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Abstract: In this paper, a new tree-structured regression model—the projection pursuit regression
tree—is proposed. It combines the projection pursuit classification tree with the projection pursuit
regression. The main advantage of the projection pursuit regression tree is exploring the independent
variable space in each range of the dependent variable. Additionally, it retains the main properties
of the projection pursuit classification tree. The projection pursuit regression tree provides several
methods of assigning values to the final node, which enhances predictability. It shows better
performance than CART in most cases and sometimes beats random forest with a single tree. This
development makes it possible to find a better explainable model with reasonable predictability.

Keywords: regression tree; projection pursuit; exploratory data analysis; piecewise regression;
recursive partition

1. Introduction

Classification and regression trees are commonly applied to data, mainly for inter-
pretability. The first regression tree was AID (automatic interaction detection [1]). At each
node, AID determines the splitting rules using the sum of squared deviations as an impu-
rity measure. It splits the data recursively and stops when the impurity measure is less
than the predefined threshold value. It uses the sample mean of data in the final node as
the predicted value. There are several problems with AID: overfitting, selection bias when
the variables are highly correlated, and the masking problem. To overcome the overfitting
problem, CART (the classification and regression tree [2]) was developed. It uses a pruning
method to reduce the size of the tree to prevent overfitting. However, this increases the
computational cost.

AID and CART use piecewise constant regression approaches. It is difficult to solve
the masking problem with these approaches because the predictors can be used in two
ways: for splitting and for fitting the model in the final node [3]. To overcome this problem,
CTREE (the conditional inference tree [4]) uses a permutation test, and GUIDE (generalized,
unbiased, interaction detection and estimation [5]) uses bootstrap calibration.

For decades, various algorithms have been proposed to apply complex models instead
of constants values to the final nodes of the regression tree. M5 [6] and M5P [7] allow the
construction of linear models at final nodes. HTL [8] allows for a nonlinear regressor at final
nodes. One advantage of predicting using such complex models at final nodes over the tra-
ditional constant values is that they are generally much simpler and more accurate. Instead
of making a single prediction from a complex model, ensemble models use summarize the
predictions from many simple models. Tree-based ensemble models have been developed,
e.g., bagging [9], boosting [10], random forests [11], BART (Bayesian Additive Regression
Model [12]), and KTBoost [13]. In general, the ensemble technique is known to reduce
overfitting. Accordingly, the performance of the model can be expected to be improved.
Furthermore, there have been many efforts to apply tree algorithms to various regression
problems like logistic regression and quantile regression [14]. Regression tree algorithms
have recently extebd to the autoregressive tree model for time-series analysis [15] and the
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random effect tree model for panel data analysis [16]. The flexibility of fitting various types
of data well is a powerful feature of regression trees. Therefore, regression tree algorithms
have been developed and widely used in regression problems [17–20].

Another regression approach is projection pursuit regression (PPR [21]). This approach
uses a sum of empirically determined univariate functions of the projected predictor values.
To find the regression model, PPR finds the projection of the predictors, fits an empirical
model with the projected predictor values and calculates the residuals. This procedure
is repeated with the residuals until the residual sum of squares is very small. The final
projection pursuit regression model is the sum of the empirical models in each iteration.
Even though projection pursuit regression predicts the response variable quite well, it is
not easy to understand the model itself, and it is quite difficult to explain patterns in the
data. The projection pursuit idea is applied to improve the interpretability of the model,
and a new tree with a piecewise regression approach—the projection pursuit regression
tree—is proposed.

With the projection pursuit regression tree, the data analyst can explore the partitioned
data as well as the data as a whole. The main difference between the general tree-based
regression methods and the projection pursuit regression tree is the way they partition
data. The general tree-based regression methods are focused on the space of independent
variables and each final node tend to have wider-ranging values of the dependent variable.
However, the projection pursuit regression tree starts from the dependent variable. This
tree divides the range of the dependent variable into the number of final nodes and assigns
groups in each interval. After fitting the tree, each group is assigned to one final node,
and all the final nodes are ordered by values of the dependent variable. That is, the left
most final node has the group with the smallest value of the dependent variable and the
rightmost final node has the group with the largest value of dependent variable. Therefore,
with the projection pursuit regression tree, the user can easily explore the features of the
independent variables in each range of the dependent variable. To explore a more fine-
grained range of the dependent variable, the user can increase the depth of the projection
pursuit regression tree.

