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Abstract: Laser speech measurement is a new sound capture technology based on Laser Doppler
Vibrometry (LDV). It avoids the need for contact, is easily concealed and is ideal for remote speech
acquisition, which has led to its wide-scale adoption for military and security applications. However,
lasers are easily affected by complex detection environments. Thus, speckle noise often appears in
the measured speech, seriously affecting its quality and intelligibility. This paper examines all of the
characteristics of impulsive noise in laser measured speech and proposes a novel automatic impulsive
noise detection and removal method. This method first foregrounds noise using decorrelation based
on a linear prediction (LP) model that improves the noise-to-signal ratio (NSR) of the measured
signal. This makes it possible to detect the position of noise through a combination of the average
short-time energy and kurtosis. The method not only precisely locates small clicks (with a duration
of just a few samples), but also finds the location of longer bursts and scratches (with a duration of
up to a hundred samples). The located samples can then be replaced by more appropriate samples
whose coding is based on the LP model. This strategy avoids unnecessary processing and obviates
the need to compromise the quality of the relatively large fraction of samples that are unaffected by
speckle noise. Experimental results show that the proposed automatic speckle noise detection and
removal method outperforms other related methods across a wide range of degraded audio signals.

Keywords: laser speech measurement; speech enhancement; automatic speckle noise detection;
average short-time energy; kurtosis

1. Introduction

Laser interferometry-based Laser Doppler Vibrometry (LDV) is widely used in the
field of precision measurement. In addition to the vibration measurement, LDVs are also
used in non-contact speech acquisition. Vibro-acoustic sensors based on LDV are a new
type of voice acquisition equipment that are widely used in the context of anti−terrorism
operations, national security, and other related fields.

An LDV-based laser speech measurement system uses phase Doppler measuring
techniques to obtain a speech signal by measuring the phase change of the optical signal
caused by sound vibration. It is usually composed of a laser transmitter, laser receiver,
amplifier and equalizer, together with some other important components. As shown in
Figure 1, the laser transmitter emits an invisible narrow-band laser, which is divided into
a reference beam and a measurement beam through a polarized beam splitter (PBS1).
The measurement beam then passes through a beam splitter (BS3), focusing lens (L), and
quarter-wave plate (P), and is focused on the vibrating object. The reflected beam is
directed via acousto-optical modulators (AOM), and is then merged and interfered with
the reference beam by BS2. The laser receiver (photo-detector, D) receives the reference
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signal and the coherent signal. After demodulation, filtering and some signal processing
steps are performed to obtain the voice signal [1].
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Figure 1. Internal structure of a laser speech measurement system.

As laser speech detection systems use lasers for voice measurement, they can detect
speech in non-contact situations, undertake long−range measurements and are easy to
conceal and operate [2].

Laser speech detection systems are usually set up in hidden places to detect conversa-
tions in conference rooms, cars, etc. Figure 2 shows a scene where a laser speech detection
system is actually being used, with the objects near the speaker (such as the computer
screens, tissue box, mineral water bottle, clothes, etc.) being used as sound sensors. As
the sound signal is captured through the indirect measurement of vibrations, the selection
of the objects for detection has a significant impact on the speech acquisition, as does the
external environment. First of all, the surface of most detected objects is extremely rough
in the laser band and scattered light is therefore emitted from numerous coherent points.
These scattered sources propagate in different directions and can interfere with each other
in space, resulting in a random distribution of light interference and generating what is
known as speckle noise (in speech, it shows clicks and small burrs as shown in the black
box in Figure 3). In addition, when the measured light is affected by interference (such
as people walking, environmental occlusion, violent shaking, atmospheric turbulence,
etc.), it not only makes it difficult for the measurement light to focus on the surface of the
detection beacon, but also causes wavefront phase distortion in the reflected light, resulting
in destructive interference. This makes the Doppler phase obtained by the detection system
discontinuous between −π and π [3]. These discontinuities lead to further kinds of speckle
noise in the speech signal (such as bursts, outliers, crackles, scrapes, etc.), as shown in the
red box in Figure 3.
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In speech, speckle noise is in the form of impulsive noise, which seriously reduces
the quality and intelligibility of measured speech and has a significant impact on its
viability for speech intelligence. Most of the people listening to laser detection signals
agreed that due to the appearance of speckle noise, they were psychologically afraid to
listen to the voice, and easily tired when listening to this voice, resulting in low speech
recognition. In addition, because the background noise is usually removed based on the
noise estimation, the irregular appearance of speckle noise affects the accuracy of this
estimation. Therefore, removing the speckle noise first is also conducive to the subsequent
background noise removal.

