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Abstract: Heterogeneous graph embedding has become a hot topic in network embedding in re-
cent years and has been widely used in lots of practical scenarios. However, most of the existing
heterogeneous graph embedding methods cannot make full use of all the auxiliary information. So
we proposed a new method called Multi-Subgraph based Graph Convolution Network (MSGCN),
which uses topology information, semantic information, and node feature information to learn node
embedding vector. In MSGCN, the graph is firstly decomposed into multiple subgraphs according
to the type of edges. Then convolution operation is adopted for each subgraph to obtain the node
representations of each subgraph. Finally, the node representations are obtained by aggregating
the representation vectors of nodes in each subgraph. Furthermore, we discussed the application
of MSGCN with respect to a transductive learning task and inductive learning task, respectively.
A node sampling method for inductive learning tasks to obtain representations of new nodes is
proposed. This sampling method uses the attention mechanism to find important nodes and then
assigns different weights to different nodes during aggregation. We conducted an experiment on
three datasets. The experimental results indicate that our MSGCN outperforms the state-of-the-art
methods in multi-class node classification tasks.

Keywords: network embedding; heterogeneous graph; graph convolution network; subgraph
decomposition

1. Introduction

In recent years, network embedding [1,2] (also called network representation learning)
has attracted wide attention due to its widespread application in practical scenarios, such
as social networks, protein interaction networks, citation networks, and so on. Network
embedding aims to map the latent intrinsic feature of node, link, or the whole network
into a low-dimensional space so as to enhance the performance of downstream machine
learning tasks, such as node classification, node clustering, and link prediction.

The low-dimensional vector representation obtained from network embedding can
retain the original network information in many aspects, such as network structure infor-
mation and node feature information, to make the embedding capability better. To this
end, scholars have proposed many models. The classical models include DeepWalk [3],
Node2vec [4], LINE [5], GraphSAGE [6], GCN [7], and GAT [8], which give great inspi-
ration to later researchers. However, most of these methods are used for homogeneous
graphs and do not take the types of nodes and edges into consideration.

However, a heterogeneous graph [9,10] composed of multiple types of nodes and
edges is also very common [11]. Some methods for heterogeneous graphs have been pro-
posed, such as HAN [12], HERec [13], HetGNN [14], HGT [15], HIN2Vec [16], HGSL [17],
and HeCo [18]. Most of the existing methods including the latest methods are based on
metapaths. Although these types of methods are good at retaining semantic and network
structure information, there are also some drawbacks. Firstly, the design of the metapath
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relies on domain knowledge, and different metapaths lead to different node embeddings.
Secondly, these metapath-based methods rarely use the content information, but the latest
models hardly have this problem. Thirdly, most of the previous methods are transductive
learning methods, and very few are inductive learning methods. When a new node appears,
the model has to be retrained on the entire dataset in order to get the representation of the
new node, which is computationally expensive.

Actually, we can design a heterogeneous graph embedding method without using
metapaths. At the same time, the model can also cope with the inductive learning tasks.
In order to address the above problems, we think the core problem of heterogeneous
graph processing is how to transform the structure between different types of nodes and
edges into the common space so that the structure and semantic characteristics of the
heterogeneous graph can be encoded.

In order to address the above problems, this paper proposes a new model to deal with
heterogeneous graphs, called MSGCN (Multi-Subgraph based Graph Convolution Net-
work). The model consists of three components: original graph decomposition, subgraph
convolution, and aggregating node representations. In the first component, we preprocess
each dataset to ensure the content information of each node has the same dimension, so
that we can decompose the original graph into multiple subgraphs [19,20] according to the
type of edges. In the second component, we apply convolution operation on each subgraph
to obtain the node representations. In the third component, we aggregate each above node
representations to get the final node representations. We further consider the application
of the model, so we have the module of the inductive learning task. In this module, a
new node sampling method is proposed to generate node representations of unseen nodes
quickly without retraining the whole dataset, which fully considers the importance of each
node in the network.

In summary, the contributions of this paper are as follows:

• A new method is proposed to deal with different types of edges to solve the hetero-
geneity of edge types. None of the previous approaches attempted to decompose the
original graph into multiple subgraphs by type of edges. The subgraphs after decom-
position can be viewed as homogeneous graphs, and they can be further processed
using the methods previously applied to homogeneous graphs.