In Section 2, the general tree-based regression methods and the projection pursuit
approach are reviewed. The main algorithm of the projection pursuit regression tree is in
the Section 3. Our new method, the projection pursuit regression tree, is explored with
wine data, and the performance of our method is compared to linear regression, CART,
and the random forests in the result section. A discussion follows.

2. Regression Tree and Projection Pursuit
2.1. General Algorithm of the Regression Tree

Let Y be the dependent continuous variable and X1, · · · , Xp be the independent
variables. For the whole procedure of the regression tree, several decisions should be made:
the best independent variable Xk∗ among X1, · · · , Xp and the best cut-off c∗ in each node,
the stopping rule to declare a final node, the pruning method to use to avoid overfitting,
and the assignment of numerical values to the final nodes.

In each node, the regression tree uses one independent variable (for example, Xk∗ )
and separates the data in the specific node into two groups using the cut-off c∗. If Xk∗ < c∗,
it is assigned to the left child node. Otherwise, it is assigned to the right child node. This
cutoff is determined by a predetermined rule, usually to minimize the mean squared error
(MSE) for the regression tree including CART [2]. This procedure is continued until the
node is declared a final node.

The stopping rule is closely connected to the model complexity. If the number of final
nodes is increased, there is a high chance that it will become a complex model, and the risk
of overfitting will increase. Most tree-structured methods adapt a pruning method after
growing a large tree. CART uses the cost-complexity pruning method with a penalty for
model complexity.



Appl. Sci. 2021, 11, 9885 3 of 15

The most common values to assign to the final node are the mean of the Y values
in the final node. Because of the restriction that the one value should be assigned to all
observations in the same final node, the tree-structured regression methods usually have
poor predictability. To improve the precision of tree-structured regression methods, several
methods have suggested using linear combinations of the independent variables instead of
one value [8]. In this paper, the projection pursuit method and several different models for
the assignment of the final node are adapted.

2.2. Projection Pursuit

Projection pursuit is a method of finding interesting low-dimensional projections of
high-dimensional data by optimizing a predetermined criterion function, called a pro-
jection pursuit index. This idea originated in [22], and the authors of [23] coined the
term “projection pursuit” as a technique for exploring multivariate data. It is useful in
an initial data analysis. The method can also be used to reduce multivariate data to a
low-dimensional but “interesting” subspace.

The projection pursuit classification tree [24] is a classification tree that uses projection
pursuit indices to separate classes. The usual tree-structured classification finds a rule
to separate the data into two groups using impurity measures that determine the degree
of purity in the two groups in terms of classes. A projection pursuit classification tree,
on the other hand, finds a rule to separate classes into two groups. This rule uses the best
projection to separate the two groups of classes with various projection pursuit indices for
separating classes. One class is assigned to only one final node, and the maximum depth
of the projection pursuit classification tree is at most the number of classes. Therefore,
the projection pursuit classification tree constructs a simple but more understandable tree
for classification. The projection coefficients of each node represent the importance of the
variables in separating the classes in each node. The behaviors of the projection coefficients
in each node are useful in exploring how to separate classes. This approach is extended to
the regression tree.

3. Projection Pursuit Regression Tree
3.1. Construction of the Projection Pursuit Regression Tree

Multiple regression models are widely used, but it is difficult to interpret the final
model, especially when there are many independent variables. Additionally, if there
are nonlinear patterns between the dependent variable and independent variables, the
multiple regression model is more difficult to interpret. Most regression trees have better
interpretability than the ordinary multiple regression model. With recursive partitioning of
the independent variable space, the regression tree discovers interesting features in each
partitioned space of the independent variables. However, one of the main purposes of
regression is to explain the dependent variable using the independent variables. In this
paper, the dependent variable is focused and a new regression tree—the projection pursuit
regression tree—is proposed.

The original idea of the projection pursuit regression tree comes from the projection
pursuit classification tree [24]. In the projection pursuit regression tree, a modified approach
to split nodes and assign values in the final node is used.

