
applied
sciences

Article

Exploiting Script Similarities to Compensate for the Large
Amount of Data in Training Tesseract LSTM: Towards
Kurdish OCR
Saman Idrees and Hossein Hassani *

����������
�������

Citation: Idrees, S.; Hassani, H.

Exploiting Script Similarities to

Compensate for the Large Amount of

Data in Training Tesseract LSTM:

Towards Kurdish OCR. Appl. Sci.

2021, 11, 9752. https://doi.org/

10.3390/app11209752

Academic Editor: Agnese Magnani

Received: 8 August 2021

Accepted: 27 September 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil‑

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, University of Kurdistan Hewlêr, 30 Meter,
Kurdistan Region, Erbil 44001, Iraq; saman.idrees@ukh.edu.krd
* Correspondence: hosseinh@ukh.edu.krd

Featured Application: This work helps in the preparation of OCR for the Kurdish language. In
particular, its focus is on Kurdish texts written in Persian‑Arabic script. Currently, Kurdish OCR
is in its early stages. This work can assist in preparing the environment for a full‑fledged OCR
application for Kurdish.

Abstract: Applications based on Long‑Short‑Term Memory (LSTM) require large amounts of data
for their training. Tesseract LSTM is a popular Optical Character Recognition (OCR) engine that
has been trained and used in various languages. However, its training becomes obstructed when
the target language is not resourceful. This research suggests a remedy for the problem of scant
data in training Tesseract LSTM for a new language by exploiting a training dataset for a language
with a similar script. The target of the experiment is Kurdish. It is a multi‑dialect language and is
considered less‑resourced. We choose Sorani, one of the Kurdish dialects, that is mostly written in
Persian‑Arabic script. We train Tesseract using an Arabic dataset, and then we use a considerably
small amount of texts in Persian‑Arabic to train the engine to recognize Sorani texts. Our dataset
is based on a series of court case documents in the Kurdistan Region of Iraq. We also fine‑tune the
engine using 10 Unikurd fonts. We use Lstmeval and Ocreval to evaluate the outputs. The result
indicates the achievement of 95.45% accuracy. We also test the engine using texts outside the context
of court cases. The accuracy of the system remains close to what was found earlier indicating that
the script similarity could be used to overcome the lack of large‑scale data.

Keywords: optical character recognition; tesseract; printed‑document OCR; Kurdish‑OCR system;
offline character recognition system

1. Introduction
The less‑resourced languages face various issues from the language technology per‑

spective. The lack of resources often is one of the main obstacles in the forefront of the
resolution of those challenges. The Optical Character Recognition (OCR) systems play a
crucial role in resource preparation and language processing. However, it is not feasible
to develop or adapt an appropriate OCR for those languages if the required data does
not exist. Kurdish is considered a less‑resourced language that is facing several issues [1]
including lack of OCR systems that are accurate and widely available. Tesseract Long‑
Short‑Term Memory (LSTM) is a popular OCR engine that has been adapted for various
languages, but LSTM‑based methods require large amounts of data for their training. In
this research, we suggest a resolution for that issue by using a training dataset for a lan‑
guage with a similar script and then applying a considerably small amount of data from
the target language. Our target language is Kurdish, and we choose Sorani, one of its di‑
alects that is mostly written in Persian‑Arabic script. Therefore, we use an Arabic dataset
as the base of the training, and we use a Kurdish dataset based on a series of court case

Appl. Sci. 2021, 11, 9752. https://doi.org/10.3390/app11209752 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8899-4016
https://doi.org/10.3390/app11209752
https://doi.org/10.3390/app11209752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209752
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209752?type=check_update&version=2

Appl. Sci. 2021, 11, 9752 2 of 20

documents in the Kurdistan Region of Iraq. We also investigate the fine‑tuning phase of
Tesseract using 10 Unikurd fonts and evaluate the approach by Lstmeval and Ocreval.

The LSTM‑based methods are not only used in image recognition systems, but they
are also applicable to address and solve a wide range of problems. For example, they
are used in time‑series forecasting [2], energy consumption forecasting [3], commercial
vacancy prediction [4], and various other areas. Although this paper focuses on suggesting
a solution for the requirement of large amounts of data in one aspect of the applications
of LSTM‑based approaches, the suggestion could be extended to similar cases that have
similarities of some sort in their training data.

The rest of this paper is organized as follows. Section 2 provides a background about
the Kurdish language focusing on its alphabets and script similarities with Arabic, and then
briefly introduces the OCR history focusing on Tesseract. Section 3 reviews the related
work and literature. In Section 4, we discuss our approach. Section 5 presents and dis‑
cusses the results. Finally, Section 6 concludes the paper.

2. Background
In recent years, research on Kurdish language technology has gained more attraction.

Kurdish is spoken by approximately 30 million people [1]. It is a multi‑dialect language,
and its two most widely spoken dialects, Kurmanji (Northern Kurdish) and Sorani (South‑
ern Kurdish), are spoken by roughly 75% of native Kurds [5,6]. Sorani usually is written
in an adapted Persian‑Arabic script with a cursive style and from Right To Left (RTL). Kur‑
manji mostly uses Latin for writing, except in the Kurdistan Region of Iraq and Kurdish
areas of Syria, where they use the same script that Sorani uses [1]. The alphabet of the
mentioned script includes 34 letters that appear in different shapes according to their po‑
sition in words (see Table 1). Kurdish language technology and its challenges have been
addressed and categorized as: dialect heterogeneity, script variety, lack of standards, lack
of resources, and lack of investment [1,7,8].

Table 1. Kurdish alphabet forms, both Ligature and Isolated.

Contextual Form
Isolated Initial Medial Final
1 ‑ ئـ ‑
2 ا ـا
3 ب بـ ـبـ ـب
4 پ پ ـ ـپ ـ ـپ
5 ت تـ ـتـ ـت
6 ج جـ ـجـ ـج
7 چ چ ـ ـچ ـ ـچ
8 ح حـ ـحـ ـح
9 خ خـ ـخـ ـخ
10 د ـد
11 ر ـر
12 ڕ ـڕ
13 ز ـز
14 ژ ـژ
15 س سـ ـسـ ـس
16 ش شـ ـشـ ـش
17 ع عـ ـعـ ـع
18 غ غـ ـغـ ـغ
19 ف ف ـ ـف ـ ـف
20 ڤ ڤ ـ ـڤ ـ ـڤ

Appl. Sci. 2021, 11, 9752 3 of 20

Table 1. Cont.