• A new model MSGCN is proposed. In MSGCN, the convolution operation is imple-
mented over the subgraphs, which can overcome the heterogeneity of heterogeneous
graphs and retain the structure, semantics, and node content information.

• We conducted extensive experiments on some public datasets. The results show that
MSGCN outperforms the baselines on multi-class classification tasks and inductive
learning tasks.

In the paper, we first review the related work in Section 2. Then in Section 3, we
introduce heterogeneous graphs, problem definitions, and notations used in the paper. In
Section 4, we present the new MSGCN framework. We discuss the application of the model
in Section 5 and the experimental results are shown in Section 6. Finally, we summarize the
paper in Section 7.

The code is available at https://github.com/CJHGray/MSGCN accessed on 9 Octo-
ber 2021.

2. Related Work

Our work is related to network embedding, subgraph embedding, and dynamic
network embedding. Table 1 shows some representative methods in these areas.

https://github.com/CJHGray/MSGCN
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Table 1. Typical methods in three areas.

Areas Methods

Network Embedding
GraRep [21], HOPE [22], DeepWalk [3], Node2vec [4],
SDNE [23], GCN [7], GAT [8], Metapath2vec [24],
HIN2Vec [16], HAN [12], HetGNN [14]

Subgraph Embedding Sub2vec [25], Subgraph2vec [26], PTE [27], M2GRL [28]

Dynamic Network Embedding dynnode2vec [29], EvolveGCN [30], CTDNE [31],
HG2Img [32], DySAT [33]

2.1. Network Embedding

The goal of network embedding is to learn the low-dimensional representations of
nodes in the network and then use the latent representations for downstream tasks. There
are many applications of network embedding, including node classification [34], node
clustering [35], link prediction [22], and so on. Network embedding methods can be
divided into three categories [36]. Matrix decomposition-based models, such as Graph
Factorization [37], GraRep [21] and HOPE [22]. These methods use adjacency matrices to
represent the connection between nodes and obtain the node representations by decom-
posing the matrices. Random walk-based models, such as DeepWalk [3] and Node2vec [4]
form paths and then learn node representations through the skip-gram [38] model. Deep
learning-based models, such as SDNE [23], GCN [7], and GAT [8] are popular recently. All
the models mentioned above focus on homogeneous graphs.

For heterogeneous graphs, the random-walk-based methods take into account the
metapaths and skip-gram model to learn the node representation. Examples of such
methods include Metapath2vec [24], HIN2Vec [16], MAGNN [39], and so on. Some models
also adopt the deep learning strategy. HAN [12] applies an attention mechanism that takes
into account the effect of different types of edges on nodes, thereby preserving semantic
information. HetGNN [14] uses Bi-LSTM to aggregate the feature information of various
types of nodes and also uses attention mechanism during types mixture. However, in
general, these heterogeneous graph embedding methods mentioned above all need to
use metapaths.

The research on homogeneous graphs is very mature, and it is a good way to migrate
these models to heterogeneous graphs. The core component of our MSGCN model is
the graph convolution network, which is rarely used on heterogeneous graphs. As we
decompose the original graph into subgraphs, each can be seen as a homogeneous graph.

2.2. Subgraph Embedding

Methods based on subgraphs play an important role in network representation learn-
ing. Generally, existing works associated with subgraphs can be divided into two categories:
learning the embeddings of subgraphs and using subgraphs to learn node embeddings.

(1) Learning the embeddings of subgraphs: Most graph embedding models focus on
the distributed representation of nodes, while subgraph embedding models are different.
Some network mining tasks like community detection and graph classification require
mining the properties of the graph/subgraph. Sub2vec [25] learns feature representations
of arbitrary subgraphs. It extends Paragraph2vec [40] to learn subgraph embedding while
preserving distance between subgraphs. Subgraph2vec [26] leverages local information
obtained from neighborhoods of nodes to learn latent representations of rooted subgraphs
present in large graphs. After learning subgraph representations, these models can do well
in community detection and graph classification tasks.

(2) Using subgraphs to learn node embeddings: Unlike the methods mentioned
above, the second category aims to get node embeddings, and it is commonly used on
heterogeneous graphs. PTE [27] projects the input heterogeneous network into several
homogeneous and bipartite networks, which is the extension of LINE. M2GRL [28] first
learns a separate graph representation for each view of data and then models cross-view
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relations between different graphs. The model treats the intra-view task as a representation
learning problem on a homogeneous graph. Using subgraphs can take advantage of
semantic information, and it is a good way to deal with the heterogeneity of graphs. The
MSGCN model generates subgraphs according to the edge types. Additionally, the node
embeddings of each subgraph are aggregated to obtain the final node embeddings.