Let (Y∗1 , X∗1), · · · , (Y∗n , X∗n) be the set of observations in a specific node and X∗i be a
p-dimensional vector. Then, in each node,

step 1: Divide Y∗1 , · · · , Y∗n into two groups: group 1 with small values and group
2 with large values (eg. Assign Y∗i to group 1 if Yi < median(Y∗1 , · · · , Y∗n ).
Otherwise, assign Y∗i to group 2.)

step 2: Find the optimal 1-dimensional projection α∗ to separate group 1 and group 2
using one of the projection pursuit indices that involves class information—the
LDA, PDA, or Lr index.
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step 3: Project the data in the node onto the optimal projection α∗, i.e., α∗TX∗.
If ave(α∗TX∗i |Y∗i ∈ group 1) ≥ ave(α∗TX∗i |Y∗i ∈ group 2), use α∗ = −α∗ as the
optimal projection.

step 4: Find the best cut-off, c, to separate group 1 and group 2.
step 5: Group 1 is assigned to the left node, and group 2 is assigned to the right node

In step 2, the projection pursuit index is needed to separate group 1 and group 2.
The LDA index, Lr index [25], and PDA index [26] were developed to find the projection
from a separating view of groups. The LDA index is based on linear discriminant analysis
and is useful for finding the view that maximizes between-group variation relative to
within-group variation. If the correlations among variables are high or the number of
variables is relatively large compared with the number of observations, the PDA index is
useful to escape the data piling problem [27] in the LDA index. The amount of penalty on
correlations can be controlled with the tuning parameter λ. The PDA index with λ = 0 is the
same as the LDA index. Both the LDA and PDA indexes use all information in the variance-
covariance matrix of the independent variables. On the other hand, the Lr index ignores
the covariances among variables and uses only the variances of the independent variables

(Lrindex(A) =

(
∑

q
l=1 ∑

g
i=1 ∑

ni
j=1(ȳi.l−ȳ..l)

r

∑
q
l=1 ∑

g
i=1 ∑

ni
j=1(yijl−ȳi.l)r

)1/r

, where yijl is the lth variable of the projected

data in ith group jth observation and A is the p× q projection matrix). r determines how
to calculate the distance between two points in each dimension. With different selections
of indices and the parameters associated with indices, the interesting features of our data
space can be found.

The projection pursuit regression tree is designed to provide an exploratory data
analysis tool, and the tree structure is constructed to retain this feature. In each node,
the observations are separated into a group with small Y values and a group with large Y
values; the group with small Y values is assigned to the left node, and the group with large
Y values is assigned to the right node. To retain this directional convention, the direction
of the optimal projection in step 3 is modified.

To explain how the projection pursuit regression tree works, a toy example is used.
One-hundred observations with two independent variables, X1 and X2, and one dependent
variable, Y, are randomly chosen. In this toy example data, X1 and X2 are highly correlated
with Y (Figure 1a,b). In step 1, the data are divided into two groups: group 1 (•) and group
2 (N). In step 2, the LDA index is used to find the optimal projection to separate group 1
and group 2. Figure 1c is the scatter plot of the projected values of X1 and X2 vs. Y.

Figure 1. Toy example: 100 observations; X1 and X2 are highly correlated with Y.

Figure 2 shows the difference between CART and the projection pursuit regression
tree in dividing the space of independent variables. The dashed vertical line in the scatter
plot of X1 and X2 represents the cut-off point in each method. The observations on the
left/lower side of this line are assigned to the left node, and those on the right/upper side
are assigned to the right node. CART uses the variable X1 to separate the two groups.
Because CART uses one variable at a time, the separating line is parallel to the axes of the
variables. In contrast, the projection pursuit regression tree uses a linear combination of
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the independent variables a1X1 + a2X2, and this separating line can be in any direction,
including the direction parallel to axes.

Figure 2. How to separate the space of independent variables in CART and in the projection pursuit
regression tree.

These procedures continue until a node is declared as a final node. To decide whether
a node is final, two different ways are provided: one is for exploring data, and the other
is for predicting. For the exploratory data analysis, a tree with a predefined depth can be
constructed. With this approach, the projection pursuit regression tree divides the Y values
into 2depth groups and explores the properties of each group. Figure 3 is a simple projection
pursuit regression tree for the toy example with depth 1. The data with small Y values have
small X1 and X2 values, and the data with large Y values have large X1 and X2 values. For
the prediction purpose, the final node is declared if the number of observations in a node is
small or if the between-groups sum of squares is relatively smaller than the within-groups
sum of squares. The second criterion is similar to the classical Fisher’s LDA idea.

Figure 3. Simple projection pursuit regression tree for the toy example with depth 1.