Contextual Form
Isolated Initial Medial Final
21 ق قـ ـقـ ـق
22 ك كـ ـكـ ـك
23 گ گ ـ ـگ ـ ـگ
24 ل لـ ـلـ ـل
25 ڵ - ـڵ ـ ـڵ
26 م مـ ـمـ ـم
27 ن نـ ـنـ ـن
28 ھ ـھ ـ ‑
29 ه ـە
30 و ـو
31 ۆ ـۆ
32 وو ـوو
33 ی يـ ـيـ ـی
34 ێ ێ ـ ـێ ـ ـێ

Table 2 shows the order of the alphabet of the Persian‑Arabic script based on the
Kurdish Academy proposal. The Arabic alphabet has 28 letters with a cursive style (see
Table 3). The Persian writers augmented the Arabic alphabet to include graphemes for
the phonemes that did not exist in Arabic. The Kurdish writers also did the same on the
Persian‑Arabic version [9]. The augmented scripts are known as Persian‑Arabic scripts
though the Kurdish one includes more new graphemes for the phonemes than the one
that is used in Persian (Farsi) writing.

Table 2. Central Kurdish alphabet.

ئـ ا ب پ ت ج چ ح خ د ر ڕ ز ژ س ش ع
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
غ ف ڤ ق و گ ل ڵ م ن ھ ک ه ۆ وو ی ێ
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

The Kurdish Persian‑Arabic script uses 21 out of 28 Arabic letters, keeps all four extra
letters added by Persians, and adds nine letters. Seven Arabic letters were found unsuit‑
able for Kurdish because they have no corresponding sound (phoneme) in the language.
Unsuitable letters for the Kurdish language are ث, ذ, ص, ض, ط, ض, and .ع Five new let‑
ters have been formed out of the residual letters, as shown in Tables 4 and 5. As a result,
the current Kurdish (Sorani) alphabet consists of 34 characters.

Appl. Sci. 2021, 11, 9752 4 of 20

Table 3. Arabic alphabet.

Contextual Form
Isolated Form Initial Medial Final

1

ء
(used mainly in the medial and final
position, which is an unlinked letter)

أ ـأ
إ ـإ
ؤ ـؤ

ئـ ـئـ ئ,ـئ
2 ا ـا
3 ب بـ ـبـ ـب
4 ت تـ ـتـ ـت
5 ث ثـ ـثـ ـث
6 ج جـ ـجـ ـج
7 ح حـ ـحـ ـح
8 خ خـ ـخـ ـخ
9 د ـد
10 ذ ـذ
11 ر ـر
12 ز ـز
13 س سـ ـسـ ـس
14 ص صـ ـصـ ـص
15 ض ضـ ـضـ ـض
16 ط طـ ـطـ ـط
17 ظ ظـ ـظـ ـظ
18 ع عـ ـعـ ـع
19 غ غـ ـغـ ـغ
20 ف فـ ـفـ ـف
21 ق قـ ـقـ ـق
22 ك كـ ـكـ ـك
23 ل لـ ـلـ ـل
24 م مـ ـمـ ـم
25 ن نـ ـنـ ـن
26 ه ھـ ـھـ ـه
27 و ـو
28 ي يـ ـيـ ـي

Table 4. Modified Arabic letters to Kurdish letters.

Modified Arabic Letters to Kurdish
Arabic Letters TO Kurdish Letters

1 ب پ
2 ج چ
3 ز ژ
4 ف ڤ
5 ک گ

As indicated by Hashemi [10], the Kurdish alphabet has seven vowels, which are
presented with seven corresponding letters (see Table 6).

Appl. Sci. 2021, 11, 9752 5 of 20

Table 5. Diacritics added to the Arabic letters to create Kurdish letters.

Arabic Letters with Kurdish Diacritics
Arabic Letter TO Kurdish Letter

1 ر ڕ
2 ل ڵ
3 و ۆ
4 ی ێ

Table 6. Vowel letters in Kurdish alphabet.

Kurdish Alphabet Vowel
Kurdish Vowel API Example

1 ا ä با (air)
2 ه ϵ سەر (head)
3 و u كورد (Kurd)
4 ۆ ö تۆ (You)
5 وو ü دوور (far)
6 ی ï شین (blue)
7 ێ ë دێ (village)

The Kurdish alphabet also uses a specific character named Zero‑Width Non‑Joiner
(ZWNJ) for digital writing. ZWNJ is a non‑printing character placed between two charac‑
ters to avoid inappropriate concatenation. For example, after the character .”ە“ ZWNJ is
encoded in Unicode as U+200C. It is illustrated in the following words: ھه ژار - بەھار - ھەروەھا
- .ھەولێر If ZWNJ was not used, those words appeared as ھھژار - بھھار - ھھروھھا - .ھھولێر

Optical Character Recognition
Optical Character Recognition (OCR) is a research area that benefits from several com‑

puting fields, such as machine learning, computer vision, and natural language
processing [11]. OCR essentially converts two types of documents into texts: handwrit‑
ten and machine‑typed [12]. Those documents may hold different kinds of data, such
as passport documents, invoices, bank statements, digital receipts, business cards, mails,
and newspapers, and OCR can make them ready for text processing.

Early character recognition systems followed the telegraphy applications technology.
That allowed the industry to develop devices that could help blind and visually impaired
to read texts [13]. In 1914, Emanuel Goldberg developed a machine that could read and
convert characters into standard telegraph codes [14]. Concurrently, Edmund Edward
Fournier developed what was a handheld scanner used to move across a printed page to
produce tones that corresponded to a specific letter or character [15]. In the 1930s, Emanuel
Goldberg built a statistical machine using optical code recognition for searching microfilm
archives. Furthermore, in the 1950s, the US Department of Defense developed Geographic
Information Systems and Mapping Operations (GISMO) that could read Morse Codes and
words on printed pages, character by character [14].

In 1974, Rey Kurzweil developed the Omni‑font OCR machine for blind users. The de‑
vice was able to recognize printed text in any font. In the early 1990s, A. G. Ramakrishnan
built a print‑to‑braille device that could convert scanned images of printed books to braille
books. In the new millennium, OCR became widely available both as an online and offline
service under different computing platforms [12].

3. Related Work
In this review, our focus is on OCR systems, but we also review some other LSTM‑

based applications that could benefit from our approach. For the OCR applications, the re‑
search focuses on machine‑typed documents in the Kurdish language. However, because

Appl. Sci. 2021, 11, 9752 6 of 20

the work on Kurdish OCR is in its early stages, we concentrate on OCRs for languages
with Arabic‑based scripts particularly, Arabic, Urdu, and Farsi (Persian). We also look
into available platforms and technologies for OCR development.