2.3. Dynamic Network Embedding

In many cases, the structure of the graph changes dynamically. The newly added
or deleted edge makes it difficulty to achieve network embeddings. As existing static
methods cannot overcome these obstacles, there have been some works on dynamic
network embedding [41]. Most dynamic graph network embedding methods are associated
with temporal information, so that they can be divided into two categories: snapshot and
continuous-time networks.

For snapshot networks, we can get the snapshots according to the time series, so
that we can obtain a set of static networks. In dynnode2vec [29], the evolving patterns in
dynamic networks are generated by using evolving random walks, and the current embed-
ding vectors are initialized with the previous embedding vector. EvolveGCN [30] adapts
the GCN model along the temporal dimension without resorting to ndoe embeddings. For
continuous-time networks, timestamp information is attached to each edge in order that
the changes of edges can be recorded. CTDNE [31] incorporates temporal dependencies
in node embedding and deep graph models that leverage random walks. DySAT [33]
computes dynamic node representations using self-attention, thus effectively capturing the
temporal evolutionary patterns of graph structures.

Both these two categories obtain node representations, which preserve the dynamics
of the network. However, when a new node appears, they should train the whole dataset
to obtain its representation. HG2Img [32] samples some nodes and uses classical methods
to get node representations. Then the representations of new nodes is obtained based on
these nodes so as to realize anomaly detection.

3. Definitions and Symbols

Definition 1. Heterogeneous Graph: A heterogeneous graph is a directed network
G = (V, E, A, R). Each node v ∈ V and each edge e ∈ E are associated with their type
mapping functions φ(v) : V → A and ψ(e) : E→ R. A and R denote the sets of predefined
node and edge types, and |A|+ |R| > 2.

For example, the academic network shown in Figure 1 is a toy example of a heteroge-
neous graph. There are three types of nodes, including author (A), paper (P), and venue
(V). There are also three types of edges, including authors writing papers, papers citing
papers, and papers published in a venue.

A1 V1P1

P2

Figure 1. The toy example of the academic network. Here the three links represent three edge types.

Problem 1. Representation learning on heterogeneous graph: Given a heterogeneous network
G = (V, E, A, R), the goal of heterogeneous graph representation learning is to learn a mapping
function f : V → Rd, which maps each node v ∈ V to a vector in the d-dimensional space Rd, and
d� |V|.
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The symbols used in this paper and the descriptions are shown in Table 2.

Table 2. The notations in this paper.

Symbols Descriptions
G, Gi Original homogeneous graph and the i-th subgraph
V Node set
E Edge set
Ei The edge set of the i-th subgraph
X Node content information matrix
Ai The adjacency matrix of the i-th subgraph
W Weight matrix
Zi The vector representation of the i-th subgraph
Di The degree matrix of the i-th subgraph
H The final output embeddings
Vnew The new node set
Asample Sampled adjacency matrix
Hnew Vector representation of the new nodes

4. MSGCN Framework

This part mainly introduces the model proposed in this paper, which is composed
of original graph decomposition, subgraph convolution, and aggregating node represen-
tations. The overall network framework is shown in Figure 2. Apart from the MSGCN
framework, we do research on inductive learning tasks to explore how to achieve node
embeddings for new nodes efficiently.

4.1. Original Graph Decomposition

Considering many graph embedding models comprehensively, those models that use
node feature information tend to get stronger embedding representations. In order to use
the graph neural network to obtain the embeddings, the data must be preprocessed firstly.
All methods need to ensure that the data on each node has the same dimension. Real
data often have different content information. For example, some nodes may have text
information, image information, or attribute information, while others may have multiple
types of information. Using this content information directly is inconvenient because the
dimensions of each type of content information are different. Therefore, it is necessary to
unify all types of information into the same space.

For different types of information, different methods are used to map them to a
common space with the same dimension. For example, a convolutional neural network
is used for image information and word2vec [42] is used for text information. Then we
can use average pooling to get the feature information X that will be input into the model.
However, if the nodes have the same dimension of content information, or even if they
have only one type of content information, then this step will be much easier.