In previous works, we used a decorrelation method based on linear prediction (LP)
model to detect the location of the speckle noise by improving the Noise-to-Signal Ratio
(NSR) of the detection signal, and designed an interpolator to replace the speckle noise [4].
However, the previous method used the direct threshold to judge the noise position. For
very weak signals, this method has limitations and the noise location accuracy is not high.

In this paper, we present a simple yet efficient technique that can restore laser mea-
sured speech signals that are corrupted by speckle noise. The speckle noise detection
method, combining decorrelation preprocessing, average short−term energy and kurto-
sis to extract the signal and locate the noise according to the threshold which involves
relatively little calculation, thereby increasing the computing speed. The decorrelation
preprocessing and the double threshold criterion highly increase the noise positioning
accuracy. The method of replacing contaminated samples with linear coded samples is
also efficient in restoring the signal and reducing the distortion. The results show that
the proposed automatic noise detection and removal method outperforms other related
methods across a wide range of degraded audio signals.

2. Related Works

Restoring audio signals that are corrupted by targeted speckle noise is a tricky process.
For information acquisition, any information loss is fatal; thus, for laser speech detection it
is imperative to find the location of the speckle noise and remove it in a targeted fashion
instead of denoising the whole speech signal.

The restoration process can be divided into two steps: detection (finding the locations
of the degraded samples) and interpolation (replacing the degraded samples with more
suitable values). On the other hand, the noise detection technology can be considered to be
a Voice Activity Detection (VAD) [5,6] technology. VAD technology can be divided into
frequency-domain methods and time-domain methods. Frequency-domain based methods
assume that the energy of the noise is concentrated in the high frequency band, while the
energy of the speech is mainly distributed in the low frequency band [7].

However, because laser speech detection focuses on the vibration of an object and
there are numerous potential sources of interference, the frequency characteristics of the
speckle noise are not completely consistent. Therefore, it is very difficult to distinguish
speckle noise and speech using frequency-domain processing.

Time-domain methods include energy−based endpoint detectors [8,9], zero-crossing
rate-based methods [10], Autocorrelation Function (ACF) based methods [11] and different
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feature combination detection methods [12–15]. Energy-based noise detection methods
use differences in energy to distinguish noise and speech. However, although the speckle
noise energy in laser detected speech is relatively high, in some cases, speckle energy of a
very short duration is close to the energy of the speech signal. Therefore, it is impossible
to determine an appropriate threshold. Zero crossing rate-based methods represent the
number of times a frame of speech signal waveform passes through a horizontal axis. This
reflects, in outline, the frequency characteristics of the signal. It is generally thought that
a speech segment will have a short-time zero crossing rate that is lower than a certain
threshold, while the noise will be higher than the threshold [13]. However, the zero-crossing
rate of noise in laser detected speech can be low or high, because the causes of the noise
differ. Therefore, it is not possible to set an appropriate threshold to distinguish between
speckle noise and speech using a zero-crossing rate. In view of the periodic nature of
speech, its ACF is also periodic, with the period being equal to the pitch value. ACF shows
peaks at various pitch and harmonics locations. Consequently, ACF-based algorithms are
efficient in distinguishing between background noise with a small amplitude and speech.
However, they are not so effective for speckle noise.

