynamic change of environments
and satisfy the complex requirements of users.

Appl. Sci. 2021, 11,9743

6 of 21

3. Proposal

This section describes our proposed solution for models@runtime. It presents how
to use our approach to develop Python applications and reconfigure their behavior at
runtime. In addition, it shows how developers can inspect Python expressions at runtime.
First, we present an overview of our proposal, providing detailed information about our
framework. Next, we describe the process of developing a new Python application using
our framework. Finally, we show this application can be reconfigured.

3.1. Antecedents

In software development, a model is an abstract representation of a software system
and its environment. Models are primarily used for documentation and communication pur-
poses in the software life cycle. Model-Driven Engineering (MDE) increases the importance
of the notion of models because they are considered central artifacts in the development
process. One of the challenges of the MDE community is to use models, as central artifacts,
at runtime, to cope with dynamic aspects of ever-changing software and its environment [4],
which inspired the notion of models@runtime.

Research works on models@runtime seek to extend the applicability to the runtime
environment of models produced in MDE approaches [16]. Models@runtime cope with the
computational reflection bridging the gap between these domains, models, and runtime
execution. Models@runtime can be regarded as a reflexive layer causally connected with
the underlying system. Hence, every change in the runtime model involves a change in the
reflected system, and vice versa [16].

The necessity of monitoring systems through runtime models is presented in many
works [3,5-8]. Recent works, such as [6,17,18], address the problem of reconfiguring and
changing the behavior of systems at runtime. Although, to date, little research has focused
on providing generic tools that are independent of the application domain. To the best of
our knowledge, no work has considered providing tools for models@runtime for Python
applications. Python developers are obliged to verify the behavior of their applications
and change their execution when requirements change.

For instance, regarding the grading example, the method to determine successful
students may unexpectedly change. For instance, many universities have changed their as-
sessment methods during the SARS-CoV-2 pandemic (COVID-19). In Algeria, for example,
a compensation system is used considering the average of both semesters. Thus, a pass is
awarded to students with a total average for both semesters of 50 or above. Developers
need to adapt the program to this new requirement. In an ordinary software develop-
ment process, developers have to stop the execution, change the model, generate the code,
and re-start the execution. However, using the models@runtime technique, developers
could perform this change without stopping the execution. That is, they would be able
to execute models using an execution engine where an engine reflecting the software
execution enables the developer to monitor the execution. If the execution engine is able
to automatically perform the change in the running instance, developers can monitor the
change itself. In addition, a better connection between the design model and the execution
can provide certain advantages, such as being able to see the execution state in order to
inspect the value of variables before and after the change. Another benefit can be achieved
by the adoption of a loosely coupled solution between the model and the execution, which
can improve the system flexibility and allow for its deployment in distributed systems.

Table 1 shows some of the previous works addressing the open challenges left by
them. We can observe that there is a lack of works addressing the problem when Python
programs are considered, and few of them are able to reflect the running system.

Appl. Sci. 2021, 11,9743

7 of 21

Table 1. Open challenges in previous works.

Approach Issues

Kamel et al. [9] The proposal analyzes the dynamic behavior of SLA in
cloud environments, but the authors do not provide
a tool implementing the proposed approach.

PAMELA Guérin et al. [3] It is only related to Java.

Llorens and Oliver [12] It does not reflect changes between the model and the
system at runtime.

Brand and Giese [5] The focus is on the system architecture and not
on changing the behavior at runtime.

Criado et al. [7] The objective is to develop a smart architecture at
runtime. Therefore, it is not focused on performing
changes at runtime.

Tankovic and Grbac [8] The proposal domain is not general, because it is
centered on interpreting information systems.

Valero et al. [19] The proposal is focused on event systems, and it does
not deal with unpredictable requirements.

Leroy et al. [20] The focus is on runtime monitoring and not on
changing the behavior at runtime.

Meghzili et al. [21] The proposal studies the verification of model
transformations and does not deal with unpredictable
changes.

Kerkouche et al. [22] The authors deal with the transformation of UML models,

and unpredictable changes are not considered.

3.2. Proposal Overview

The proposed framework comprises the two components depicted in Figure 5: the
Model Execution Engine (MEE) and the Python Execution Environment (PEE). The former
executes the application model, which consists of a PN and a set of GRRs. The latter
executes the instructions (statements) that reflect this model.

The MEE fires an enabled transition whenever the model has enabled transitions.
Transitions are square boxes labeled with a name and extended with two entities:

(i) astatement that should be executed by the PEE, and
(ii) a guard that should be satisfied to fire this transition.

The MEE invokes the statement by sending it to the PEE. The latter executes the
instruction, then notifies the MEE whether the instruction is correctly executed or not. The
MEE reflects, at runtime, the marking, the history of fired transitions, and the states of
transitions in the model. The user is able to analyze the reachability of the application
structure based on the current marking. The color of each transition changes depending on
its state: enabled (green), disabled (red), or running (orange).

Notify:
Executed/Exception .
Model Execution |«€ Python Execution
Engine Environment
(MEE) > (PEE)

Send: Statement

Figure 5. The framework architecture.

Appl. Sci. 2021, 11,9743

8 of21

The framework supports the creation of new applications and the reconfiguration
of running applications. The process of creating a new application, depicted on the left-
hand side of Figure 6, starts in the requirement elicitation phase, that is, when the initial
requirements are specified. Programmers develop the classes/functions that are invoked
by transitions. They model the initial structure as a PN and enrich transitions with the
statements and guards to compose the whole Python application. Finally, they execute
the application using the MEE. Once the application is running, the monitoring process
starts. During this process, developers can inspect Python expressions. In addition, the
framework is able to deal with Python exceptions.

Initial
Requirements
Arrive
The process of reconfiguring !

a running application

:
s T
1
7
7

X New .