X = Aggregate(X1, X2, ...Xn), (1)

where Xi represents the content information of i-th type information. X represents the
aggregated node content information matrix, which will be used as the input of MS-
GCN model.
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Figure 2. MSGCN model: We first preprocess the node content information, so that they have the
same dimension. Then the original graph can be decomposed with respect to the type of edges. For
each subgraph, we use graph convolution to get the node representations. Finally, an aggregation
operation is applied to get the final representations.

For partial datasets with no content information, we choose to randomly initialize a
content matrix X. Note the content matrix X is shared in the following steps.

Given a original heterogeneous graph G = (V, E, A, R), and there are n edge types R,
i.e., |R| = n. Supposing the type of each edge is already known, the original heterogeneous
graph G is decomposed into n subgraphs:

G → G1 + G2 + ... + G|R| (2)

where each subgraphs G1 = (V, E1), G2 = (V, E2)...G|R| = (V, E|R|) can be viewed as
a homogeneous graph. In this way, we can successfully solve the heterogeneity of nodes
and edges.

For each Ei in Gi, E = E1 + E2 + ... + E|R|.

4.2. Subgraph Convolution

This part is to get the representation vector of each node in each subgraph. Since
the operation of each subgraph is the same, we can take the subgraph Gi as an example.
We use a multi-layer graph convolution network for the subgraph Gi, as shown in the
following equation

X(l+1) = σ(ÂiX(l)W(l)), (3)

where l is the layer of the graph convolutional network, and the total number L is usually
2. X, the content information matrix, is shared among all the subgraphs. The input of the
model is X(0) = X. The output of the model is X(L) = Zi. Ai is the adjacency matrix of
the subgraph Gi. σ() is the activation function. We usually select ReLU(x) = Max(0, x) in
the middle layer. The activation function for the last layer is a softmax function. W(0) ∈
R|V|×|V| and W(1) ∈ R|V|×|V| are weight matrices that are used at each level and they are
learnable parameters. Finally, the two-layer graph neural network for Gi is as follows:

Zi = so f tmax(ÂiReLU(ÂiXW(0)))W(1) (4)
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Zi ∈ R|V|×d is the node representation obtained by the subgraph Gi through the
two-layer graph convolution network, aggregating the information of neighbors which are
associated with the i-th edge type.

4.3. Aggregating Node Representations

In the subgraph convolution step, each subgraph Gi outputs the representation matrix Zi.
After obtaining the representation matrix Zi of each subgraph, we take the aggrega-

tion operation to get the final node embedding representation H ∈ R|V|×d, as shown in
Equation (5):

H = so f tmax( ∑
i∈[1,|R|]

wi ∗ zi), (5)

where weight wi is determined according to the number of edges of each subgraph. The
equation of calculating wi is given as follows:

wi = |Ei|/|E| (6)

The experimental results show that the weight allocation method is unreasonable. For
each node vj ∈ V, the influence of each subgraph, that is, each edge type, on the node
vj is different. Therefore, we cannot simply calculate the weight of the whole subgraph.
For example, comparing one paper quotes another paper with one paper written by an
author, we think that the former is more likely to provide the information we want. So for
a particular node, some edge types are important, while some edge types have a much
lower impact on that node. Accordingly, the weight of each subgraph should be different
when the center node aggregates information from subgraphs.

When determining the weight of each subgraph (edge type) on each node, we choose
the method based on the number of edges. For each node vj ∈ V, the final node representa-
tion is defined in Equation (7):

Hj = so f tmax( ∑
i∈[1,|R|]

Dij ∗ Zij), (7)

where Di represents the degree matrix of the subgraph Gi, Zi is the node representation
matrix of Gi. Here i indicates which subgraph it belongs to, and j indicates which node it
is. So we can get the final representation of H for all the nodes. The node representations
obtained by this method can not only retain the topology information of the network, but
also the semantic information of the network and the content information of the nodes,
which is very comprehensive.

4.4. Model Optimization

We adopt the cross entropy to evaluate model performance. The loss function L is
defined as follows:

L(H, y) = − ∑
i∈[1,n]

∑
j∈[1,|L|]

(logHij ∗ yij − (1− yij) ∗ log(1− Hij)) (8)

where i ∈ [1, n] for each node, j ∈ [1, |L|] for the number of labels for a multi-label
classification task. H is the node representation of the output, and y is the label. Then the
algorithm of the MSGCN model is shown in Algorithm 1.
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Algorithm 1: MSGCN Model.
Input: network G = (V, E, A, R); embedding dimension d; content information;

node labels L; layer number l; learning rate η
Output: Vector representations H

1 Decompose original network G into n subgraphs G1, G2, ...G|R|
2 Get the adjacency matrix Ai and the degree matrix Di for each subgraph Gi
3 Preprocess the content information to obtain the node content embedding X
4 Initialize X(0) = X and randomly initialize weight matrix W
5 for i = 1 : |R| do
6 while not converged do
7 for j = 1 : l do
8 X(j+1) = σ(ÂiX(j)W(j))
9 end