3.1. OCR Studies for Persian‑Arabic Based Scripts
Yaseen and Hassani [16] worked on OCR for Kurdish (Sorani) texts in Persian‑Arabic

script. They discussed the features of the script in terms of its special diacritics and cursive
style, and accordingly, they proposed a new set of rules for the segmentation process. They
used optimized horizontal histogram projection for line segmentation and contour‑based
segmentation for character segmentation. The research used the Gamera [17] toolkit for
classification and reported a 90.82% of accuracy for their approach.

While conducting this study, we also noticed work on Sorani (Central Kurdish) OCR
using Tesseract OCR engine (more detail could be found on its GitHub page at https:
//github.com/Shreeshrii/tesstrain‑ckb [accessed on 7 August 2021]). The mentioned work
created a language model for Sorani using synthetic data generated over 26 fonts (see
Table 7). However, at the time of writing this paper, we could not find any papers, whether
peer‑reviewed or as work in progress, to explain more than what the GitHub page de‑
scribes.

Table 7. Fonts used by Shreeshrii to fine‑tune the Arabic language model for Sorani.

Font Name # Font Name # Font Name

1 Abd Akre 10 Arial 19 Segoe UI Bold
2 Abd Gare 11 Arial Bold 20 Speda
3 Abd Halabja OLD 12 NRT Bold, 21 Speda Bold
4 Abd Hewler 13 NRT Reg 22 Tahoma
5 Abd Metin Bold 14 Peshang Des 1, 23 Tahoma Bold
6 Abd Umed 15 RudawRegular 24 Ubuntu Kurdish 0.81 met
7 Adobe Arabic Bold 16 Sarchia_Banoka_1 25 Unikurd Chimen
8 Arabic Typesetting 17 Segoe UI 26 Unikurd Goran
9 Unikurd Web 18 Shasenem‑kurd

Radhiah et al. [18] used Artificial Neural Network (ANN) and Hidden Markov Model
(HMM) models in the segmentation process of their Arabic OCR. Their focus was on both
isolated and concatenated forms of Arabic characters. They reported a 100% recognition
accuracy with ANN and 69% with HMM. For HMM, they reported an accuracy rate of
71% and 50% for isolated and concatenated letters, respectively. According to their re‑
sults, the ANN method misidentified five letters, while HMM approach misidentified nine.
However, it is not clear how they achieved a 100% accuracy with ANN while the method
wrongly identified five letters.

Nashwan et al. [19] conducted a study for isolated Arabic letters using ANN with
Backpropagation and Learning Vector Quantization (LVQ) method. The research showed
a 98.81% accuracy. However, it reported an issue about the confusion between isolated
and concatenated letter recognition.

The Urdu language is also written from right to left except for the numerals that follow
the similar languages wherein they are written from left to right [20]. Urdu consists of
38 letters and ten numeric characters.

A study by Naz et al. [21] proposed preprocessing techniques for OCR systems us‑
ing four steps. The first step includes document scanning, orientation detection, skew
correction, noise removal, binarization, and then other standard preprocessing methods.
The second step is segmentation which separates the paragraphs and text lines. The third
step is to extract features such as the right, left, top, and bottom points, curves, loops,
crosses, and the height of characters in the text. The last step is the classification that uses
fuzzy logic rules in two phases to recognize the diacritics and visible features. They used
Nasta’liq font of the size of 36 for the proposed method. They reported an accuracy rate

https://github.com/Shreeshrii/tesstrain-ckb
https://github.com/Shreeshrii/tesstrain-ckb

Appl. Sci. 2021, 11, 9752 7 of 20

of 100% and 94% for the baseline/single character identification and ligature/concatenated
identification, respectively.

Developers of Persian OCR have adopted several methods, such as movement on
edge to capture character features, HMM, and morphology of characters. For example,
using a chain‑code‑based approach and nearest neighbor, they trained a classifier, font
by font, and then compared the result with a different font as the test set. The method,
on average, showed an accuracy rate of 97.4% [22]. Using morphological operators, Jelodar
et al. [23] applied hit/miss operators to describe all sub‑words combined with the template
matching. The study used one font (Lotus) of two different sizes. The test set contained
3000 words (15,000 characters), and the experiments achieved an accuracy rate of 99.9%.

3.2. OCR Technology and Platforms
A variety of commercial companies along with non‑commercial communities provide

OCR services and applications. The services are available online or offline. However, cur‑
rently, a functional and reliable Kurdish OCR is not available. In this section, we review
some available OCR services in which we concentrate on Tesseract as one of the widely
used engines. We also address some other engines that are available as open‑source.

3.2.1. Tesseract
Tesseract is one of the most widely used OCR engines that provides a high accuracy

rate compared with other available engines [11]. Figure 1 shows a brief history of Tesser‑
act. Tesseract has been adapted for many languages (up to 140 different languages) [24].
Since its version 4.0, it presented a new engine based on Long Short‑Term Memory (LSTM).
LSTM, as a specific form of Artificial Recurrent Neural Network (RNN), provides substan‑
tially higher accuracy on image recognition than Tesseract’s earlier versions. Tesseract can
be trained from scratch or be fine‑tuned based on already trained languages. In 2005, it
became open‑source, and it is freely available on http://code.google.com/p/tesseract‑ocr
(accessed on 7 August 2021).

Figure 1. Tesseract Timeline [25].

3.2.2. Other OCR Technologies
Other OCR technologies also exist and are used for different purposes. Gamera is

a toolkit for building document image recognition systems [26]. The images or symbols
must be assigned to the classes manually, and the result of this step creates a database in
the Extensible Markup Language (XML) format. Gamera uses the K Nearest Neighbors
(KNN) algorithm as its classifier. Gamera is available on https://gamera.informatik.hsnr.
de/index.html (accessed on 7 August 2021).

http://code.google.com/p/tesseract-ocr
https://gamera.informatik.hsnr.de/index.html
https://gamera.informatik.hsnr.de/index.html

Appl. Sci. 2021, 11, 9752 8 of 20

Google Drive OCR is a multilingual and online OCR service provided by Google In‑
corporation and supporting up to 200 languages in almost 25 writing systems. According
to Genzel and Ashok Popat [27], Hidden Markov Model (HMM) has been employed to
work potentially with all languages and writing systems. Although it is a powerful OCR
system, it does not support the Kurdish language [28]. Google drive can partially rec‑
ognize Kurdish documents based on its Arabic model, but it misses the special Kurdish
characters that do not exist in the Arabic alphabet.

GOCR/JOCR is an open‑source OCR tool under the GNU license [29] which can read
and convert images files such as PNM, PGM, PBM, and PP into text format. GOCR does
not require training data that results in a fairly low accuracy rate for different languages.
The recognition process happens in two stages. In the first stage, GOCR takes the whole
document as input, and in the second one, it processes misidentified characters from the
same document [29].