Outside of the above-mentioned, relatively straightforward time-domain and fre-
quency-domain methods, Cristalli [16] and Lv [17] have developed a kurtosis-based ap-
proach for the detection of speckle noise in laser captured signals. As the kurtosis can
measure the degree of deviation from a certain distribution [18], it can be applied to identify
abnormal speckle samples. Their work introduced a kurtosis ratio (KR)—based method
for the detection of speckle noise and the selection of undistorted regions within a signal.
Their algorithm is composed of band-pass filtering, signal segmentation and computation
of a scalar KR indicator for each signal segment, which can detect outlying samples that are
caused by speckle noise. However, this method is not very robust for long−term speckle
samples because the distribution of these impulsive samples becomes similar. Thus, the
method is not effective for long-term speckle noise.

In speech, speckle noise is represented as impulsive noise in speech. Focusing directly
upon impulsive noise, Oudre has proposed an Autoregressive (AR)—based impulsive noise
detection [19] and interpolation [20] method that can be used in the detection phase. He
transformed an original noisy signal into an excitation signal, while keeping the impulsive
noise either unchanged or increased, by drawing on an AR model in order to increase
the detection accuracy. After transforming the direct threshold by the estimated value
of the excitation standard-deviation to locate the impulsive noise, the AR model can be
used to generate samples to replace the noise samples and obtain an enhanced signal.
This approach is very effective and can manage the targeted removal of impulsive noise.
However, the impulsive noise detection accuracy is undermined by having to establish
a direct threshold, especially if the transformed signal still contains a large amount of
background noise.

Recently, some data driven methods have been proposed to suppress noise [21,22].
However, they all focus on background noise. For instance, Braun [23] has proposed a
neural network-based architecture for VAD that works on a typical short audio frame basis.
While the state-of-the-art neural network based VADs can achieve very good results, they
often exceed computational budgets and cannot meet real-time operating requirements.
Goyal [24] has presented a novel method to computationally determine when video data
contains a person speaking through the recognition of full-lip facial closures within a given
interval. However, the timing of video and sound detection is often not consistent and the
problem of noise when processing the voice remains. Therefore, it is not feasible to use
mouth movements to detect noise in laser-captured speech.

In the interpolation phase, several methods have been developed for the interpolation
of missing samples in music or speech signals, which closely resembles the concern with
noise removal based on accurately positioning the noise in speech detection. While some
interpolation techniques, such as median filtering, are completely blind (no hypothesis
regarding the signal is made) [25], they are often too crude to reconstruct gaps that are
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larger than a few samples. The noise frame can be set to zero. However, this will destroy the
periodicity of the speech signal, leading to frequency truncation, causing sudden changes
in the frequency between the speech frame and the enhanced frame, and resulting in an
audible “popping” sound. So, when a noise frame is located, more appropriate methods
need to be selected to obtain the enhanced signal.

In summary, although several studies have been devoted to detecting and removing
the noise in speech, most approaches focus on eliminating background noise. In the
case of single judgment-based methods, the recognition rate for speckle noise is often
low. Some novel data-driven methods have produced promising results. However, they
are computationally expensive and time consuming. Therefore, they are not suitable for
applications that depend on real time processing. Compared with these relevant methods,
we fully analyze the characteristics of speckle noise in laser measured speech. On this basis,
a novel automatic speckle noise detection and removal method is proposed. This method
first foregrounds noise using decorrelation based on a linear prediction (LP) model that
improves the NSR of the measured signal. This allows detection of the position of speckle
noise through a combination of the average short-time energy and Kurtosis. The method
not only precisely locates small clicks (with a duration of just few samples), but also finds
the location of longer bursts and scratches (with a duration of up to a hundred samples).
The located samples can then be replaced by more appropriate samples whose coding is
based on the LP model. This strategy avoids unnecessary processing and obviates the need
to compromise the quality of the relatively large fraction of samples that are unaffected by
speckle noise. The proposed method has the advantages of high noise positioning accuracy,
less distortion, small amount of computation, fast processing speed and low delay, which
can meet the use scene of laser speech measurement.