Structure : Requirements |
as a PN Arrive .
Create and |

Add GRRs !

Refine to Modify
the PN the :
Application !

Run Resume
&]
Monitor ! Monitor '
. Execution .
. & X
Monitoring

Figure 6. Process of developing and re-configuring an application.

The right-hand side of the figure shows the reconfiguration process, which starts after
the execution begins, when a new requirement materializes. Next, the developers add
the corresponding GRRs to rewrite the current structure and, therefore, satisfy the new
requirement. For instance, if the new requirements include executing new statements, then
developers must associate them with new transitions in the RHS and specify in which
part of the PN model those statements are injected, that is, create the LHS. This process is
similar to the creation of the initial model.

Through this paper, we assume that developers use built-in instructions and functions
they define themselves in transitions. In addition, we assume that their execution will
terminate correctly or throw exceptions. Invoked functions may contain control structures
such as loops and if-else statements. The transitions guards are Python Boolean expressions,
where a programmer’s functions can also be used.

Appl. Sci. 2021, 11,9743

9of21

3.3. Framework Architecture and Behavior

The framework components exchange messages through TCP/IP sockets. The MEE is
used to model a Python application, execute the model, and reconfigure the application.
The MEE is used to model the structure of the application as a PN. In the next example, we
introduce a transition enriched with a statement and a guard.

Example 3. Transition Ts from the grading example depicted in Figure 2 is enriched with the
statement

Passed_Frame. show_decision("Passed!") and the guard decision. The statement calls the
function

show_decision(“Passed!”) from the Python file Passed_Frame. The guard ensures that this
statement can only be executed when the variable decision is True.

The MEE sends the transition guards to the PEE to be reevaluated using the Python
instruction eval any time the marking of the PN changes. The PEE answers the MEE with
the set of guards satisfied, and the MEE sends the transition statements to the PEE when a
transition is fired, and then awaits to receive the execution outcome.

The MEE supports both automatic and manual firing of transitions. When firing a
transition, it follows the protocol depicted in Figure 7. This protocol is modeled as a PN.
The MEE sends the corresponding statement to the PEE when firing a transition. It waits
for a response that can be either an “EXECUTED” or an “EXCEPTION” message. In the
former case, the MEE updates the marking. In the latter case, it restores the marking to
the original state and opens a popup dialog showing the exception thrown. The color
of transitions can be green, red, or orange to denote the states of enabled, disabled, or
running, respectively.

Enabled In execution Tokens
Transition Transition consumed

Consume toke

Send
statement

Wait for
a response

Receive Receive
EXECUTED EXCEPTION
Executed Exception

Restore the marking

Produce tokens &
& update transitions colors
update transition colors &

Done pop up the exception

Figure 7. The protocol followed by MEE when firing a transition.

The PEE is a Python program implementing server features. It receives guards and
instructions, and returns the outcome of their evaluations and executions, respectively, to

Appl. Sci. 2021, 11,9743

10 of 21

the MEE. For instance, when the PEE receives an instruction, it executes the instruction. If
the instruction is executed without an exception, the PEE sends an “EXECUTED” message.
Otherwise, it sends an “EXCEPTION” message concatenated with the exception content.

Listing 2 shows the Python function to be executed when receiving an instruction. It
uses the exec command inside a try except block to execute the received instruction.

Listing 2. PEE basic code.

def execute(instruction):
try:
exec(instruction)
reply (“ EXECUTED”)
except Exception as e:
reply (“ EXCEPTION:" + str(e))

In contrast, in the evaluation using the instruction eval when an exception is raised,
we assume that the evaluation has not succeeded and the guard is not fulfilled. In this case,
we consider that the transition is disabled. We follow this strategy because expressions
may eventually be evaluated as true, once, for example, the variable used in the expression
is defined or used (dynamic typing).

3.4. The Development, Reconfiguring, and Monitoring of Python Applications

We show how a Python application is developed using the proposed framework with
the following example based on the grading program.

Example 4. First, we need to develop the appropriate functions for the grading example. Subse-
quently, we can enrich the transitions of the PN model in Figure 2 with the statements and guards
shown in Table 2.

Table 2. Statements and guards of the grading example transition.

Transition Statement Guard

Ty from example import Grade_Frame True

T from example import Passed_Frame True

T, grade_average_1 = Grade_Frame.enter_grade_average(1) True

T3 grade_average_2 = Grade_Frame.enter_grade_average(2) True

Ty decision = int(grade_average_1) >= 50 and int(grade_average_2) >= 50 True

Ts Passed_Frame.show_decision(“Passed!”) decision
Te Passed_Frame.show_decision(“Failed!”) not decision

Figure 2 illustrates how the framework enables users to start the execution by using
the green button labeled with Run. This action enables the monitoring process shown in
Figure 2. This figure shows the application state during the execution of transition T3. At
this point, the application awaits the value for the second assessment.

Example 5. We assume that a new requirement specifies that students pass their exams when they
obtain an annual average of 50 or above, otherwise failing. This new requirement is modeled as
GRR rq from Figure 3. rq replaces Ty with the new transition T;. Ty is enriched with the statement
and guard from Table 3. The resulting structure after applying r is presented in Figure 4. The
sequential execution of the modified application is depicted in Figure 8.

Appl. Sci. 2021, 11, 9743

11 of 21

Table 3. Statements and guards of new transitions of the grading example.

Transition Statement Guard
T7 decision = (grade_average_1 + grade_average_2)/2 >= 50

Grade1: 45 Grade2: 56 Passadl

Figure 8. The sequential execution of the grading example after the reconfiguration.

The framework developed enables users to evaluate Python expressions at runtime. It
uses the eval instruction to evaluate those expressions. These expressions are reevaluated
every time the model is updated.