Tafti et al. [11] provided a comparative analysis on various OCR engines, their ca‑
pability, working platform, and other attributes. Recently, a new survey with a broader
coverage was also published [30].

Finally, literature reports on research about handwritten Kurdish texts. For example,
Zarro and Anwer [31] and Ahmed [32] have reported on handwritten character recognition
in Kurdish, focusing on single and isolated characters. However, as we mentioned, our
focus is on machine‑type documents, and therefore, we are not reviewing those studies
in detail.

To summarize, although OCR is a well‑developed technology in language processing,
most less‑resourced languages have not benefited from the advances in the field. Further‑
more, as most modern OCR engines use artificial intelligence methods such as LSTM, they
require a large amount of data for their training. We are interested in showing that lever‑
aging the script similarity between languages is a solution to that issue. Although the re‑
cent literature presents some work on using limited data in OCR adaption, particularly on
LSTM‑based engines [33–36], it does not show script‑similarity‑based approaches based
on using well‑resourced language to the advantage of less‑resourced ones. That is what
we intend to show in this research. In our method, the emphasis and concentration are on
a specific engine (Tesseract).

3.3. Using LSTM‑Based Approaches in Other Fields or Study
Peng et al. [2] used LSTM‑based methods to forecast time‑series forecasting. They

used LSTM with fruit FOA‑Fly Optimization Algorithm with LSTM (LSTM) to solve time
series problems. Peng et al. [3] applied LSTM‑based approaches on energy consumption
forecasting. They suggested that their model could be retrained with data collected after
the COVID‑19 pandemic. As these data might not be as large as enough for an LSTM‑based
system, the idea of using a small dataset based on a trained model over a similar one, as we
suggest in this paper, could be advantageous in the mentioned study too. Commercial
vacancy prediction is another example of using LSTM‑based methods [4]. In this study,
Lee et al. [4] applied LSTM‑based methods to predict commercial vacancy. Again, a dataset
from the after COVID‑19 era that could be reasonably smaller than the original dataset
could be used for retraining the model.

4. Proposed Method
In this research, we train the Tesseract engine using an Arabic dataset and fine‑tune

it with a small amount of Kurdish (Sorani) texts. The LSTM‑based systems require a large
amount of training data. That is typically expensive, labor‑intensive, and time‑consuming.

Tesseract provides various training methods such as fine‑tuning the existing language
model and training from scratch. It follows two different approaches for its training: train‑
ing with synthetic data/image lines and providing ground truth transcriptions. Augmen‑
tation could also be applied, and it would be useful when a pre‑trained dataset is available.

Appl. Sci. 2021, 11, 9752 9 of 20

We train Tesseract and fine‑tune it by augmenting the Arabic language model by pro‑
viding image lines and ground truth transcriptions as input datasets. Using Kurdish doc‑
uments, we introduce the Kurdish‑specific characters. We also examine to what extent a
post‑processing phase could resolve the issues regarding ZWNJ. Afterward, we retrain the
fine‑tuned language model with synthetic data to add new Unikurd fonts to compare the
accuracy with the post‑processing approach.

4.1. Tesseract Training Modes and Available Language Models
Tesseract 4 provides various data models for Latin languages. The models are trained

on approximately 400,000 text lines covering roughly 4500 fonts [37]. Although the same
number of fonts have not been available for non‑Latin scripts, they have also been trained
with a similar amount of text lines. The training phase is a long process, and depending
on the computation power, it might take a few days or weeks. Despite having different
training options, the training steps are identical. Tesseract training options are as follows:

1. Fine‑tune: This method adds new data to an already trained model close to the target
language model.

2. Cut off the top layer (or some arbitrary layers): If fine‑tuning did not produce the de‑
sired outcome, this method cuts off the top layer and retrains it with additional data.
It can train a new language or a language having script‑similarity with a trained one.

3. Retrain from scratch: This is a method that starts from scratch. We do not recommend
it if a large amount of data is not available.

According to Google [37], in Tesseract 4, old engines still exist, but they are deprecated
and could be removed in the future. Tesseract has two OCR engines (Legacy and LSTM)
that can be selected by OCR Engine Mode (–OEM) option, see Table 8. We used the LSTM
engine that is faster and appears more promising to provide higher accuracy.

Table 8. Tesseract OCR engine modes.

OEM Type

0 Legacy engine only
1 Neural nets LSTM engine only
2 Legacy + LSTM engines
3 Default, based on what is available

4.1.1. Two Main Sources of Data for Training Tesseract LSTM Language Model
Below we describe the two main sources of data for training Tesseract LSTM. Other

methods also exist but do not suit our approach.

1. Training with Synthetic data: Synthetic data is defined as artificially generated data
from text files rather than being captured from actual events. It is used in data mining
and other different systems such as fraud detection applications. Synthetic data is
usually used in machine learning applications to create a model that could be applied
to real data [38].

2. Training with Image lines: This is the process of generating data from actual docu‑
ments. The documents are obtainable from printed sources, digital images (or scanned
documents), or any other suitable and available formats. Ground truth descriptions
for each image must be provided.

4.1.2. Data Collection and Preparation
We collect court cases from several courts in the Kurdistan Region of Iraq. We scan

the documents with a resolution of 300 Dots Per Inch (DPI) according to Tesseract require‑
ments. For each line of the text, we prepare an image line in PNG. Although various image
formats such as Tagged Image File Format (TIFF) are acceptable for this purpose, we chose
PNG that is more common for this process. Since no specific tool is recommended in the

Appl. Sci. 2021, 11, 9752 10 of 20

literature, any image editor with the capability of cropping and rotation that supports the
mentioned image formats can be used for the process. For the synthetic data we use avail‑
able online sources.

4.2. Evaluation Method
Tesseract has an evaluation program named lstmeval. Using a list of lstmf files for

evaluation, it performs its evaluations. However, other tools are also available for evalu‑
ating the accuracy of OCR language models, for instance, ocreval, ISRI‑OCR’s evaluation
tool [39]. Ocreval is a powerful tool for evaluating character level and word level accuracy
that supports all characters represented in UTF‑8 encoding and provides more details in
comparison to the Tesseract lstmeval program. Tesseract lstmeval evaluates LSTM‑based
networks. In our case, it evaluates the performance of the network in an optical character
recognition model, while ocreval evaluates the overall performance of an OCR system by
comparing the output of the OCR‑ed document with the original one.

We initially use lstmeval, and we compare the results between the original Arabic lan‑
guage model with the fine‑tuned kur_ara language model. We show the result after ap‑
plying the post‑processing method using Algorithm 1. Then we present the result after
training/fine‑tuning for adding new fonts. We also use the ocreval program to present more
detail on results.