3. Automatic Noise Detection and Removal

In order to avoid unnecessary processing and the distortion that wholesale processing
can cause, the proposed speckle noise removal system consists of two subsystems: a
detector and an interpolator (cf. Figure 4). The detector locates the position of each noise
sample and the interpolator replaces it.
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The speckle noise detector plays a crucial role because accurate positioning is essential
for effective noise removal. Speckle noise has certain characteristics, such as a large
amplitude, random appearance, agitation, unpredictability, and indefinite duration. In
view of these characteristics, a focus on energy and distribution can form the basis of
distinguishing between speckle noise and speech. However, as previously mentioned,
when there are only few occurrences of speckle noise or the amplitude of the speech is
large, the energy of the speckle noise will not stand out. Similarly, if the speckle noise lasts
for a long time, its distribution will not seem to be abnormal. Thus, relying on any single
parameter will not produce a good result. We have also seen how the character of the
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speech can itself challenge the detection accuracy. To solve this problem, we have assumed
that the speech signal will be correlated while the noise signal will be uncorrelated. We
can then begin by decorrelating the measured speech signal. Through decorrelation, the
degraded audio signal can be transformed into an extracted signal and the influence of the
speech signal and stationary background noise can be eliminated.

For a decorrelated signal, we make full use of the characteristics of the average short-
term energy, which is sensitive to long-duration and high-amplitude speckle noise, and
the kurtosis, which is sensitive to short-duration abnormal click speckle noise. These two
noise detection methods complement each other and can accurately find the location of the
speckle noise in a decorrelated signal.

After obtaining the position of the noise frames, we can then use a recursive LP model-
based interpolator to replace the signals that are distorted by the speckle noise, one by one.
Thus, we finally obtain an enhanced signal. The speckle noise removal process is shown in
Figure 4 and the detailed steps involved in the process are given below.

3.1. Decorrelation

A LP model predicts the future value of a signal from a linear combination of its past
values. LP models are used for several applications. The correlation structure of a signal
can be modelled using a linear predictor by taking the amplitude of the signal at time
m (x(m)), and then using a linearly-weighted combination of P past samples (x(m− 1),
x(m− 2), . . . ,x(m− P)):

x̃(m) =
P

∑
k=1

aP(k) ∗ x(m− k) (1)

where the integer variable m is the discrete time index, x̃(m) is the prediction of x(m) and
aP(k) are predictor coefficients. The linear predictor coefficients can be calculated by using
the Levinson-Durbin algorithm [26].

The linear prediction model for a signal with an error estimation, e(m), can be ex-
pressed as:

e(m) = x(m)− x̃(m) (2)

Assuming that a clean speech signal (x) is corrupted by a random additive speckle
noise (n). The detected signal is given by:

s = x + n (3)

From Equations (1) and (2), we can rewrite the noisy signal model:

s(m) =
P

∑
k=1

aP(k) ∗ x(m− k) + e(m) + n(m) (4)

In practice, as there is no clean speech signal x, we use the noisy speech s(m) to
calculate an estimate âN of the predictor coefficient vector aN . This can then be used to
invert and transform the noisy signal s(m) to the noisy excitation signal v(m) as:

v(m) = s(m)−
P
∑

k=1
âP(k) ∗ s(m− k) = x(m) + n(m)−

P
∑

k=1
[aP(k)− âP(k)] ∗ [x(m− k) + n(m− k)]

= e(m) + n(m) +
N
∑

k=1
ãP(k) ∗ x(m− k) +

P
∑

k=1
âP(k) ∗ n(m− k)

(5)

where ãP(k) is the error in the predictor coefficient estimate. According to Saeed’s [27]
analysis of extracted signals, there are four basic terms that contribute to the noise in an
excitation sequence:

(a) the error estimation e(m);
(b) the speckle disturbance n(m), which is usually the dominant term;
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(c) the effect of the past noise samples, run over into the present time by the action of
the inverse filtering;

(d) the increase in the variance of the excitation signal, caused by the error in the
parameter vector estimate, and expressed as: ∑P

k=1 âP(k) ∗ x(m− k).
As n(m) is usually the dominant term in a noisy excitation signal v(m), when a

detected speech signal is converted to an excitation signal, the relative energy of the noise
in the signal is increased. In other words, the NSR is increased. Before decorrelation, the
NSR of a noisy signal is given by:

power o f speckle noise
power o f signal

=
E
[
n2(m)