Example 6. Figure 9 shows the expression evaluator where several expressions are under inspection.
For instance, the variable grade_average_1 is evaluated to 45.

Expressions Evaluator

Statement
grade_average_1
grade_average_2

int(grade_average_1) == 50 and int(grade_average_2) == 50

45

grade_average 1

Add Modify Remove

Figure 9. The expression evaluator.

Our framework deals with exceptions that may occur. These exceptions may appear
because of typos in statements, or because of a disruption when executing the statements.
For instance, Figure 10 shows a dialog that appears when the user enters a String instead
of an Integer as a grade.

Appl. Sci. 2021, 11,9743

12 of 21

@ EXCEPTION: invalid literal for int() with base 10: 's’

OK

Figure 10. Exception popup.

4. Performance Evaluation

The complexity of the model and the change to be applied determine the performance
of our proposal. Therefore, we have designed three sets of experiments to determine how
these parameters affect the throughput, where nodes for both the PN model and GRRs
are generated automatically. Every PN model includes the same number of places and
transitions, and each transition is connected to each place in both directions. Regarding
GRRs, the node number in the LHS depends on the experiment objective. In the first set, we
analyze how the performance is affected by the model size. The second analyzes the effect
of the GRR size, while the third compares both aspects. The three experiments show the
performance of our approach studying the consumed time for the graph rewriting process.
It includes the time taken to find the LHS in the original model and the time taken to
change this structure by the RHS. Other aspects related to the interconnection between the
MEE and the PEE are not considered, because the technology used here, TCP/IP sockets,
relies on the delays introduced by the underlying infrastructure. The experiments have
been performed in a PC with an Intel© Core™ i7-6700HQ CPU at 2.60 GHz with 4 cores,
with 16 GB of internal memory, and running a Linux Mint 20 Cinnamon, version 4.6.7
(Linux Kernel 5.4-84-generic).

Figure 11 analyzes the time required to rewrite a model with a GRR consisting of six
nodes for both the LHS and the RHS. In the first graph, we have considered an increasing
number of nodes in the model from 10 to 800 nodes with intervals of 10 nodes. The LHS
structure is always located at the end of the model. Experiments are performed 10 times
to alleviate the effect of multitasking, and the figure shows the average rewriting time.
Readers can observe a constant increasing in the rewriting time, as the number of nodes is
higher. For those systems working in real-time environments, times shorter than 1 s should
be considered (see the left hand side graph). Therefore, the recommended model size in this
context is smaller to 200 nodes, taking into consideration the hardware configuration used
here. In the second graph (right hand side), we have extended the study to find the trend
line that shows a polynomial curve with quadratic equation y = 0.001x? — 0.225x + 17.448
with a significance of R? = 0.981 (red dotted line). This result confirms the complexity of
the algorithm used to implement the rewriting process with order O(n?). We also show the
cubic equation with the best fitting (R?> = 0.999—black dotted line). This value is obtained
because the initial values are close to zero.

Rewriting time Rewriting time
3 250 -
v =7.56E-07x*- 3.86E-04x* + 7 49E-02x - 3.40E+00
- R?=0.999
25 200
y=0.001x*-0225x+ 17448
- 2 ~ R2= 00981
2 » 150
%15 £
E g 100
= £
1 g
50
0.5
0 200 400 600 800
0 50 100 150 200 250 -50
Model nodes Model nodes

Figure 11. Analysis of the model size.

Appl. Sci. 2021, 11,9743

13 of 21

The second set of experiments analyzes the size of the applied GRR considering
different sizes of the LHS structure. The first graph of Figure 12 depicts this scenario where
the size of the LHS structure varies from 6 to 80 nodes in intervals of 2 nodes, while the
size of the model is always 160. The LHS structure is always located at the end of the
model. Each experiment has been performed 10 times, and the figure shows the average
value obtained for each case. We can observe behavior similar to that in the previous
scenario, and real-time scenarios should consider LHS structures under 48 nodes under
this hardware configuration (left-hand side graph). In the second graph (right-hand side),
we have extended the study to find the trend line that shows a polynomial curve with
quadratic equation y = 0.0008x% — 0.0305x + 0.7331 with a significance of R? = 0.9855 (red
dotted line). This result confirms again the complexity of the algorithm, order O(n?), with
a similar result for the cubic equation (R? = 0.9988—black dotted line).

Rewriting time Rewriting time
1.2 4 v =1E-05x*- 0.0008x* + 0.026x + 0.222
3.5 ~R*=00998
L v =0.0008x*-0.0305x + 0.7331 /
3 R?= 009855
« 08 » 25
k- -
£ 0.6 é 2
£ =
& o4 '
1
0.2 05
0 0
0 10 20 30 40 50 0 20 40 60 80
Nodes in LHS Nodes in LHS

Figure 12. Analysis of the GRR size.

In the last set of experiments, we have studied the correlation between the model size
and the GRR size. Figure 13 shows this analysis where the model size increases from 10
to 200 in intervals of 10 nodes. We have considered five sizes of GRR in this study with
10, 20, 30, 40, and 50 nodes for the LHS. We can observe that the rewriting time increases,
as the size of the LHS increases. The maximum size of the model is 130 nodes to obtain a
real-time response in all cases for this hardware configuration.

Rewriting time

w
wn

2 /// Nodes in LHS
| —20
/ 30

—40
0 —350
0 50 100 150 200
Model nodes

Times in s

0.

(]

Figure 13. Correlation between the model size and the GRR size.

5. Case Study

To illustrate our approach, we present a case study about monitoring SLA and re-
ducing violations. The relationship between service providers and their consumers is
controlled and regulated using SLAs. An SLA includes a set of terms that specify, among
others, the expected functional and Quality of Service (QoS) guarantees of the offered
service. This contract also specifies penalties that will be applied if its terms are violated.