Algorithm 1 Post‑processing method
1: if (ە) without ZWNJ exist then
2: Replace all(ە) without ZWNJ to (ە) including ZWNJ ;
3: end if
4: if (ەەا) exist then
5: Replace all (ەەا) to ;(ەھا)
6: end if
7: if (ەەە) exist then
8: Replace all (ەەە) to ;(ەھە)
9: end if

10: if (ەە) exist then
11: Replace all (ەە) to ;(ھە)
12: end if
13: if ەا exist then
14: Replace all (ەا) to ;(ھا)
15: end if
16: if (ەۆ) exist then
17: Replace all (ەۆ) to ;(ھۆ)
18: end if
19: if (ەێ) exist then
20: Replace all (ەێ) to ;(ھێ)
21: end if
22: if (ەی) exist then
23: Replace all (ەی) to ;(ھی)
24: end if

5. Results
We collected 110 documents in paper format from different town courts in three cities.

They are court‑registered complaints by civilians about various issues. Documents in the
courts are prepared and typed on computer devices by court employees in the desired
court format. There are different types of fonts and sizes among the collected documents.
We only have limited data set, and therefore, we used 90%, equating to 99 papers, for train‑
ing the system, and we used 10%, equating to 11 papers for testing and evaluation. A sum‑
mary of the collected data is presented in Table 9. Table 10 shows the parameters we used
in the training process.

Appl. Sci. 2021, 11, 9752 11 of 20

Table 9. Summary of data utilized for the training and evaluation process.

Type of Data Amount Rate % Total

1 Data utilized for training 99 printed
documents 90 % 110 printed

documents

2 Data utilized for evaluation 11 printed
documents 10 %

3 Image lines prepared
from the documents 522 files 1044 files

4 Ground Truth transcriptions
prepared from documents 522 files

Table 10. Training Parameters.

Parameter Value

Page segmentation Set to 13 default for RTL languages
OCR engine mode 1 (LSTM mode only)
Debug‑Interval −1
Max‑Iteration 10,000
Lang‑Type RTL
Norm‑Mode 1
Random‑Seed 0
OMP‑Thread‑Limited 8

5.1. Dataset Preparation
We removed all personally identifiable information (see Figure 2) and image lines

with a naming protocol (e.g., image0.png) (see Figure 3). A summary of collected data is
presented in Table 9.

Furthermore, we prepared the Ground Truth (GT) Transcription file, which is single‑
line plain text corresponding to the line images. We saved GT files with 8‑bit encoding
and named them with the identical name as the line image. We saved with the extension
of .gt.txt,(e.g., image0.gt.txt), see Figure 4.

We used Notepad++ text editor for the preparation of the single‑line plain text and
created 522 image lines and 522 GT files, in total 1044 files.

The other preparation activities were performed as follows. Tesseract engine performed
binarization. Basically, the process aims at converting color images into black and white
equivalents. In our case, the documents were already in black and white. However, Tesser‑
act still performed the process. Dewarping is another pre‑process activity in data prepara‑
tion. However, it is required when the images have been taken using different kinds of
input devices, and therefore they might have distortions, skews, and other attributes that
could negatively affect the result of the recognition. In our case, we scanned the documents
manually and all with the same settings and a single scanner. Therefore, we did not find it
necessary to apply dewarping. Because of a small set of data, we also applied segmentation,
cropping, and image rotation manually.

In the first phase of training/fine‑tuning the Arabic Trained data, the language model
was not able to handle ZWNJ properly, and therefore, we replaced all ”ە“ without ZWNJ
character to ”ە“ with ZWNJ character, to unbind wrong concatenated characters. After that,
other replacement methods will be applied subsequently to correct common wrongly con‑
catenated characters, see Algorithm 1.

Appl. Sci. 2021, 11, 9752 12 of 20

Figure 2. Scanned court document image sample for data set preparation.

Figure 3. Line Image sample.

Figure 4. Ground Truth transcription sample.

5.2. Result after Training/Fine‑Tuning Arabic Trained Data
We trained/fine‑tuned the Arabic language model with the targeted dataset and cre‑

ated the kur_ara language model. We used lstmeval to evaluate and showed the result after
training. We achieved a 32 percentage points difference in character error rate and a 51 per‑
centage points difference in word error rate. The accuracy error rate for kur_ara language
model is reported as follows, the character error rate is 2.93, and the word error rate is
13.53. The detailed results are presented in Table 11. As some Kurdish characters do not
exist in the Arabic language model, that magnitude of difference was expected.

Appl. Sci. 2021, 11, 9752 13 of 20

Table 11. The evaluation result of trained language model with the starter language model.

Language Models Char Error Rate Word Error Rate

Arabic.traineddata 35.10 % 65.03 %
kur_ara.traineddata 2.93 % 13.52 %

Improve rate 32.18 % 51.50 %

To evaluate the accuracy of the trained language model by actual court‑printed doc‑
ument images, we used ocreval tool. A sample is shown in Figure 5.

Figure 5. Actual court document image.

We OCRed the image with kur_ara language model, see Figure 6, and compared this
with the original text file, see Figure 7.

Figure 6. OCRed text of actual Court’s document image.

Figure 7. Original text of actual Court’s document image.

The result showed an accuracy rate of 87.5%. Most of the errors that occurred are
related to ZWNJ. The detailed report is shown in Figure 8. The result for the same docu‑
ment image after applying the post‑processing method for text correction showed 97.75%
accuracy.

Appl. Sci. 2021, 11, 9752 14 of 20

Figure 8. Detailed report on actual Court’s document image.

5.3. Result after Training/Fine‑Tuning for Adding New Font
We Trained/Fine‑tuned the kur_ara language model for adding new fonts. We used

synthetic data, which includes AWN and AEN, and trained the model by utilizing 20 pages
of approximately 1000 lines for each Unikurd font. We prepared those pages using a script
that compiled the pages for each font based on the text at https://github.com/Shreeshrii/
tesstrain‑ckb/blob/master/langdata/ckb.training_text (accessed on 7 August 2021). We se‑
lected the 20 pages data from beginning of the document onward. Figure 9 shows a sample
of the data that we prepared for Unikurd_Tishk font.

https://github.com/Shreeshrii/tesstrain-ckb/blob/master/langdata/ckb.training_text
https://github.com/Shreeshrii/tesstrain-ckb/blob/master/langdata/ckb.training_text

Appl. Sci. 2021, 11, 9752 15 of 20

Figure 9. A Sample of Synthetic Data for Unikurd_Tishk font.