]
E[x2(m)]

(6)

where E is the expectation operator. After applying the inverse filter, the NSR is ex-
pressed as:

power o f speckle noise
power o f excited signal

=
E
[
n2(m)

]
E[v2(m)]

(7)

The overall gain of the NSR can be obtained by:

gain =
E
[
x2(m)

]
E[v2(m)]

(8)

This simple analysis demonstrates that an improvement in speckle noise detectability
depends on the characteristics of the power amplification of the linear predictor model and
the associated resonances. Figure 5 shows a comparison between a raw measured signal
and a decorrelated signal. It can be seen that the speech signal is largely removed and the
speckle noise in the signal is highlighted.
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3.2. Speckle Noise Detection

The average short-time energy and kurtosis are used as judgment indexes to distin-
guish the noise. The average short-time energy reflects the mean of the weighted sum
of the squares of a frame sample values. The average short-term energy (En) of a speech
signal at time n is expressed as:

En =
1
N

n

∑
m=n−(N−1)

[x(m)ω(n−m)]2 (9)

where N is the window length and each window length represents one frame. As the
extracted signal enhances the energy ratio of the speckle noise, the average short-term
energy can be used to locate the speckle noise with a long duration and large amplitude.

On the contrary, the kurtosis is defined as the fourth central statistical moment nor-
malized by the fourth power of the standard deviation. This describes the degree to which
a sample deviates from the distribution:

Ki =
E
[
(Xi − µ)4

]
σ4 (10)

where Ki is the kurtosis value of signal X, X contains samples of the ith frame (n− (N − 1)),
x(n− N), · · · x(n), µ and σ are respectively the mean value and standard deviation of x,
and E[ ] stands for the overall average.

Using the kurtosis as a method for locating statistical anomalies provides a strong
sensitivity to sudden anomalies with a very short duration and a large numerical value.

From the given definitions of average short-term energy and the kurtosis, the average
short time energy is sensitive to high-amplitude noise with a long duration. However, it
can easily miss speckle noise with a very short duration and a slightly smaller amplitude.
However, the kurtosis is sensitive to sudden anomalies with a very short duration. Thus,
the two methods are complementary when applied to the detection of different types of
noise in laser-detected speech.

Figure 6a,b show the short-time energy and kurtosis value of a raw detected speech
signal, and the signal extracted by decorrelation, respectively. Looking at Figure 6a verti-
cally and the long-duration speckle noise in the red dashed box, the average energy value
is much greater than the voice. However, the average short-term energy value for the sharp
speckle noise with a very short duration in the black box is very similar, or even lower than
the voice signal. Simultaneously, the kurtosis value of the frame in the black box is very
large. This confirms our proposition that the average short-term energy and kurtosis are
complementary. If we then make a horizontal comparison between Figure 6a,b, it can be
clearly seen that, by removing the influence of the correlated speech signal, the average
short-term energy and kurtosis values of the speckle noise in the extracted signal are greater
than they are in the raw signal, confirming that decorrelation can increase detectability of
the noise.

Traditional methods usually use a fixed threshold, but as the distance, detection objects
and speaker volume can all change, the threshold needs to be reinitialized on each occasion,
which reduces the detection efficiency. Therefore, we use the ratio of the present moment
to the past average to detect the speckle noise. If the energy Ei or the kurtosis Ki of the
current frame is TE times greater than the average energy Emean, or TK times greater than
the average kurtosis Kmean, the current frame is judged to contain speckle noise.
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3.3. Coding Samples to Replace Noisy Samples

We have focused on the method for locating every sample containing speckle noise.
We then use a recursive LP model-based interpolator to replace the signals distorted by
the noise, one by one. The basic idea of an LP model-based interpolator for noise removal
can be expressed as follows: “The present value of a speech sample can be approximated
by a weighted linear combination of past values of several speech samples” [27]. Samples
irrevocably distorted by speckle noise are discarded and the gap to the left or the right
is interpolated. Firstly, the available (clean) samples in the past of a noise pulse are used
to estimate the linear predictor coefficients for the linear prediction model of the signal.
Afterwards, the estimated model parameters and the samples on the left of the gap are
used to interpolate the polluted sample.