Appl. Sci. 2021, 11,9743

14 of 21

Let us consider a provider offering a service that allows consumers to compress their
files. This service receives a file from a client and schedules its compression. Once the
compression is performed, it delivers the compressed file to the client. Regarding the QoS
properties considered in this example, we focus only on the response time. As a penalty,
consumers will be compensated with a 0.1 Euro discount if the deliverance is delayed after
the agreed deadline.

As illustrated in Figure 14, we model the behavior of the compression service as a
PN. First, the application imports the necessary packages by firing the transitions Ty, T3,
Ty, and T3. The file to be compressed is received when firing T4, and the receiving time
is saved using Ts. Firing Ty waits for the file turn. Subsequently, the file is compressed
using transition T;. Transition Tg obtains the size of the received file, which is used to
calculate the cost of the compression operation by Ty. Depending on the obtained result,
two scenarios may occur. In both scenarios, the time consumed is compared against the
pre-agreed time, less than 5. The statements and guards of the transitions are shown in
Table 4.

<cpnsumed tifie >= 5

Figure 14. Case study—monitoring of SLA violations.

Table 4. Statements and guards of the case study transition.

Transition Statement Guard

T import os True

T import time True

T from caseStudy import case_study True

T3 from compression import compression_server True

Ty input_file = case_study.receive_file() True

Ts received_time = time.time() True

Te case_study.wait_turn() True

17 output_file = compression_server.zip_lzma(input_file) True

Ty file_size = os.stat(input_file).st_size /(1024 * 1024) True

Ty cost = case_study.estimate_cost(file_size) True

Ty sending_time = time.time() True

Ti1 consumed_time = sending_time — received_time True

Tip case_study.send_file(output_file, cost) consumed_time < 5
Ti3 cost = cost — 0.1 consumed_time >=5
T4 case_study.send_file(output_file, cost) True

Appl. Sci. 2021, 11, 9743

15 of 21

e Respected SLA: In the first scenario, the expected time consumed is met (i.e., response
time <5). This scenario is executed by firing transition T12 (see Figure 14). This
transition sends the compressed file and the cost of the service to the consumer. This
situation can be observed in marking {P;3}.

e Violated SLA: In the second scenario, the deliverance is delayed after the expected
deadline (i.e., response time >=5). This scenario is executed by firing transition
T3 (see Figure 14). This transition applies a penalty, as specified in the SLA, to the
provider by subtracting 0.1 Euro from the cost of the compression operation. The
transition Tj4 sends the compressed file and the final cost to the consumer. The
situation of the SLA violation can be monitored by observing markings {P;4} and {P;s}.

Another way to monitor the SLA violations is to inspect runtime data using the ex-
pression evaluator. Figure 15 shows the evaluation of the expression consumed_time >= 5,
which is evaluated as True. This is the deadline for the compression, so the SLA is violated
at this point.

Expressions Evaluator

Statement
received_time
sending_time
file_size
cost
consumed_time

consumed_time > 5

True

consumed_time > 5

Add Modify Remove

Figure 15. The expression evaluator -case study-.

A new requirement consisting of replacing the compression algorithm with a faster
one is considered to reduce the number of SLA violations. Therefore, developers may apply
anew GRR to comply with this requirement, as depicted in Figure 16. This GRR replaces
transition T; with new transition Tj5. The statement and the guard of new transition Tj5
are shown in Table 5.

LHS o RHS
p7 T7 P8 P7 T15 P8
O -0 | OO0
A new transition I:I
A new arc C——
A removed transition i_i
A removed arc <___::

Figure 16. A GRR to replace the compression algorithm.

Appl. Sci. 2021, 11,9743 16 of 21
Table 5. Statements and guards of the new transition of the case study.
Transition Statement Guard
Tis output_file = compression_server.zip_deflated(input_file) True

6. Discussion
The goal of our approach is bidirectional:

(i) toexecute a code that conforms to the behavior of its executable model;
(ii) tomodel at runtime the execution of the application.

Thus, the execution of a Python application and its executable model should be
causally connected in both directions, that is, the model (marking, history, structure, etc.)
reflects the execution (the behavior of the application) and vice versa.

We achieve the first goal by orchestrating the execution using the MEE. This is similar
to what Remote Procedure Calls (RPCs), Java RMI (www.java.com, accessed on 1 August
2021), and BP engines (e.g., Activiti (www.activiti.org, accessed on 1 August 2021)) do. In
those paradigms, servers are prepared to execute a pre-fixed set of methods (functions),
while the PEE can execute any type of Python instruction using the exec command.

We achieve the second goal by reflecting the state of the execution in the PN model
using both the MEE and the PEE, which allows the execution to be monitored. Thus, we
are able to control the model using real data. The level of abstraction of the model is
based on the granularity of the statements invoked. If the developers need to monitor and
control more execution details, they use statements that are close to Python built-in/library
instructions. Otherwise, they may develop and invoke high level functions.

Other approaches based on code generation techniques have shown how difficult it
is to prove the conformity of the executable code to the source model [21]. In contrast,
our solution, thanks to its correct-by-construction approximation, ensures the execution’s
conformity with respect to the running model (see Figure 7). That is, the dualism model
and application working together allows the application behavior to be reflected.

A running application could be configured using the meta-programming paradigm,
where the program is treated as data [23]. In fact, our framework can be classified as
a meta-programming framework. In this work, we use GRRs to rewrite the structure of
applications. Therefore, the new structure reflects the new behavior of the application.
For instance, the GRR depicted in Figure 16 rewrites the initial structure of the case study
(Figure 14). The combination of GRRs with PNs is not new. For instance, Llorens et al.
introduced NRS in [12]. In this approach, the GRRs introduced the matching strategy of the
LHS, defining a structure without specifying place and transition names. Therefore, several
matchings may be found in the same structure. In contrast, we implement a different
solution using unique names for places and transition in the definition of GRRs, which
results in a single match.