We evaluated and showed the result of the base kur_ara language model versus the
fine‑tuned version in Table 12. We started by training one font at a time and then re‑
peated the process of training over ten fonts. The average error rate for characters before
training/fine‑tuning over ten fonts is 10.34%, while it is 22.61% for words. It is 1.60% for
characters after training/fine‑tuning, while it is 4.83% for words. That shows an improve‑
ment of 8.74 and 17.78 percentage points for characters and words, respectively. Table 12
presents a more detailed result for each font.

Table 12. The evaluation result of training/fine‑tuning for adding new fonts.

Evaluation Evaluation
Unikurd Before Training After Training

*2 —‑ # Font Name Char Word Char Word
Err Rate % Err Rate % Err Rate % Err Rate %

1 Jino 30.76 58.01 2.51 6.81
2 Web 6.15 15.51 1.35 4.78
3 Chimen 12.04 21.11 3.02 6.41
4 Hiwa 2.37 6.79 1.35 4.08
5 Goran 2.10 6.17 1.31 4.21
6 Kawe 11.94 33.65 1.35 4.70
7 Hejar 2.39 8.91 0.91 3.62
8 Hemen 11.88 30.22 2.05 6.12
9 Nali 5.52 16.83 0.73 3.52
10 Tishk 18.25 28.96 1.38 4.09

Average 10.34 22.61 1.60 4.83

We used the final kur_ara language model which was trained/fine tuned over ten fonts
for recognizing actual court’s documents images, see Figures 10 and 11.

The average accuracy rate for 11 documents reported as 95.45818182%. See details in
Table 13.

Table 13. Accuracy rate for court’s document images using ocreval.

Court’s Documents Accuracy Rate %

1 Image 1 95.88
2 Image 2 93.54
3 Image 3 93.20
4 Image 4 97.06
5 Image 5 96.34
6 Image 6 92.09
7 Image 7 97.24
8 Image 8 97.77
9 Image 9 92.83
10 Image 10 97.57
11 Image 11 96.52
Average accuracy rate 95.46

Appl. Sci. 2021, 11, 9752 16 of 20

Figure 10. Court document image for evaluation by final model (Image1).

Appl. Sci. 2021, 11, 9752 17 of 20

Figure 11. Court document image for evaluation by final model (Image2).

5.4. Discussion
The research showed that using a training dataset that has a script similarity with

a less‑resourced language could increase the overall accuracy of the LSTM‑based Tesser‑
act engine. We also showed that two methods could be used to improve the output of
the engine: using post‑processing and fine‑tuning the engine using different fonts. Al‑
though both provide similar improvement, the latter is more straightforward and prefer‑
able. However, using the latter approach depends on the fonts available for the target lan‑
guage. Highly accurate character recognition of the created model (kur_ara) is currently
limited to documents written in ten Unikurd fonts, see Table 12. The approach can be
applied to other Kurdish Unicode fonts by using synthetic data as well. Currently, the de‑
veloped language model is restricted in recognizing only machine‑typed documents.

The advantage of our approach is in the size of the data. A small amount of data could
be used to train a Tesseract model that has been trained over an appropriate dataset for a
well‑resourced language with a similar script. The result language model of that process

Appl. Sci. 2021, 11, 9752 18 of 20

provides a highly accurate output. However, this research did not intend to investigate
documents that include tables and test older documents typed using mechanical type ma‑
chines and other older typing tools.

6. Conclusions
The unavailability of OCR systems is an obstacle that hinders the text processing task

in under‑resourced languages. Tesseract is an engine that provides a proper basis to de‑
velop OCR models for various languages. However, its LSTM‑based approach requires
large amounts of data for their training. This research suggested a method to overcome
this issue. For our experiment, we used Kurdish (Sorani), which is considered an under‑
resourced language. The study concluded that a small dataset for a target language along
with a larger dataset for a second language that has script similarity with the target lan‑
guage could compensate for the requirement of a large amount of data in LSTM‑based
applications. The study showed that the resulted model could provide a reasonable result
even in the absence of a large dataset. We also showed that, in the absence of fine‑tuning,
the output could be improved by post‑processing. However, if fine‑tuning using different
fonts is possible, it could eliminate the post‑processing phase.

The conclusion suggests three main areas for future work. First, the expansion of the
training data set to cover more complex documents, for instance, documents with tables,
newspapers, multicolumn documents, to name a few. That could be combined with an
appropriate set from different types of Tesseract segmentation to extend the coverage of
the adapted engine. Second, working on historical documents from the pre‑digital era
is paramount that could help many other sectors of Kurdish processing, particularly cor‑
pora development. Third, to investigate the applicability and efficiency of the suggested
approach for OCR systems in other fields that use LSTM‑based methods such as energy
consumption, commercial vacancy prediction, and time‑series forecasting.

Author Contributions: Conceptualization, H.H. and S.I.; Methodology, H.H. and S.I.; Software, S.I.;
Validation, S.I.; Formal analysis H.H. and S.I.; Investigation, S.I. and H.H.; Resources, S.I.; Data cura‑
tion, S.I.; Writing—original draft preparation, S.I.; Writing—review and editing, H.H.; Visualization,
H.H. and S.I.; Supervision, H.H.; Project administration, H.H. Revision: H.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset will be publicly available on Kurdish‑BLARK under the
GPL upon the acceptance of the paper.

Acknowledgments: We appreciate the feedback we received from the anonymous reviewers. They
were constructive, professional, valuable, and helpful. We are grateful to the reviewers for their
opinion that significantly improved the paper. We are also grateful to Lesley A T Gaj for her generous
assistance in proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AEN Arabic Eastern Number
ANN Artificial Neural network
AWN Arabic Western Number
BLARK Basic Language Resource Kit
DPI Dots Per Inch
FOA Fly Optimization Algorithm with LSTM
FOA‑LSTM Fly Optimization Algorithm with LSTM

Appl. Sci. 2021, 11, 9752 19 of 20

GB GigaByte
GIF Graphics Interchange Format
GISMO Geographic Information Systems and Mapping Operations
GNU GNU’s Not Unix
GUI Graphical User Interface
GT Ground Truth
HMM Hidden Markov Model
ISRI Information Science Research Institute
JOCR Jorg Optical Character Recognition
JPEG Joint Photographic Experts Group
KNN K Nearest Neighbors
KRI Kurdistan Region of Iraq
KRG Kurdistan Regional Government
LR language resources
LSTM Long Short‑Term Memory
LTR Left To Right
LVQ Learning Vector Quantization
OCR Optical Character Recognition
OEM OCR Engine Mode
PBM Portable Bitmap
PGM Portable Gray Map
PNG Portable Network Graphics
PNM Portable Any Map
PP Pocket Physics
PPP Public‑Private Partnership
PSM Page Segmentation Mode
RNN Recurrent Neural Network
RTL Right To Left
SDK Software Development Kit
TIFF Tagged Image File Format
UTF‑8 8‑bit Unicode Transformation Format
XML Extensible Markup Language
ZWNJ Zero‑Width Non‑Joiner