10 Zi = X(l)

11 Update weight matrix W
12 end
13 end
14 H = softmax(∑ Di ∗ Zi)

5. Application of the Model

In achieving the goal of getting a node representation, we typically encounter two
situations. The first is to get the representations of nodes when given nodes and other
auxiliary information. The second is we have got some representations of nodes. When
new nodes appear, we want to get their representations. These two situations are also
known as transductive learning and inductive learning.

5.1. Transductive Learning Task

In this situation, nodes and other information are given, then we can obtain node
representations. This is the problem addressed in Section 4 of the article. Given the nodes
and edges, we also have the node feature information, node label information, and node
and edge type information. Then with the help of the MSGCN model, we get the node
representations of all nodes. This is what almost all models work on, but it does not solve
all problems.

5.2. Inductive Learning Task

In reality, new nodes are often input into the original network, which can be regarded
as a dynamic network. Most dynamic network embedding methods obtain the represen-
tation of each node by modeling the dynamics of the network structure. However, the
dynamics of network structure depend only on the appearance or disappearance of edges,
regardless of the change of nodes. In order to get a representation of the new node, one
way is to input the entire dataset containing the old and new nodes into the model for
training, but the parts that have already been trained have to be retrained. To solve this
problem, it is important to get the representations of the new input node from the existing
nodes, which is part of this article.

The MSGCN model has obtained the vector representation of all known nodes, on
which the inductive learning task can be carried out. That is, the vector representations of
the existing node are used to obtain the new node representations. The reason we can use
the representations of known nodes to get the representations of new nodes is that a node
tends to have a close relationship with its neighbors. In the case of citation networks, there
is a high chance that scholars in one field of research will produce papers that remain in
the same field. A large proportion of the papers cited in a paper are still in the same field.
So, we can determine the label of the node according to its neighbors, and here we only
consider the one-hop neighbors.
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For each new node vi ∈ Vnew, a neighbor set of fixed size m is sampled to obtain a
matrix Asample. The representation of each new node Vi is shown in Equation (9), and the
representation of the new node is obtained through the aggregation of neighbor nodes’ in-
formation.

Hisample = (H[Aisample[1] + ... + H[Aisample[m]])/m (9)

As shown in Figure 3, the new node representation can be obtained directly without
the need to retrain the old node, which saves a lot of time. The sampling method here refers
to the GraphSAGE model. For nodes with more than m neighbors, random sampling is
performed. For nodes with fewer than m neighbors, repeat the sampling until m neighbors
are collected. This allows each node to have the same number of neighbors and makes it
easier to aggregate.

Old nodes New nodes

(a) neighbors with the same weight

w2

w1

w1

w2
w2

Old nodes New nodes

(b) neighbors with different weights

Figure 3. Inductive learning task. Here the node embeddings of new nodes are achieved by aggre-
gating existing nodes’ embeddings. (a) assumes that all neighbors are of the same role, while (b) first
distinguishes which nodes are important, thereby assigning greater weights during aggregation.

However, this method also has some shortcomings. At the beginning of the induction
learning task, the neighbors of the nodes sampled are all obtained through the MSGCN
model, and the representation of new nodes also has a good effect. However, in this task,
we do not use the feature information of nodes, but only obtain the representation vector
by aggregating the information of neighbors. Without the help of feature information,
the effect in the downstream task will also be deficient. Additionally, the experiment also
proved that the accuracy of label classification in the inductive learning task is actually
slightly lower than that directly trained by the MSGCN model.