In our approach, there is a clear separation between the design and the program,
that is, between the model and the execution. This has certain advantages, since this
separation provides an opportunity to substitute one part without affecting the other
part. This is a result of the architecture used, i.e., the two modules, the MEE and the
PEE, and their interaction via TCP/IP sockets. This architecture may support any type of
behavioral model, such as UML behavioral diagrams [22], process algebra [24], BPEL [25],
and BPMN [26]. On the other hand, the language used may be any programming language
capable of supporting reflection/meta-programming, such as Scala (www.scala-lang.org,
accessed on 1 August 2021) or Java (www.java.com, accessed on 1 August 2021). In addition,
it is a general-purpose approach that is independent of the application domain. As a proof
of concept, the case study presented in Section 5 studies the SLA offered by a service and
analyzes its reconfiguration to reduce SLA violations.

In the communication process, we may use any paradigm that guarantees communi-
cation among components to connect the two modules, such as RMI, CORBA, publish/-
subscribe, and SOA techniques. The aim is to connect the model with its execution using

www.java.com
www.activiti.org
www.scala-lang.org
www.java.com

Appl. Sci. 2021, 11,9743

17 of 21

loosely coupled components. Thus, this solution may be used to model distributed systems
at runtime. As a disadvantage, this communication introduces delays, which may be easily
avoidable by assuming a monolithic approach calling the exec function directly when a
transition is fired.

The literature includes several related works in the area of models@runtime. Table 6
compares our approach with these related works, where several aspects are considered:
the modeling technique, the research objective, the application domain, and the runtime
technique. Most approaches in this context are related to a specific domain, and few works
consider a general programming perspective. To the best of our knowledge, there is no
work that considers Python applications. Having tools to model at runtime applications
based on their programming language gives the ability to model at runtime application
without considering their application domain. In addition, the reconfiguration process is
not generally considered in these works. Furthermore, the loosely coupled architecture
presented in this work enables its use on distributed environments, which is not a common
feature in the related work.

Regarding the work by Guerin et al. [3], they presented a framework called PAMELA
to model execution where the model and the code are developed at the same time. The
model is a Java program with annotations, and the framework interprets this model at
runtime. The framework calls the methods through Java interfaces. This work is focused
on the design, validation, and verification phases of the software development life cycle
and does not propose a framework focused on the program reconfiguration when changes
are applied. The proposed architecture is not loosely coupled. Criado et al. [7] proposed a
heuristic solution based on the abstract definition of a software component and a set of
available components to generate a configuration of a software architecture in the context of
smart architectures for smart cities. They proposed a Domain-Specific Language (DSL) as
the modeling language. The main difference from our work is the abstraction level. While
we focus on the program behavior, they focus on the architecture. They focus on component
base programming rather than on a general programming language. Cedillo et al. [18]
described a generic method to monitor the satisfaction of non-functional requirements in
cloud environments using models at runtime and SLAs. They proposed a middleware
that interacts with services. This middleware retrieves data at runtime and analyzes it to
provide a report of unsatisfied non-functional requirements. This work is focused in the
context of cloud services where non-functional requirements are monitored at runtime,
and the service reconfiguration is not considered. Valero et al. in [19] established the basis
to provide a formal semantics for the event processing language (EPL) using an extended
version of Colored PNs. They cover a subset of the operators specified in the EPL. This
language implements the complex event processing (CEP) paradigm used in the literature
to provide complex reasoning about events produced at runtime, providing a set of patterns
to be detected in a given event stream. The authors focus in this work on the CEP context,
and the runtime reconfiguration is not considered. Tankovi¢ et al. [8] proposed a framework
to build architectures for distributed information systems in mobile cloud environments.
The models are interrupted during execution. The model is represented as a directed graph.
A procedural scripting language is used to express complex behavior by end users. The
framework allows the modeled systems to be adapted at runtime to accelerate the process
of delivering software. The difference with respect to our work is that they focused on
mobile environment domains where the information system can be interpreted at runtime.
In addition, the reconfiguration of system at runtime is not considered. Bur et al. [27]
proposed a distributed model to capture the states of different nodes of cyber-physical
systems (CPSs) at runtime. A time triggered protocol is used to update the models. They
used a publish-subscribe middleware for communications. The monitoring system captures
the critical situations of interest. The focus of this work is not on the system reconfiguration
atruntime. Leroy et al. [20] proposed a temporal property language for runtime monitoring
of any kind of executable discrete event model supported in a development framework.
This work is independent on the modeling language or the programming language. To

Appl. Sci. 2021, 11,9743

18 of 21

deal with reconfiguration in live programming, Rozen et al. [28] used incremental deltas
with respect to the original code of texture domain-specific model (DSLs). They applied the
deltas on the running programs by migrating them based on their state, using a dynamic
patch architecture. The approach does not depend on a specific programming language. It
does not focus on monitoring the state of the program while applying changes.

Table 6. Approach comparison.