For quasiperiodic signals, such as voiced speech, there are two types of correlation
structures that can be utilized for an interpolation:

(1) the short-term correlation, which is the correlation of each sample with the P
immediate past samples x(m− 1), x(m− 2), . . . ,x(m− P).

(2) the long-term correlation, which is the correlation of a sample x(m) with 2Q + 1
similar samples, a pitch period T away x(m− T + Q), . . . ,x(m− T −Q).

Due to the disturbances of speckle noise that usually contaminates a relatively small
fraction α of all the samples, the length of the samples to be interpolated is short, and the
purpose is to remove the influence of speckle noise. Therefore, we do not use the periodic
structure for interpolation, but only the interpolation of short-time correlation. That is the
linear prediction of a sample x̂(m), based on P past samples. This can be defined as:

x̂(m) =
P

∑
k=1

aP(k)·x̂(m− k) (11)

where x̂(m) is the encoded sample at the location of the speckle noise, P is the coding order
and aP(k) are predictor coefficients calculated using the Levinson–Durbin algorithm.
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Note that each sample involved in the interpolation is the latest one after the code
replacement. The advantage of using an LP model-based interpolator to replace contami-
nated samples is that it avoids truncation of the signal and keeps the signal consistent. It is
not only effective in predicting the content of the signal, but also significantly improves the
auditory character of the speech.

3.4. Parameter Setting

In the proposed automatic noise detection and removal method, the signal is divided
into overlapping frames of length N with a hop size of Nh samples. In practice, we chose
Nh = N/4, which corresponds to a 75% overlap. If the frames of length N are greater
than the maximum length of the high-energy noise Nmax, the average energy value will
incorporate background noise or speech signals with a smaller amplitude. This results in
the threshold rate TE, being hard to set and the noise being missed or erroneously detected.
Simultaneously, if the frames of length N are too small and they ignore the continuity of an
impulse, only the point of the peak will be located, with the middle value of the peaks not
being detected. To further complicate matters, in the case of the kurtosis, if the frames of
length N are too short, applying a statistical process will be nonsensical. In terms of delay,
overly-long frames of length N will lead to an excessive time delay.

In a laser speech measurement system, the duration of speckle noise is variable but
generally ranges between 5 ms and 20 ms. Therefore, we set the frame length N to the
largest potential value of 20 ms (i.e., 320 samples at a 16 khz sampling rate) in order to
fulfill the requirements for the time delay, and to provide a segment length that is sufficient
for reliable estimation of the average energy and kurtosis.

As for the coding order P, i.e., how many samples are used to predict and replace the
contaminated samples, as the predictor order increases for a speech signal, the prediction
error decreases. Saeed [27] stated that the interpolation error depends on the model order
while usually a model order of two to three times the length of missing data sequence
achieves good result. Janssen [28] suggests using P ={3Nmax + 2}. However, the algorith-
mic complexity of calculating the prediction coefficients also needs to be considered with
the increase of the coding order. Indeed, it seems fair to assume that P should be at least
greater than Nmax, so that only known samples are used for the reconstruction [20]. In order
to reuse the parameters calculated during the decorrelation preprocessing, P is set equal to
the frame length N, because we previously set the frame length as the maximum length
of the speckle noise Nmax. This is also advantageous since the linear predictor coefficients
calculated during the decorrelation stage can be reused in the last step of the coding, which
greatly reduces the computation complexity.

The threshold ratios TE and Tk directly determine the detection accuracy. Several
experiments demonstrated that, when TE = 5 and Tk = 2, all the speckle noise is visibly
removed without any false detection.

The value averages Emean and Kmean were dynamically adjusted during the experi-
ments in order to assess what would provide sufficient sensitivity with a minimum number
of false alarms. Everyone has to take a break in order to breathe when speaking, and, on
average, this occurs every 10 s. Therefore, the average energy value and kurtosis for over
10 s were taken as the basis of these calculations.