To improve the accuracy of the inductive learning task, we decide to start with
the sampling neighbors. We consider that we can assign different weights to different
neighbors. If we can get a set of important nodes, we can improve the accuracy of node
classification with the help of this set. Of course, we cannot just use this node set. Because
other neighbors can also affect the result, even if all neighbors of a node are not in the set.
How to distinguish which nodes are important. Intuitively, important nodes should have
large degrees. However, assigning large weights directly to these nodes does not seem to
be persuasive. However, if a node is important to many other nodes, then we can consider
it an important node. With the help of the attention mechanism, we can obtain the attention
matrix Watt, which reflects the importance between each node pair. For a center node vi
and a neighbor vj, self-attention is performed to compute attention coefficient eij. Then we
use the softmax function to normalize all the neighbors:

eij = a(W~hi, W~hj) (10)

αij = so f tmaxj(eij) =
exp(LeakyReLU(~aT [W~hi||W~hj]))

∑k∈Ni
exp(LeakyReLU(~aT [W~hi||W~hj]))

(11)
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where h is the node feature, Ni is the neighborhood of node vi in the graph, W and a are
trainable parameters. Then a matrix, Watt ∈ R|V|×|V|, of attention coefficient is achieved.
Here we choose LeakyReLU as the activation function. LeakyReLU is very similar to ReLU,
they can solve the gradient vanishing problem. When the input x is less than 0, ReLU(x)
will be 0, while LeakyReLU(x) will be a negative value. The benefit of using LeakyReLU is
that the gradient can also be calculated for the part of the input that is less than 0 during
the backpropagation process, avoiding the gradient direction sawtooth problem. So we
choose LeakyReLU as the activation function.

For each node, we choose its top k important neighbors, thus we can get a new matrix
M ∈ R|V|×k, which records the index of the k most important neighbors of each node. The
value of k is not suitable to be large, because many nodes have few neighbors and too
many unimportant nodes will be taken into account, which is similar to using the degree
matrix directly. At the same time, it should not be too small, so that it can include as many
important nodes as possible.

Mi = argtopk(Watt[i, :]) (12)

A node is important if it appears many times in the matrix as an important neighbor.
We count the occurrence times of each node, and the node exceeding a threshold value is
regarded as an important node. We set the weight to w1 for important nodes and w2 for
unimportant nodes. For a new node vi, as we say before, we sample m neighbors. Here
we have m1 important neighbors and m2 unimportant neighbors, and m1 + m2 = m. The
representation can be achieved in Equation (13):

Hisample =
(H[Aisample[1] + ...H[Aisample[m1]])w1 + (H[Aisample[1] + ...H[Aisample[m2]])w2

m1w1 + m2w2
(13)

Since the representations of new nodes are obtained based on existing nodes, it is
reasonable that the accuracy will not outperform the MSGCN framework. However, it is
worth sacrificing a little accuracy for time.

Although the accuracy is slightly lower than the direct training of the MSGCN model,
in fact, the accuracy is still higher than most models. However, as time goes by, the latest
nodes in the future will be neighbors of those nodes with lower accuracy, so the accuracy
will further decline. However, the number of new nodes in our experiment is the same
as the number of trained nodes in MSGCN, so the effect of the inductive task can still be
guaranteed in the short term. However, in order to maintain accuracy, when there are
enough new nodes, it is better to use the MSGCN model to train all the data.

6. Experiment
6.1. Dataset

The datasets used in this paper are the same three datasets as the MuSDAC [43] model.
They are ACM [44], AMiner, and DBLP [12]. ACM is a huge bibliographic database contain-
ing books, journals, and papers from key publishing houses in the computer field. AMiner
is a new-generation technology intelligence analysis and mining platform established by
the Department of Computer Science and Technology of Tsinghua University. DBLP is
an integrated computer database system of English literature with authors as the core
of research achievements in the computer field. The data of these datasets are shown in
Table 3. The data of the three datasets are the same in the number of nodes, but the number
of edges is very different. Therefore, the results obtained by different methods on these
three datasets are quite different.

6.2. Baselines

The following is a list of comparative experiments with this paper to verify the validity
of our proposed model. For those methods based on homogeneous graphs, we processed
the data and ignored the heterogeneity of nodes and edges. We use OpenNMS framework
and DGL framework, which contain many graph embedding methods, to run most of the
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contrast models. In addition, a variant MSGCN-mean of this model is also compared. The
brief introduction of these contrast models are as follows:

• DeepWalk [3]: A random-walk-based embedding method designed for the same com-
position, which performs truncated random-walk over the network and is represented
by skip-Gram model learning nodes.

• Graph Factorization (GF) [37]: A method of obtaining embedding by decomposing
the adjacency matrix of a graph.

• SDNE [23]: Uses an automatic encoder to embed graph nodes and capture highly
nonlinear dependencies.

• HOPE [22]: A method that uses generalized singular value decomposition (SVD) to
get embeddings efficiently.