Approach Modeling Research Application Runtime Monitoring
Technique Objective Domain Technique
Our approach PN & GRRs Behavior of Python Independent Reflection
applications,
runtime analysis,
Python expressions,
continuous change
Guérin et al. [3] PAMELA Runtime analysis of Java Independent Reflection
meta-model applications,
continuous change
Criado et al. [7] DSL Adapting architectures Independent Heuristics
based on component
syntax and semantics
Cedillo et al. [18] Meta-model =~ Monitoring non- Cloud services Monitoring
functional requirements
Valero et al. [19] BPCPN Monitoring Independent Model
Meta-model transformation
Tankovic and Grbac [8] AGM Interpreting information = Mobile cloud Monitoring
Meta-model systems environments
Bur et al. [27] Meta-model ~ Monitoring Cyber-physical Publish-Subscribe
systems
Leroy et al. [20] Executable Monitoring Independent Temporal property
DSLs language
van Rozen and van DSLs Live programming Independent Model
der Storm [28] Comparison
Poggi et al. [29] Ontologies Adaptation Adaptive software ~ Semantic Web
Chatzikonstantinou Fuzzy goal Runtime requirement Systems-of-systems Reasoning
and Kontogiannis [30] models verification
Heinrich [31] iObserve Architectural runtime Dynamic Cloud Model
mega-model applications transformations

Based on the architectural pattern MAPE-K (Monitor, Analyze, Plan, Execute- Knowl-
edge) [32] and semantic Web technologies, Poggi et al. [29] proposed an approach that en-

ables the management of heterogeneous knowledge and the creation of runtime queryable
models. The authors use ontologies, as a semantic technology, for the representation and
management of real-world systems and their environment. The proposed approach is
evaluated on the system that manages the entire IT infrastructure of the University of
Bologna. In this work, the authors do not focus on a general programming language, but
on concurrent Java components for the four MAPE-K phases, and the monitoring process
is not based on expression inspection, but on the use of OWL ontologies.
Chatzikonstantinou et al. [30] proposed an efficient parallel reasoning framework on
fuzzy goal models to assess the compliance of critical requirements at runtime. They take
into consideration the application logs as a fuzzified data stream to monitor these situations

Appl. Sci. 2021, 11,9743

19 of 21

in over-medium and large-scale systems of systems. In contrast to our work, the proposed
approach is specific to systems-of-systems environments. In addition, this approach relies
on a model transformation engine and fuzzy reasoners enabling the evaluation of systems at
runtime. Heinrich et al. in [31] proposed the iObserve approach, addressing the adaptation
and evolution of applications in cloud environments. The proposed approach adopts the
MAPE control loop focusing on the monitoring and analysis phases. In comparison to
our work, iObserve addresses a specific type of systems that are based on cloud services
focusing only on their architecture. In addition, the authors use model transformation
techniques to update the run-time models.

We suggest the following surveys for further details on the state of the art [16,33-35].

7. Conclusions

This work presents an approach to develop, monitor, and reconfigure Python applica-
tions at runtime, offering a solution to the challenges addressed by the models@runtime
initiative. The main benefit of our proposal is that maintainers and developers are able
to make runtime decisions to attend new incoming requirements based on the state of
the running system provided by the runtime PN marking and the Python evaluated ex-
pressions. In addition, they are able to reconfigure Python applications at runtime by
adding GRRs. The proposed approach was implemented as a framework supported by
a tool consisting of two components: a Model Execution Engine (MEE) and a Python
Execution Engine (PEE). The former component uses a new extension of PNs to model
Python applications. Transitions in the extended PN are enriched with Python statements
and guards. Statements are the instructions to be executed when transitions are fired. The
guards are Python conditions that must be true to fire these transitions. The evaluation of
these guards considers the data of the Python program at runtime. Guards are evaluated by
the PEE using the Python built-in instruction eval. This extended PN is used to model the
behavior of the program and to reflect the program execution. The MEE is used to execute
the model. The MEE sends the corresponding statements to the PEE when a transition is
fired. It executes them using the Python built-in instruction exec. The reconfiguration in
the running application is achieved by adding GRRs implementing a new requirement.
The GRRs modify the application model, which affects the running application. We adopt
the instruction eval to allow developers to monitor Python expressions. In the framework
proposed, developers can add expressions to inspect them during the execution. There
is a clear separation between the model and its execution provided by the client/server
architecture, that is, by the two interconnected components, the MEE and the PEE. Another
benefit is achieved by the adoption of a loosely coupled solution between the model and
the execution, which can improve the system flexibility and allow for its deployment in
distributed systems. The proposed approach does not depend on the application domain.

Regarding future works, the separation between the model and its execution in
our approach provides an opportunity to model the behavior of Python applications
using other formalisms. Therefore, we plan to design a tool to meta-model different
formalisms and execute them using the architecture presented in Figure 5. We also
plan to adapt our tool to the domain of Internet of Things (IoT) using the Raspberry pi
(https:/ /www.raspberrypi.org/, accessed on 1 August 2021) single-board as an IoT device.
Currently, we are working on the problem of a Business Process (BP) change [10], where the
reconfiguration at runtime still remains a challenge because of the large number of running
instances for a given BP. We are building a workflow engine to support both the modeling
and the instance migration at runtime, where we plan to apply the techniques developed
in this work. Furthermore, the approach can be combined with other proposals to automat-
ically generate the source code. This capability is an advantage of the MDE perspective
adopted in this work. For instance, we can use other frameworks using UML models and
artifacts to generate the source code and orchestrate its execution using our framework.

https://www.raspberrypi.org/

Appl. Sci. 2021, 11,9743 20 of 21

Author Contributions: M.M.B.: conceptualization; investigation; methodology; software; writing—
original draft. G.D.: conceptualization; funding acquisition; investigation; methodology; software;
supervision; writing—review & editing. A.C.: conceptualization; funding acquisition; supervision;
writing—review & editing. O.K.: conceptualization; investigation; writing—original draft; writing—
review & editing. R.N.: conceptualization; supervision; writing—review & editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Spanish Ministry of Science, Innovation and Universi-
ties, European Union FEDER funds under Grant RT12018-093608-B-C32, the JCCM project co-financed
with European Union FEDER funds, ref. SBPLY/17/180501/000276, and the UCLM group research
grant with reference 2020-GRIN-28708. It was also supported by DGRSDT of the Algerian Ministry
of Higher Education and Scientific Research.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Readers may find all the data obtained to reproduce the results ob-
tained in the performance evaluation and the source code in the link: http://doi.org/10.17632/3
9ddjkyx6d.1, accessed on 14 October 2021.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1.