After constructing the tree structure with the observed data, the numerical val-
ues are assigned to the final nodes. Five different models are provided in our projec-
tion pursuit regression tree to assign numerical values in the final nodes. Let Yi∗ and
Xi∗ =

[
Xi∗1, · · · , Xi∗p

]T be the i∗th observations in a specific final node, i∗ = 1, · · · , n∗,
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where n∗ is the number of observations in the node and α∗ is the best projection of the

previous node. Then, for a new observation X∗ =
[

X∗1 , · · · , X∗p
]T

,

Model 1: Ŷ∗ = 1
n∗ ∑n∗

i∗=1 Yi∗

Model 2: Ŷ∗ = median(Y1, · · · , Yn∗ )
Model 3: Ŷ∗ = β̂0 + β̂1 · projX∗

where β̂0 and β̂1 are estimated from the simple linear regression model with
new variable projX∗ = α∗TX∗ that is generated from the optimal projection α∗.

Model 4: Ŷ∗ = β̂0 + β̂1X∗1 + · · ·+ β̂pX∗p
where β̂0, · · · , β̂p are estimated from the multiple linear regression model
with all independent variables.

Model 5: Ŷ∗ = β̂0 + β̂1X∗1∗ + · · ·+ β̂p∗X∗p∗
where β̂0, · · · , β̂p∗ are estimated from the multiple linear regression model
with the selected p∗ independent variables.

In Model 5, p∗ is the predetermined number and the independent variables are
selected using the correlations with Y. Figure 4 shows how CART and the projection
pursuit regression tree with Models 1–5 assign values to the final node. For Figure 4, the
toy example data is fitted to a projection pursuit regression tree with depth 1 (Figure 3).
The result of CART has 7 final nodes, and each node is assigned to one value. In Models
1 and 2, the mean and median of the small Y group are assigned to the left node and
the mean and median of the large Y group are assigned to the right node. For Model 3,
Ŷ∗ = β̂0 + β̂1 · projX∗ is used to predict the Y values, where projX∗ is the projected data of
the first node. The Ŷ∗ = β̂0 + β̂1X1+ β̂2X2 model is used for Model 4, and Ŷ∗ = β̂0 + β̂1X1
is used for Model 5 (p∗ = 1).

The MSEs of the fitted values with multiple linear regression, CART, the random
forest for regression [11], and the projection pursuit regression tree with various models
for the final node are summarized in Table 1. For the comparison, the lm, randomForest,
and rpart functions in R are used. In this toy example, lm and the projection pursuit
regression tree with Model 4 show the best performance. randomForest shows poor
performance on these data. The MSE of randomForest is much higher than that of the
lm method. The result of rpart is worse than that of randomForest. In the projection
pursuit regression tree, the performances of various models are quite different. The MSEs
of the Model 1 and 2 are much higher than that of rpart. This result is mainly due to the
simple tree with depth 1 (the depth of the rpart model is 3). If a more complex tree with a
greater depth is used, the performance of Models 1 and 2 can be improved. Model 5 shows
similar performance to rpart, and Model 3 shows better performance than randomForest.
The performance of Model 4 is similar to that of lm. From this result, it is confirmed that
the predictability with various models of assigning final values can be improved.

Table 1. MSEs of the toy example with lm, randomForest, rpart, and the projection pursuit regression tree.

Projection Pursuit Regression Tree
Method Lm RandomForest Rpart Model 1 Model 2 Model 3 Model 4 Model 5

MSE 0.0027 29.83 124.83 444.02 447.16 6.47 0.0025 121.67
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Figure 4. The scatter plot of Y and the predicted values using CART and the projection pursuit
regression model with methods Models 1–5.

3.2. Features of the Projection Pursuit Regression Tree

The projection pursuit regression tree is developed to explore data in each partitioned
data space instead of the whole data space by focusing on the value of the dependent
variable (Y). This tree always divides the data by Y values; the observations with smaller Y
values are assigned to the left node and the observations with larger Y values are assigned to
the right node. After fitting the projection pursuit regression tree, all final nodes are sorted
by their estimated values—the node that is furthest to the left has the smallest estimated
value, and the rightmost node has the largest estimated value. Therefore, with this tree
structure, the most important variables for large or small Y values can be determined.

To examine this feature of the projection pursuit regression tree more deeply, 100 bser-
vations with one dependent variable and four independent variables are simulated. Let
Q1, Q2, and Q3 be the 25%, 50%, and 75% quartiles of Y. The Y values are divided into
four groups—G1, G2, G3 and G4—with these quartiles. X1 is linearly associated with Y
in G1 and does not have any relation with Y in the other groups. Similarly, X2 shows a
linear relationship with Y only in G2, X3 shows an association with Y only in G3, and X4
shows an association with Y only in G4. The structures of the data are presented in Figure 5.
The relationships between Y and the Xs depend on the range of Y values.