Figure 7 shows the result of locating and replacing the speckle noise in an example
of laser measured speech. Figure 7a is the raw noisy signal. Figure 7b shows the noise
locations given by the proposed method. The black box shows the noise points located
by energy discrimination and the positions marked by an asterisk are the noise points
identified by kurtosis. Figure 7c is the speech enhanced by replacing the noise points. For
comparison, Figure 7d shows the pure voice.
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4. Experiments and Discussion

In this section, the results of a performed experiment are shown to verify the applica-
bility of the method and are compared with other related methods.

4.1. Related Methods

The methods we chose for comparison are Cristalli and Lv’s kurtosis ratio (KR)-based
method [16,17], and Oudre’s Autoregressive (AR)—based speckle noise detection and
interpolation method [19,20]. In order to ensure consistency, LPC coded samples were used
for replacement by all of the methods to obtain the final enhanced speech.

4.2. Experimental Setting

The detection scene of the whole experiment is shown in Figure 8. We used a laser
speech measurement system that we constructed by ourselves, as shown in Figure 8a, for
the remote speech detection. The selected laser speech measurement system had a nominal
working distance of 5–500 m and operated at a wavelength of 1550 nm. Figure 8b shows
the target side scenario. The scenario was comprised of a loudspeaker playing clean speech,
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an empty paper cup as a detection target, and an acoustic shell meter for detecting the
decibel that reaches the surface of the paper cup. In the experiment, the loudspeaker was
located 1 m away from the paper cup, and started playing pure voice. The volume of the
loudspeaker was adjusted so that the sound intensity level on the surface of the paper cup
did not exceed 80 dB. We focused the measuring light on the surface of the paper cup and
then obtained a speech signal. By increasing the detection distance from 100 to 300 m and
creating human interference, we obtained different intensities of speckle-noise for the noisy
speech with various durations.
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level meter.

Clean speech was used for the speech played by the loudspeaker. This was taken from
the Librispeech ASR corpus dataset [29]. LibriSpeech is a corpus of approximately 1000 h
of 16 kHz read English speech. In this experiment, we randomly chose 50 groups of voice
examples from one female reader and one male reader in the “dev-clean” subfolder, as
the pure speech. In order to create speckle noise and therefore the noisy speech, we set
interference with indefinite duration, such as occlusion on the measured optical path. We
ended up with 50 groups of voice examples at each detection distance, giving a total of
150 groups of speech with speckle noise. The pure speech and noisy speech measured in
the experiment are available on Gitee [30].

4.3. Evaluation Indexes

As it is difficult to count the number of points related to speckle noise in real-world
detected speech, we first compared and evaluated the different methods by visually in-
specting the resulting waveforms. Afterwards, as the accuracy of noise localization can also
be indirectly judged by looking at the signal quality, we used the SNR [31] and PESQ [32]
as objective metrics.

The SNR and PESQ indicators are calculated by comparing the examples where the
speckle noise is removed, and the pure speech. To ensure the experimental results are
accurate and to minimize the number of errors, all of the metrics are averaged across each
group of 50 speech signals.
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4.4. Results and Analysis

Figure 9 shows the raw detected signal at 300 m and the corresponding signal en-
hancements by the different methods. Figure 9a is the raw detected signal. Figure 9b shows
the noise localization and interpolated signal when using AR. Figure 9c is the results for
decorrelation of the signal using KR. Figure 9d shows the results obtained by the proposed
method. Figure 9e is the clean signal. It can be seen that the missed detection rate for the
KR and AR methods is very high. As the noise length increases, the probability of missed
detection becomes higher. On the contrary, the proposed method is able to identify the
full range of noise with different amplitudes and lengths. Its noise positioning accuracy is
also greater.
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Table 1 shows the SNR and PESQ results for the signals enhanced by the different methods.
It can be seen from Table 1 that the signal enhanced by the proposed method has