10.
11.
12.
13.
14.
15.
16.
17.

18.

Maes, P. Concepts and Experiments in Computational Reflection. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), Orlando, FL, USA, 4-8 October 1987; Meyrowitz, N.K., Ed.;
ACM: New York, NY, USA, 1987; pp. 147-155. [CrossRef]

Herraiz, I.; Rodriguez, D.; Robles, G.; Gonzéalez-Barahona,].M. The evolution of the laws of software evolution: A discussion
based on a systematic literature review. ACM Comput. Surv. 2013, 46, 28:1-28:28. [CrossRef]

Guérin, S.; Polet, G.; Silva, C.; Champeau, J.; Bach, J.C.; Martinez, S.; Dagnat, F.; Beugnard, A. PAMELA: An annotation-based
Java Modeling Framework. Sci. Comput. Program. 2021, 210, 102668. [CrossRef]

Bucchiarone, A.; Cabot, J.; Paige, R.F.; Pierantonio, A. Grand challenges in model-driven engineering: An analysis of the state of
the research. Softw. Syst. Model. 2020, 19, 5-13. [CrossRef]

Brand, T.; Giese, H. Towards software architecture runtime models for continuous adaptive monitoring. In MODELS Workshops;
CEUR: Germany, 2018; pp. 72-77. Available online: http://ceur-ws.org/Vol-2245/mrt_paper_4.pdf (accessed on 1 August 2021).
Brand, T.; Giese, H. Modeling Approach and Evaluation Criteria for Adaptable Architectural Runtime Model Instances. In
Proceedings of the 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS
2019, Munich, Germany, 15-20 September 2019; Kessentini, M., Yue, T., Pretschner, A., Voss, S., Burguefio, L., Eds.; IEEE Computer
Society: Los Alamitos, CA, USA, 2019; pp. 227-232. [CrossRef]

Criado, J.; Iribarne, L.; Padilla, N. Heuristics-based mediation for building smart architectures at run-time. Comput. Stand.
Interfaces 2021, 75, 103501. [CrossRef]

Tankovic, N.; Grbac, T.G. Run-time interpretation of information system application models in mobile cloud environments.
Comput. Sci. Inf. Syst. 2020, 17, 1-27. [CrossRef]

Kamel, O.; Chaoui, A.; Diaz, G.; Gharzouli, M. SLA-Driven modeling and verifying cloud systems: A Bigraphical reactive
systems-based approach. Comput. Stand. Interfaces 2021, 74, 103483. [CrossRef]

Song, W.; Jacobsen, H. Static and Dynamic Process Change. IEEE Trans. Serv. Comput. 2018, 11, 215-231. [CrossRef]

Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541-580. [CrossRef]

Llorens, M.; Oliver, J. Structural and Dynamic Changes in Concurrent Systems: Reconfigurable Petri Nets. IEEE Trans. Comput.
2004, 53, 1147-1158. [CrossRef]

Nouara, R.; Chaoui, A. Checking Behavioural Compatibility in Service Composition with Graph Transformation. In Proceedings
of the CS & IT Conference Proceedings, Dubai, United Arab Emirates, 28 January 2017; Volume 7.

Schmidt, D.C. Model-driven engineering. Comput.-IEEE Comput. Soc. 2006, 39, 25. [CrossRef]

Blair, G.S.; Bencomo, N.; France, R.B. Models@ run.time. Computer 2009, 42, 22-27. [CrossRef]

Bencomo, N.; Gotz, S.; Song, H. Models@run.time: A guided tour of the state of the art and research challenges. Softw. Syst.
Model. 2019, 18, 3049-3082. [CrossRef]

Shirazi, S.K.G.; Mohseni, M.; Darvishan, M.; Yousefzadeh, R. RSCM technology for developing runtime-reconfigurable telecom-
munication applications. Comput. Stand. Interfaces 2017, 51, 43-55. [CrossRef]

Cedillo, P,; Insfréan, E.; Abrahéao, S.; Vanderdonckt,]. Empirical Evaluation of a Method for Monitoring Cloud Services Based on
Models at Runtime. IEEE Access 2021, 9, 55898-55919. [CrossRef]

http://doi.org/10.17632/39ddjkyx6d.1
http://doi.org/10.17632/39ddjkyx6d.1
http://dx.doi.org/10.1145/38765.38821
http://dx.doi.org/10.1145/2543581.2543595
http://dx.doi.org/10.1016/j.scico.2021.102668
http://dx.doi.org/10.1007/s10270-019-00773-6
http://ceur-ws.org/Vol-2245/mrt_paper_4.pdf
http://dx.doi.org/10.1109/MODELS.2019.00006
http://dx.doi.org/10.1016/j.csi.2020.103501
http://dx.doi.org/10.2298/CSIS180829021T
http://dx.doi.org/10.1016/j.csi.2020.103483
http://dx.doi.org/10.1109/TSC.2016.2536025
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/TC.2004.66
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1007/s10270-018-00712-x
http://dx.doi.org/10.1016/j.csi.2016.10.015
http://dx.doi.org/10.1109/ACCESS.2021.3071417

Appl. Sci. 2021, 11,9743 21 of 21

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Valero, V.V.; Diaz-Descalzo, G.; Boubeta-Puig, J.; Macia, H.; Brazalez-Segovia, E. A Compositional Approach for Complex Event
Pattern Modeling and Transformation to Colored Petri Nets with Black Sequencing Transitions. IEEE Trans. Softw. Eng. 2021.
[CrossRef]