Figure 6 shows the result of the projection pursuit regression tree with depth 3,
and Table 2 shows the coefficients of projection in each node and the overall importance
measure of the projection pursuit regression tree as well as the importance measure of the
random forest for regression. The length of the projection is stick to one and the value
of the projection coefficient depends on the number of variables. For consistent decision,
the number of variables in each coefficient is multiplied for comparison. The projection
coefficients of projection pursuit in each node show the role of each variable in separating
the left and the right nodes. If the absolute value of a coefficient is large (great than 1),
the corresponding variable plays an important role in this separation.
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Table 2. The projection coefficients of each node in the projection pursuit regression tree and the
importance measure of randomForest.

Projection Pursuit Regression Tree

Coefficients X1 X2 X3 X4

node 1 0.017 2.534 3.073 −0.368
node 2 2.231 3.257 −0.360 −0.530
node 3 −0.023 −0.464 3.031 2.569
node 4 3.981 0.386 −0.073 0.002
node 5 0.275 3.971 0.378 −0.100

node 10 −0.074 0.325 3.985 −0.080
node 11 0.209 0.233 0.468 3.960

overall
importance 75.946 187.443 199.800 98.442

randomForest

X1 X2 X3 X4

importance
measure 6.724 11.360 11.678 7.151

In node 1, all Y values are divided into two groups—(G1, G2) and (G3, G4). To separate
the smaller Y groups (G1, G2) from the larger Y groups (G3, G4), X2 and X3 should play
an important role, as indicated by the coefficients of node 1. Additionally, X1 and X2 are
important for separating G1 and G2. This separation occurs in node 2 and the coefficients
of node 2 are large in X1 and X2. In separating G3 and G4 in node 3, X3 and X4 are
important. To separate G1 into smaller and larger groups (node 4), X1 should primarily be
used. Additionally, X2 should be used for G2 (node 5), X3 should be used for G3 (node
10), and X4 should be used for G4 (node 11). All these features can be found in Table 2
by the corresponding coefficients of each node in the projection pursuit regression tree.
Table 2 show the importance measure of the random forest for regression. The order of
importance is X3, X2, X1, and X4. It shows the same result of the overall importance of
the projection pursuit regression tree. Table 3 shows MSE of multiple regression line (lm),
randomForest, rpart and 5 models of the projection pursuit regression tree. According
to Table 3, all methods in the projection regression tree show better performance than the
other three methods, lm, randomForest, and rpart.

Figure 5. Plots of the simulated data Y vs. X1, X2 , X3 and X4. G1, G2, G3 and G4 are divided by the
dashed lines in each plot.
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Table 3. MSEs of lm, randomForest, rpart, and the projection pursuit regression tree.

Projection Pursuit Regression Tree
Method Lm RandomForest Rpart Model 1 Model 2 Model 3 Model 4 Model 5

MSE 0.0353 0.0096 0.0083 0.0067 0.0073 0.0024 0.0024 0.0017

Figure 6. The projection pursuit regression tree with depth 2 for the simulated data.

4. Results
4.1. Application: White and Red Wine Data

To explain how to explore data and find interesting features with the projection
pursuit regression tree, wine data from the UCI Machine Learning repository (“https:
//archive.ics.uci.edu/ml/datasets.php” [28]; accessed on 15 September 2021) is used.
These data are for Portugal wines. Eleven sensory variables were collected from 4898 white
wines and 1599 red wines. Additionally, the quality of wines was evaluated. The wine
quality is between 0 (very bad) and 10 (excellent). In this paper, the projection pursuit
regression tree is fitted to the white wine data and red wine data separately and compare
the differences between white wine and red wine.

For this exploration, the projection pursuit regression tree is fitted first. Figure 7 shows
the final projection pursuit regression tree. Table 4 shows the best projection coefficients for
all internal nodes. Node 1 divides the data into a high-quality group (quality ≥ 7) and a
low-quality group (quality ≤ 6). In both wines, if the alcohol is high and the density is low,
the wine is classified in the high-quality group. Additionally, there are differences in the
significant sensory variables between the white and red wine quality. White wines with
high residual sugar are classified in the high-quality group. In contrast, red wines with
high fixed acidity and high sulphates are classified in the high-quality wine group.

Figure 7. The projection pursuit regression tree for the wine data: (a) white wine and (b) red wine.