• GCN [7]: A classic semi-supervised graph neural network designed for the same
composition, aggregating neighborhood information.

• GAT [8]: A neural network approach that applies the mechanism of attention to the
same composition.

• TAGCN [45]: TAGCN is one of the variants of GCN. It uses a K graph convolution
kernel to extract local features of different sizes.

• HAN [12]: A semi-supervised graph neural network embedding method for hetero-
geneous graphs that uses node-level attention and semantic attention to aggregate
neighborhood information.

• MuSDAC [43]: A method on heterogeneous information networks.
• GraphInception [46]: A deep GCN for collective classification on heterogeneous

information networks.
• MSGCN-mean: A variant of MSGCN that simply averages the representation of each

node without considering the effect of edges on each node.

Table 3. Datasets.

Dataset Nodes Node Types Edge Type A Type B Type C Labels

DBLP 1496 3 2602 673,730 977,348 4
AMiner 1500 3 4360 554 89,274 4
ACM 1500 3 4960 6691 26,748 4

In this paper, as we conduct experiments on the multi-class classification task, we
choose accuracy as the evaluation metric to measure the performance of each model.

6.3. The Experimental Setup

For this MSGCN method, we randomly initialize the weight matrices. We set the
learning rate to be 0.005, dropout to be 0.5, and weight attenuation to be 0.0005. Considering
the three datasets, we set the number of epochs to 1000. Just like the paper of GCN, we
perform a semi-supervised learning task and only 10% of the nodes are labeled during the
training. In the subsequent inductive learning task, 10 first-order neighbors are selected for
each new node.

6.4. Multi-Class Node Classification

We carried out experiments on multi-class node classification tasks. Contrast experi-
ments include classic graph embedding methods, homogeneous GNN methods, and some
heterogeneous graph methods. As we can see in Table 4, the proposed MSGCN and its
variant MSGCN-mean outperform the other baselines on three datasets. In ACM and
AMiner datasets, the density of edges is relatively sparse and the number of edges is small,
so the weight does not bring much help. However, in the DBLP dataset, because of the
high density, each node is related to multiple edges in each subgraph, and the weight also
has a significant impact on the experimental results. We can conclude that MSGCN is more
suitable for dense graphs than MSGCN-mean.
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Most of the contrast models like DeepWalk and Graph Factorization use neither feature
information nor use semantic information. As a result, these models do not perform very
well. In contrast, GCN and GAT take feature information into consideration, and HAN
is the only one that uses semantic information. However, our MSGCN model takes full
advantage of all the information, which is the reason why the accuracy is higher than theirs.

Instead of using metapaths, MSGCN decomposes the original graph based on edge
types. Doing so can actually take some advantage of the metapath-based methods. For
example, the author writes a paper can be an edge type. Based on this edge type, we
can get a decomposed subgraph, where each edge can represent an author writes a paper.
Therefore, there are many metapaths in this subgraph, like an author writes a paper(A→ P),
two authors write a paper together (A→ P→ A), and two papers are all written by the
same author (P→ A→ P). Other information like the relation between papers and venues
can be obtained in other subgraphs. We can find that the MSGCN model has the advantages
of the metapath-based methods while also making full use of all aspects of information.

Table 4. Experimental results.

Method
Dataset DBLP AMiner ACM

DeepWalk 0.8736 0.904 0.8386
GF 0.8061 0.7867 0.724

HOPE 0.9064 0.86 0.8213
SDNE 0.8983 0.804 0.8227

GAT 0.5683 0.9066 0.6777
GCN 0.6566 0.9036 0.6767

TAGCN 0.7851 0.9147 0.8353

HAN 0.8484 0.9006 0.8444
MuSDAC 0.8170 0.7990 0.7900

GraphInception 0.7090 0.6030 0.5930

MSGCN 0.9096 0.9277 0.8594
MSGCN-mean 0.8203 0.9327 0.8695

In order to better reflect the superiority of our model in the node classification task,
for each category we select one with the best experimental result along with our MSGCN
model, to show the visualization results. Here we choose HOPE for the classic graph
embedding methods, TAGCN for homogeneous GNN methods, and HAN for heteroge-
neous graph methods. The experimental results are shown in Figure 4. We can find that
these models can achieve good results in node classification. However, many nodes in
comparison models are ambiguous, so it is not clear which cluster these nodes should
belong to. In contrast, although the MSGCN model cannot classify all the nodes correctly,
it can get a more obvious result with higher accuracy.