Leroy, D.; Jeanjean, P; Bousse, E.; Wimmer, M.; Combemale, B. Runtime Monitoring for Executable DSLs.]. Object Technol. 2020,
19, 1-23. [CrossRef]

Meghzili, S.; Chaoui, A.; Strecker, M.; Kerkouche, E. Verification of Model Transformations Using Isabelle/HOL and Scala.
Inf. Syst. Front. 2019, 21, 45-65. [CrossRef]

Kerkouche, E.; Chaoui, A.; Bourennane, E.; Labbani, O. On the Use of Graph Transformation in the Modeling and Verification of
Dynamic Behavior in UML Models. |. Softw. 2010, 5, 1279-1291. [CrossRef]

Lilis, Y;; Savidis, A. A Survey of Metaprogramming Languages. ACM Comput. Surv. 2020, 52, 113:1-113:39. [CrossRef]

Chama, L.E; Belala, N.; Saidouni, D. Formalizing Timed BPEL by D-LOTOS. Int.]. Embed. Real Time Commun. Syst. 2014, 5, 1-21.
[CrossRef]

Ings, D.; Clément, L.; Kénig, D.; Mehta, V.; Mueller, R.; Rangaswamy, R.; Rowley, M.; Trickovic, . WS-BPEL Extension for People
(BPEL4People) Specification Version 1.1. 2010. Available online: https:/ /www.bibsonomy.org /bibtex/22c1f4af4f7124255c44899
aaaeccb263/porta (accessed on 1 July 2021).

OMG. Business Process Model and Notation (BPMN), Version 2.0. 2011. Available online: https://www.bibsonomy.org/bibtex/
2d71e28d8b21b73a067683badbfe0321a/porta (accessed on 1 July 2021).

Bur, M.; Szilagyi, G.; Voros, A.; Varr, D. Distributed graph queries over models@run.time for runtime monitoring of cyber-
physical systems. Int. J. Softw. Tools Technol. Transf. 2020, 22, 79-102. [CrossRef]

Van Rozen, R.; van der Storm, T. Toward live domain-specific languages—From text differencing to adapting models at run time.
Softw. Syst. Model. 2019, 18, 195-212. [CrossRef]

Poggi, E; Rossi, D.; Ciancarini, P. Integrating Semantic Run-Time Models for Adaptive Software Systems.]. Web Eng. 2019,
18, 1-42. [CrossRef]

Chatzikonstantinou, G.; Kontogiannis, K. Efficient parallel reasoning on fuzzy goal models for run time requirements verification.
Softw. Syst. Model. 2018, 17, 1339-1364. [CrossRef]

Heinrich, R. Architectural Run-time Models for Performance and Privacy Analysis in Dynamic Cloud Applications. SIGMETRICS
Perform. Eval. Rev. 2016, 43, 13-22. [CrossRef]

Kephart,].O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41-50. [CrossRef]

Erazo-Garzén, L.; Roman, A.; Moyano-Dutdn, J.; Cedillo, P. Models@runtime and Internet of Things: A Systematic Literature
Review. In Proceedings of the 2021 Second International Conference on Information Systems and Software Technologies (ICI2ST),
Quito, Ecuador, 23-25 March 2021; pp. 128-134. [CrossRef]

Szvetits, M.; Zdun, U. Systematic literature review of the objectives, techniques, kinds, and architectures of models at runtime.
Softw. Syst. Model. 2016, 15, 31-69. [CrossRef]

Thiry, M.; Schmidt, R.A. Self-adaptive Systems Driven by Runtime Models. In Proceedings of the 29th International Conference
on Software Engineering and Knowledge Engineering, Pittsburgh, PA, USA, 5-7 July 2017; He, X., Ed.; KSI Research Inc.;
Knowledge Systems Institute Graduate School: USA, 2017; pp. 248-253. Available online: http:/ /ksiresearch.org/seke/sekel
7paper/sekel7paper_168.pdf (accessed on 1 August 2021). [CrossRef]

http://dx.doi.org/10.1109/TSE.2021.3065584
http://dx.doi.org/10.5381/jot.2020.19.2.a6
http://dx.doi.org/10.1007/s10796-018-9860-9
http://dx.doi.org/10.4304/jsw.5.11.1279-1291
http://dx.doi.org/10.1145/3354584
http://dx.doi.org/10.4018/ijertcs.2014040102
https://www.bibsonomy.org/bibtex/22c1f4af4f7124255c44899aaaeccb263/porta
https://www.bibsonomy.org/bibtex/22c1f4af4f7124255c44899aaaeccb263/porta
https://www.bibsonomy.org/bibtex/2d71e28d8b21b73a067683ba4bfe0321a/porta
https://www.bibsonomy.org/bibtex/2d71e28d8b21b73a067683ba4bfe0321a/porta
http://dx.doi.org/10.1007/s10009-019-00531-5
http://dx.doi.org/10.1007/s10270-017-0608-7
http://dx.doi.org/10.13052/jwe1540-9589.18131
http://dx.doi.org/10.1007/s10270-016-0562-9
http://dx.doi.org/10.1145/2897356.2897359
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/ICI2ST51859.2021.00026
http://dx.doi.org/10.1007/s10270-013-0394-9
http://ksiresearch.org/seke/seke17paper/seke17paper_168.pdf
http://ksiresearch.org/seke/seke17paper/seke17paper_168.pdf
http://dx.doi.org/10.18293/SEKE2017-168

	Introduction
	Background
	Python
	Petri Nets (PN)
	Graph Rewriting
	Models@Runtime

	Proposal
	Antecedents
	Proposal Overview
	Framework Architecture and Behavior
	The Development, Reconfiguring, and Monitoring of Python Applications

	Performance Evaluation
	Case Study
	Discussion
	Conclusions
	References