In node 2, the projection pursuit regression tree divides the low-quality group into two
small groups, one with quality 6 and the other with the lowest quality (≤5). In white wine,

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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high volatile acidity, low residual sugar, high density, and low alcohol tend to produce
lower quality, and red wines with high volatile acidity, high total sulfur dioxide, low
sulphates, and low alcohol have the lowest quality. Node 3 divides the top-quality group
(≥8) and the group with quality 7. High residual sugar and low density are still important
to classify a wine as a top-quality white wine. The red wine shows a bit of complicated
sensory evaluation. Low fixed acidity, high volatile acidity, low chlorides, low pH, and
high alcohol tend to produce top-quality wine.

Node 4 divides the lowest-quality group (≤4) and the group with quality 5. White
wines with low residual sugar, high density, and high alcohol have the lowest quality.
In red wine, high acidity, low density, and high pH tend to produce the lowest quality.

Table 5 shows the importance measures of each variable in the white wine data.
For the projection pursuit regression tree, the importance measure of each variable is a
weighted sum of the absolute value of the projection coefficients of each node. For the
weights, the number of observations in each node is used. In the white wine data, four
variables—density, residual sugar, alcohol, and volatile acidity—have important roles in
dividing five groups; the lowest-quality group, the groups of quality 5, 6, and 7, and the top-
quality group. These results are compared with the importance measure in randomForest.
Alcohol, density, volatile acidity, and free sulfur dioxide are the four most important
variables in randomForest. The roles of residual sugar and free sulfur dioxide are quite
different in the two methods. Residual sugar is a very important variable in the projection
pursuit regression tree but not in randomForest, and free sulfur dioxide is important in
randomForest but not in the projection pursuit regression tree.

Table 6 shows the importance measures for red wine. The most important variable
is alcohol in both methods. However, the other patterns are quite different. Random
forest shows only two more important variables: sulphates and volatile acidity. However,
the importance measures in the projection pursuit regression tree change smoothly up to
total sulfur dioxide. This is also a quite different pattern to that of the importance measures
of white wine. From this result, it is found that the quality of red wine is determined by
more complex tastes than the quality of white wine.

Table 4. Projection pursuit coefficients in each node for the white and red wine.

Variable Name White Wine Red Wine

Node 1 Node 2 Node 3 Node 4 Node 1 Node 2 Node 3 Node 4

fixed acidity 1.56 −0.24 1.78 −0.04 4.34 1.04 −4.32 −5.05
volatile acidity −1.24 −4.71 0.31 −2.71 −2.34 −4.49 3.71 −4.84

citric acid −0.17 0.14 0.51 0.33 1.24 −1.83 1.92 −1.36
residual sugar 6.30 5.08 7.20 5.62 2.61 −0.02 −1.00 −2.91

chlorides −0.23 0.12 2.78 0.14 −2.26 −1.47 −3.76 −0.96
free sulfur dioxide 0.98 1.48 2.69 −0.037 −0.42 2.28 0.50 0.52
total sulfur dioxide −0.41 −0.74 −1.07 1.63 −1.61 −4.79 −2.02 2.36

density −7.80 −4.18 −6.62 −7.70 −5.08 0.04 0.43 5.51
pH 2.03 0.96 2.24 0.25 0.20 −0.61 −6.10 −4.69

sulphates 1.26 1.48 −0.68 0.35 4.37 3.70 2.83 −0.76
alcohol 3.10 7.04 0.45 −4.45 5.96 7.22 4.45 1.41
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Table 5. Importance measures of the white wine data.

Projection Pursuit Regression Tree RandomForest
Variables Importance Variables Importance

density 646.23 alcohol 621.77
residual sugar 587.62 density 413.10

alcohol 436.91 volatile acidity 389.11
volatile acidity 252.90 free sulfur dioxide 385.95

pH 143.63 chlorides 306.12
free sulfur dioxide 117.04 total sulfur dioxide 293.33

sulphates 114.89 residual sugar 277.97
fixed acidity 91.90 pH 258.04

total sulfur dioxide 75.78 citric acid 255.65
chlorides 41.67 fixed acidity 235.73
citric acid 21.52 sulphates 222.10

Table 6. Importance measures of the red wine data.