References
1. Hassani, H. BLARK for Multi‑dialect Languages: Towards The Kurdish BLARK.Lang. Resour. Eval. 2018, 52, 625–644. [CrossRef]
2. Peng, L.; Zhu, Q.; Lv, S.X.; Wang, L. Effective long short‑term memory with fruit fly optimization algorithm for time series

forecasting. Soft Comput. 2020, 24, 15059–15079. [CrossRef]
3. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long

short‑term memory. Energy 2021, 238, 121756. [CrossRef]
4. Lee, J.; Kim, H.; Kim, H. Commercial Vacancy Prediction Using LSTM Neural Networks. Sustainability 2021, 13, 5400. [CrossRef]
5. Esmaili, K.S.; Salavati, S. Sorani Kurdish Versus Kurmanji Kurdish: An Empirical Comparison. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Sofia, Bulgaria, 4–9 August 2013;
pp. 300–305.

6. Hassani, H.; Medjedovic, D. Automatic Kurdish Dialects Identification. Comput. Sci. Inf. Technol. 2016, 6, 61–78.
7. Esmaili, K.S. Challenges In Kurdish Text Processing. arXiv 2012, arXiv:1212.0074.
8. Ahmadi, S. Why Does Kurdish Language Processing Matter? 2019. Available online: https://sinaahmadi.github.io/posts/why‑

kurdish‑language‑processing‑matters.html (accessed on 2 September 2021).
9. Marouf, M. Kurdish Academia Journal NO. 16. 2015. Available online: https://govkrd.b‑cdn.net/OtherEntities/Kurdish%20

Academy/Kurdish/%D8%A8%DA%B5%D8%A7%D9%88%DA%A9%D8%B1%D8%A7%D9%88%DB%95%DA%A9%D8%A7
%D9%86/%DA%AF%DB%86%DA%A4%D8%A7%D8%B1%DB%8C%20%D9%8A%D9%94%DB%95%DA%A9%D8%A7%D8
%AF%DB%8C%D9%85%DB%8C%D8%A7/Govari%20Ekadimi%2016.pdf (accessed on 5 August 2021)

10. Hashemi, D. Kurdish Orthography. 2016. Available online: http://yageyziman.com/Renusi_Kurdi.htm (accessed on 2 Septem‑
ber 2021).

11. Tafti, A.P.; Baghaie, A.; Assefi, M.; Arabnia, H.R.; Yu, Z.; Peissig, P. OCR as a Service: An Experimental Evaluation of Google
Docs OCR, Tesseract, ABBYY FineReader, Furthermore, Transym. In Advances in Visual Computing. ISVC 2016; Lecture Notes in
Computer Science; Bebis, G., Ed.; Springer: Cham, Switzerland, 2016; Volume 10072.

12. Mithe, R.; Indalkar, S.; Divekar, N. Optical Character Recognition. Int. J. Recent Technol. Eng. 2013, 2, 72–75.

http://doi.org/10.1007/s10579-017-9400-0
http://dx.doi.org/10.1007/s00500-020-04855-2
http://dx.doi.org/10.1016/j.energy.2021.121756
http://dx.doi.org/10.3390/su13105400
https://sinaahmadi.github.io/posts/why-kurdish-language-processing-matters.html
https://sinaahmadi.github.io/posts/why-kurdish-language-processing-matters.html
https://govkrd.b-cdn.net/OtherEntities/Kurdish%20Academy/Kurdish/%D8%A8%DA%B5%D8%A7%D9%88%DA%A9%D8%B1%D8%A7%D9%88%DB%95%DA%A9%D8%A7%D9%86/%DA%AF%DB%86%DA%A4%D8%A7%D8%B1%DB%8C%20%D9%8A%D9%94%DB%95%DA%A9%D8%A7%D8%AF%DB%8C%D9%85%DB%8C%D8%A7/Govari%20Ekadimi%2016.pdf
https://govkrd.b-cdn.net/OtherEntities/Kurdish%20Academy/Kurdish/%D8%A8%DA%B5%D8%A7%D9%88%DA%A9%D8%B1%D8%A7%D9%88%DB%95%DA%A9%D8%A7%D9%86/%DA%AF%DB%86%DA%A4%D8%A7%D8%B1%DB%8C%20%D9%8A%D9%94%DB%95%DA%A9%D8%A7%D8%AF%DB%8C%D9%85%DB%8C%D8%A7/Govari%20Ekadimi%2016.pdf
https://govkrd.b-cdn.net/OtherEntities/Kurdish%20Academy/Kurdish/%D8%A8%DA%B5%D8%A7%D9%88%DA%A9%D8%B1%D8%A7%D9%88%DB%95%DA%A9%D8%A7%D9%86/%DA%AF%DB%86%DA%A4%D8%A7%D8%B1%DB%8C%20%D9%8A%D9%94%DB%95%DA%A9%D8%A7%D8%AF%DB%8C%D9%85%DB%8C%D8%A7/Govari%20Ekadimi%2016.pdf
https://govkrd.b-cdn.net/OtherEntities/Kurdish%20Academy/Kurdish/%D8%A8%DA%B5%D8%A7%D9%88%DA%A9%D8%B1%D8%A7%D9%88%DB%95%DA%A9%D8%A7%D9%86/%DA%AF%DB%86%DA%A4%D8%A7%D8%B1%DB%8C%20%D9%8A%D9%94%DB%95%DA%A9%D8%A7%D8%AF%DB%8C%D9%85%DB%8C%D8%A7/Govari%20Ekadimi%2016.pdf
http://yageyziman.com/Renusi_Kurdi.htm

Appl. Sci. 2021, 11, 9752 20 of 20

13. Herbert, H. The History of OCR, Optical Character Recognition; Recognition Technologies Users Association: Bennington County,
VT, USA, 1982.