6.5. Inductive Learning Task

After analyzing three datasets, we find the DBLP is too dense, in which the neighbors
of each node have more than 500 neighbors on average. So we verify the performance of
models on ACM and AMiner datasets. The experimental results are shown in Figure 5. It
can be seen that the accuracy is still over 80%, slightly lower than the result obtained by
direct training with the MSGCN model.
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ACM

AMiner

DBLP

HOPE TAGCN HAN MSGCN

Figure 4. The visualization results of the models. Models include HOPE, TAGCN, HAN, and
MSGCN. We conduct experiment on node classification task on three dataset. The visualization
results demonstrate the superiority of our model.

At the beginning of the induction learning task, the neighbors of the nodes sampled
are all obtained through the MSGCN model, and the representation of new nodes also
has a good effect. However, in this task, we do not use the feature information of nodes,
but only obtain the representation vector by aggregating the information of neighbors.
Without the help of feature information, the effect in the downstream task will also be
deficient. Additionally, the experiment also proves that the accuracy of label classification
in the inductive learning task is actually slightly lower than that directly trained by the
MSGCN model.

Figure 5. The experimental result of the inductive learning task. The accuracy is little lower than that
of the MSGCN model.

In spite of this, in fact, the accuracy is still higher than that of most models. However,
as time goes by, the latest nodes in the future will be neighbors of those nodes with lower
accuracy, so the accuracy will further decline. However, the number of new nodes in our
experiment is the same as the number of trained nodes in MSGCN, so the effect of the
inductive task can still be guaranteed in the short term. However, in order to maintain
accuracy, when enough new nodes appear, it is better to use the MSGCN model to train all
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the data. Because the feature information is used in MSGCN, retraining ensures that the
inductive task remains accurate for a long time.

After that, we fine-tune the experimental settings only to explore the influence of
assigning different weights to important nodes on the accuracy in the node classification
task of new nodes. We consider the nodes that occur more than 10 times in the sampling
matrix M as important nodes. The default initial weight of all nodes is 1. The experi-
mental results are shown in Figure 6. It can be seen that assigning an appropriately high
weight to important nodes will indeed improve the accuracy of node classification, but
the weight should not be too high. Numerous experiments have shown that 1.5 is an
appropriate weight.

(a) (b)

Figure 6. (a) Weight range from 1 to 10. (b) Weight range from 1 to 2. The experimental result of the
inductive learning task. It reflects the influence of assigning different weights to important nodes on
the accuracy in the node classification task of new nodes.

6.6. Extended Experiment

In order to examine the influence of the number of subgraphs on the experiment, we
conducted an extended experiment. For the previous three datasets, since they all have
three types of edges, they are all divided into three subgraphs. In order to explore the
influence of the number of subgraphs on the results, we combine the two types of edges.

We used the given three datasets to perform experiments on a single graph and two
subgraphs to compare the results of experiments divided into three subgraphs. In the
case of a single graph, the heterogeneity of nodes and edges is ignored and regarded as a
compositional graph, which can be understood as a convolutional neural network. In the
case of two graphs, we treat the two types of edges the same. So for every dataset, there are
three possible scenarios. We fully considered the three cases and conducted experiments
under the same parameters. There are five cases in total, and the experimental result is
shown in Figure 7.

Figure 7. The result of the extended experiment. The number of subgraphs have influence on
the result.
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It can be seen from the figure that, for the three datasets, the three-sub-graph has the
best experimental effect, while the single-graph has the worst effect. Therefore, we can
conclude that our method can be used on heterogeneous graphs with multiple types of
nodes and edges.

7. Conclusions

In this paper, a new graph representation learning model MSGCN is proposed for
heterogeneous graphs. We decompose the original graph into multiple subgraphs so that
we can take the semantic information into consideration, which takes advantage of the
metapath-based methods and obtains better results. When considering the application
of the model, we also design the inductive learning module to cope with the unseen
nodes. A new node sampling method, which assigns weights to neighbors, is also designed
to improve the experimental effect. To verify the validity of the model, we conduct
experiments on ACM, AMiner, and DBLP datasets. The experimental results show that
the model is feasible and superior. In this paper, we ignore the time information of the
node. Actually, time information plays a key role in the network. For example, the research
interest of a researcher will change over time. Accordingly, we will extend our method to
deal with this issue in future work.
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