Projection Pursuit Regression Tree RandomForest
ID Variables Importance ID Variables Importance

X11 alcohol 545.82 X11 alcohol 194.85
X2 volatile acidity 364.27 X10 sulphates 135.30

X10 sulphates 336.86 X2 volatile acidity 127.13
X8 fixed acidity 331.98 X8 density 86.55
X1 density 313.67 X7 total sulfur dioxide 79.42
X7 total sulfur dioxide 288.75 X3 citric acid 69.13
X5 chlorides 182.27 X5 chlorides 68.24
X4 residual sugar 166.65 X1 fixed acidity 61.71
X3 pH 151.30 X9 pH 57.77
X9 citric acid 150.70 X4 residual sugar 55.05
X6 free sulfur dioxide 109.87 X6 free sulfur dioxide 50.07

4.2. Comparison of the Performance of Tree-Based Regression Methods

Even though the main purpose of the projection pursuit regression tree is to explore
data, prediction is also an important feature of the tree-structured model. In this section,
18 data sets are used to examine the performance of the projection pursuit regression tree.
These 18 data sets come from various sources, such as the UCI data repositories, Statlib,
or R. For each data set, the data is divided into two-thirds training data and one-third test
data, the projection pursuit regression model is fitted with the training data, and the
mean squared error (MSE) and the mean absolute errors (MAE) of the training data and the
test data are calculated, respectively. lm, rpart, and randomForest are used to compare
the performance. rpart is the most commonly used tree-based model and randomForest
is also popular among ensemble tree methods. Usually a single regular tree-structured
model cannot outperform ensemble tree methods.

Tables 7 and 8 show the results of the MSE for the training and test data, respectively.
The average of the ratios of the MSE of each method to the MSE of lm are calculated. If this
average of ratios is less than 1, the performance of the corresponding method is better than
that of the linear model.

For the training data, the projection pursuit regression tree shows better performance
than rpart in seven data sets and shows competitive performance in three data sets.
Surprisingly, in tecator and yacht data sets, the projection pursuit regression tree shows
much better performance than randomForest. The projection pursuit regression tree shows
much better performance in the test data. For 15 data sets, the projection pursuit regression
tree shows similar or better performance than rpart. For three data sets—mussels, tecator,
and yacht, the performance is much better than that of randomForest.

Tables 9 and 10 show the ratios of MAE in the training and test data, respectively.
In the MAE results, the projection pursuit regression tree shows similar or slightly better
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performance than rpart in most data sets, and it is outperformed in three data sets—
mussels, tecator, and yachtdata. Even though the projection pursuit regression tree shows
similar or slightly worse performance than randomForest, it is outperformed in these three
data sets.

Table 7. Comparison of lm, rpart, randomForest, and the projection pursuit regression tree with various data sets; the
mean MSE/MSE(lm)of 200 iterations for the training dataset.

Projection Pursuit Regression Tree Random
Dataset n p Model 1 Model 2 Model 3 Model 4 Model 5 Rpart Forest

Abalone 4177 8 1.206 1.218 1.192 1.199 1.200 1.096 0.214
airfoil 1503 5 1.263 1.234 1.253 1.266 1.281 0.719 0.414

ais 202 10 1.631 1.679 1.303 1.034 1.151 1.129 0.297
alcohol 2467 17 1.215 1.183 1.244 1.230 1.235 1.022 0.471

autompg 392 7 1.074 1.083 0.841 0.755 0.883 0.798 0.182
baseball 263 18 1.396 1.379 1.337 1.227 1.327 0.829 0.186
boston 506 13 1.222 1.277 0.845 0.694 0.809 0.699 0.110
budget 1729 9 0.818 0.897 0.479 0.320 0.465 0.235 0.007

cane 3775 23 1.380 1.378 1.113 1.091 1.097 1.074 0.266
mussels 82 4 3.289 3.481 1.147 0.992 1.119 1.232 0.423
ozone 330 9 1.530 1.545 1.011 0.922 1.059 0.715 0.168

parkinsons 5875 20 1.341 1.333 1.162 1.130 1.126 1.125 0.122
price 159 15 1.947 2.053 1.661 1.525 0.975 1.043 0.221

strikes 628 4 1.084 1.055 1.115 1.105 1.104 0.800 0.377
tecator 240 22 7.412 7.692 3.820 0.500 2.049 5.867 1.056

wine-red 1599 11 1.275 1.274 1.327 1.325 1.323 0.938 0.168
wine-white 4898 11 1.356 1.299 1.467 1.441 1.440 1.006 0.137
yachtdata 308 6 0.189 0.200 0.027 0.009 0.020 0.063 0.108

Table 8. Comparison of lm, rpart, randomForest, and the projection pursuit regression tree with various data sets; the
mean MSE/MSE(lm)of 200 iterations for the test dataset.