14. Dhavale, S.V. Advanced Image‑Based Spam Detection and Filtering Techniques; IGI Global: Hershey, PA, USA, 2017.
15. d’Albe, E.F. On A Type‑reading Optophone. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1914, 90, 373–375.
16. Yaseen, R.; Hassani, H. Kurdish Optical Character Recognition. UKH J. Sci. Eng. 2018, 2, 18–27. [CrossRef]
17. Gamera. The Gamera Project. Available online: https://gamera.informatik.hsnr.de/ (accessed on 7 August 2021)
18. Radhiah, A.; Machbub, C.; Hidayat, E.M.I.; Prihatmanto, A.S. Printed Arabic Letter Recognition Based On Image. In Proceedings

of the 2018 International Conference on Signals and Systems (ICSigSys), Bali, Indonesia, 1–3 May 2018; pp. 86–91.
19. Nashwan, F.; Rashwan, M.A.; Al‑Barhamtoshy, H.M.; Abdou, S.M.; Moussa, A.M. A Holistic Technique For An Arabic OCR

System. J. Imaging 2018, 4, 6. [CrossRef]
20. Husnain, M.; Saad Missen, M.M.; Mumtaz, S.; Jhanidr, M.Z.; Coustaty, M.; Muzzamil Luqman, M.; Ogier, J.M.; Sang Choi, G.

Recognition of Urdu Handwritten Characters Using Convolutional Neural Network. Appl. Sci. 2019, 9, 2758. [CrossRef]
21. Naz, S.; Hayat, K.; Razzak, M.I.; Anwar, M.W.; Madani, S.A.; Khan, S.U. The Optical Character Recognition Of Urdu‑like Cursive

Scripts. Pattern Recognit. 2014, 47, 1229–1248. [CrossRef]
22. Izakian, H.; Monadjemi, S.; Ladani, B.T.; Zamanifar, K. Multi‑font Farsi/Arabic Isolated Character Recognition Using Chain

Codes. World Acad. Sci. Eng. Technol. 2008, 43, 67–70.
23. Jelodar, M.S.; Fadaeieslam, M.J.; Mozayani, N.; Fazeli, M. A Persian OCR System Using Morphological Operators. In Pro‑

ceedings of the World Academy of Scienc, Engineering and Technology, Istanbul, Turkey, 25–27 February 2005; Volume 2,
pp. 137–140.

24. Smith, R. An Overview Of The Tesseract OCR Engine. In Proceedings of the Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), Curitiba, Brazil, 23–26 September 2007; Volume 2, pp. 629–633.

25. Smith, R. Motivation and History of the Tesseract OCR Engine; Google Inc.: Menlo Park, CA, USA, 2020.
26. Dalitz, C. A Tutorial Introduction to the Gamera Framework. 2009. Available online: https://gamera.informatik.hsnr.de/docs/

gamera‑tutorial.pdf (accessed on 7 August 2021).
27. Genzel, D.; Ashok Popat, D.N. Paper to Digital in 200 Languages. 2015. Available online: https://ai.googleblog.com/2015/05/

paper‑to‑digital‑in‑200‑languages.html (accessed on 5 August 2021).
28. Google Drive Help. Convert PDF and Photo Files to Text. 2020. Available online: https://support.google.com/drive/answer/17

6692?hl=en&co=GENIE.Platform%3DDesktop (accessed on 5 August 2021).
29. Dhiman, S.; Singh, A. Tesseract vs. GOCR A Comparative Study. Int. J. Recent Technol. Eng. 2013, 2, 80.
30. Jain, P.; Taneja, K.; Taneja, H. Which OCR toolset is good and why: A comparative study. Kuwait J. Sci. 2021, 48. [CrossRef]
31. Zarro, R.D.; Anwer, M.A. Recognition‑based Online Kurdish Character Recognition Using Hidden Markov Model Furthermore,

Harmony Search. Eng. Sci. Technol. Int. J. 2017, 20, 783–794.
32. Ahmed, R.M. Kurdish Handwritten Character Recognition Using Deep Learning Techniques. Master’s Thesis, University of

Kurdistan Hewlêr, Erbil, Iraq, 2019.
33. Sinha, A.; Jenckel, M.; Bukhari, S.S.; Dengel, A. Unsupervised OCR Model Evaluation Using GAN. In Proceedings of the 2019

International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019;
pp. 1256–1261.

34. Martínek, J.; Lenc, L.; Král, P. Building an efficient OCR system for historical documents with little training data. Neural Comput.
Appl. 2020, 32, 17209–17227. [CrossRef]

35. Hula, J.; Mojžíšek, D.; Adamczyk, D.; Čech, R. Acquiring Custom OCR System with Minimal Manual Annotation. In Proceed‑
ings of the 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August
2020; pp. 231–236.

36. Kiss, M.; Benes, K.; Hradis, M. AT‑ST: Self‑Training Adaptation Strategy for OCR in Domains with Limited Transcriptions.
arXiv 2021, arXiv:2104.13037.

37. Google. Tesseract Documentation. 2020. Available online: https://tesseract‑ocr.github.io/ (accessed on 5 August 2021).
38. Patki, N.; Wedge, R.; Veeramachaneni, K. The Synthetic Data Vault. In Proceedings of the 2016 IEEE International Conference

on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 399–410.
39. Santos, E.A. OCR Evaluation Tools for the 21st Century. In Proceedings of the 3rd Workshop on the Use of Computational

Methods in the Study of Endangered Languages Volume 1 (Papers), 3rd Workshop on Computational Methods for Endangered
Languages, Honolulu, HI, USA, 26–27 February 2019; pp. 23–27.

http://dx.doi.org/10.25079/ukhjse.v2n1y2018.pp18-27
https://gamera.informatik.hsnr.de/
http://dx.doi.org/10.3390/jimaging4010006
http://dx.doi.org/10.3390/app9132758
http://dx.doi.org/10.1016/j.patcog.2013.09.037
https://gamera.informatik.hsnr.de/docs/gamera-tutorial.pdf
https://gamera.informatik.hsnr.de/docs/gamera-tutorial.pdf
https://ai.googleblog.com/2015/05/paper-to-digital-in-200-languages.html
https://ai.googleblog.com/2015/05/paper-to-digital-in-200-languages.html
https://support.google.com/drive/answer/176692?hl=en &co=GENIE.Platform%3DDesktop
https://support.google.com/drive/answer/176692?hl=en &co=GENIE.Platform%3DDesktop
http://dx.doi.org/10.48129/kjs.v48i2.9589
http://dx.doi.org/10.1007/s00521-020-04910-x
https://tesseract-ocr.github.io/

	Introduction
	Background
	Related Work
	OCR Studies for Persian-Arabic Based Scripts
	OCR Technology and Platforms
	Tesseract
	Other OCR Technologies

	Using LSTM-Based Approaches in Other Fields or Study

	Proposed Method
	Tesseract Training Modes and Available Language Models
	Two Main Sources of Data for Training Tesseract LSTM Language Model
	Data Collection and Preparation

	Evaluation Method

	Results
	Dataset Preparation
	Result after Training/Fine-Tuning Arabic Trained Data
	Result after Training/Fine-Tuning for Adding New Font
	Discussion

	Conclusions
	References