significantly higher scores than the AR and KR methods. When the detection distance is
100 m, the SNR of the speech signal enhanced by the proposed method is 2.064 dB. This is
0.54 dB and 0.42 dB higher than the AR and KR methods, respectively. When the distance
is 200 m and 300 m, the SNR of the speech signal enhanced by the proposed method is
0.77 dB and 0.88 dB higher, respectively. This is a more significant improvement than that
achieved by the other methods. The PESQ score of the proposed method at 100 m (2.064) is
0.39 points and 0.43 points higher than the score of the AR method (1.768) and KR method
(1.726), respectively. This is even more pronounced when the distance is 300 m, with the
PESQ for our method being 1.560 points, which was 0.78 points and 0.73 points higher than
the AR and KR results, respectively. As speckle noise usually contaminates a relatively
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small fraction of each overall sample, these experimental results do not seem surprising
and are perfectly satisfactory for the removal of speckle noise.

Table 1. SNR and PESQ-based objective evaluation results.

Measurement
Distance

Objective
Metrics

Noisy
Speech AR KR Proposed

Method

100 m
SNR 1.054 1.520 1.642 2.064

PESQ 1.635 1.768 1.726 2.160

200 m
SNR −0.835 −0.718 −0.606 −0.062

PESQ 1.036 1.225 1.054 1.900

300 m
SNR −2.159 −1.677 −1.628 −1.272

PESQ 0.635 0.778 0.827 1.560

5. Key Outcomes and Conclusions
5.1. Key Outcomes

As demonstrated by the experimental results, the proposed algorithm is a simple
yet efficient technique that can restore audio signals that are corrupted by speckle noise.
The proposed combination of decorrelation preprocessing, average short-term energy, and
kurtosis to detect the speckle noise in detected signals involves relatively little calculation,
thereby increasing the computing speed. The decorrelation preprocessing and the double
threshold criterion greatly improves the noise positioning accuracy. The method of replac-
ing contaminated samples with linear coded samples is also efficient in restoring the signal
and reducing the distortion. The advantages of the proposed method can be summarized
as follows:

(a) Through decorrelation preprocessing, the influence of the captured speech on speckle
noise detection is eliminated and the noise signal ratio is increased. This technique
renders the speckle noise prominent, making it easy to detect.

(b) Combining the energy and distribution in the noise detection significantly increases
the noise location accuracy because the two complement each other. The results show
that our method can deal with speckle noise with different durations (clicks, bursts,
outliers, crackles, scrapes, etc.) and different degradation types.

(c) Having a limited range of parameters and basing both the decorrelation and interpo-
lation phases on LPC, keeps the calculation of the coefficients to a minimum, making
it possible to process quickly and automatically.

(d) Replacing the degraded samples with more appropriate values greatly improves the
voice quality and intelligibility, and avoids the generation of distortion.

(e) The method involves less calculation and less delay. Therefore, it is able to fit the
practical needs of laser voice detection applications. The algorithm itself is not
restricted to use in laser speech measurement, but also can be used for traditional
microphone communication.

5.2. Conclusions

In this paper, we highlighted the problem of speckle noise for the laser speech measure-
ment system, which can limit the efficiency and accuracy of speech information acquisition.
We then proposed a novel automatic speckle noise detection and removal method. This
method first foregrounds noise using decorrelation, based on a linear prediction (LP) model
that improves the signal-to-noise ratio of the measured signal. This allows detection of the
position of noise through a combination of the average short-time energy and kurtosis. The
method not only accurately locates small clicks with a duration of few samples, but also
finds the location of longer bursts and scratches with a duration of up to hundred samples.
The located samples can then be replaced by more appropriate samples whose coding is
based on the LP model. The method is not only able to improve the speech quality of
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laser speech measurement systems, but also provides reference for the noise removal for
ordinary electronic microphones.

5.3. Limitations and Future Work

Although the proposed method offers good speckle noise localization and removal,
it does not currently consider the potential impact of background noise. In the case of
background noise with a varying distribution, the decorrelation would not automatically
eliminate its influence. If there is an excessive amount of background noise, this will also
have an impact on the selection of the detection threshold and other parameters. In our
future work, we will examine how to deal with the possible presence of background noise
and will further develop a theoretical model of speckle noise to maximize its mathematical
rigor. The parameter selection also requires more theoretical support, rather than relying
on just experimental verification.
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