Projection Pursuit Regression Tree Random
Dataset n p Model 1 Model 2 Model 3 Model 4 Model 5 Rpart Forest

abalone 4177 8 1.166 1.179 1.157 1.158 1.161 1.162 0.912
airfoil 1503 5 1.281 1.248 1.264 1.276 1.294 0.860 0.580

ais 202 10 1.735 1.760 1.540 1.403 1.365 1.474 1.221
alcohol 2467 17 1.208 1.175 1.240 1.237 1.233 1.017 1.057

autompg 392 7 1.089 1.100 0.873 0.822 0.934 1.127 0.695
baseball 263 18 1.206 1.177 1.312 1.190 1.152 1.052 0.679
boston 506 13 1.255 1.287 0.914 0.813 0.874 0.972 0.471
budget 1729 9 0.832 0.903 0.493 0.354 0.478 0.258 0.034

cane 3775 23 1.383 1.391 1.137 1.118 1.130 1.215 0.870
mussels 82 4 2.841 2.996 1.052 1.113 1.120 1.873 1.186
ozone 330 9 1.507 1.510 1.010 0.979 1.061 1.163 0.801

parkinsons 5875 20 1.326 1.320 1.162 1.143 1.135 1.158 0.681
price 159 15 1.646 1.683 1.560 1.625 1.067 1.007 0.525

strikes 628 4 1.075 1.046 1.102 1.097 1.094 1.082 0.935
tecator 240 22 6.180 6.328 4.100 1.336 2.720 6.411 2.918

wine-red 1599 11 1.275 1.275 1.325 1.330 1.323 1.089 0.817
wine-white 4898 11 1.349 1.294 1.461 1.439 1.435 1.020 0.673
yachtdata 308 6 0.209 0.234 0.032 0.017 0.026 0.061 0.207
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Table 9. Comparison of lm, rpart, randomForest, and the projection pursuit regression tree with various data sets; the
mean MAE/MAE(lm)of 200 iterations for the training dataset.

Projection Pursuit Regression Tree Random
Dataset n p Model 1 Model 2 Model 3 Model 4 Model 5 Rpart Forest

abalone 4177 8 1.079 1.062 1.072 1.068 1.068 1.044 0.446
airfoil 1503 5 1.095 1.083 1.073 1.070 1.084 0.854 0.669

ais 202 10 1.191 1.174 1.119 0.957 1.029 1.028 0.516
alcohol 2467 17 1.058 0.997 1.092 1.084 1.090 1.006 0.707

autompg 392 7 1.018 1.010 0.888 0.821 0.910 0.895 0.403
baseball 263 18 1.042 1.010 1.023 0.891 0.966 0.794 0.341
boston 506 13 1.052 1.040 0.880 0.741 0.823 0.843 0.309
budget 1729 9 0.660 0.620 0.528 0.462 0.518 0.514 0.054

cane 3775 23 1.131 1.122 1.060 1.034 1.044 1.104 0.545
mussels 82 4 1.996 1.954 1.078 0.999 1.041 1.161 0.656
ozone 330 9 1.135 1.118 0.952 0.876 0.935 0.813 0.383

parkinsons 5875 20 1.107 1.100 1.053 1.033 1.036 1.064 0.332
price 159 15 1.133 1.086 1.063 0.909 0.834 0.938 0.409

strikes 628 4 1.010 0.964 1.043 1.024 1.029 0.903 0.548
tecator 240 22 2.496 2.441 1.681 0.517 1.311 2.413 1.060

wine-red 1599 11 0.893 0.893 0.956 0.960 0.961 0.979 0.390
wine-white 4898 11 1.019 0.978 1.110 1.092 1.093 1.021 0.347
yachtdata 308 6 0.278 0.272 0.102 0.060 0.090 0.240 0.271

Table 10. Comparison of lm, rpart, randomForest, and the projection pursuit regression tree with various data sets; the
mean MAE/MAE(lm)of 200 iterations for the test dataset.

Projection Pursuit Regression Tree Random
Dataset n p Model 1 Model 2 Model 3 Model 4 Model 5 Rpart Forest

abalone 4177 8 1.074 1.062 1.073 1.066 1.066 1.079 0.944
airfoil 1503 5 1.106 1.094 1.084 1.085 1.094 0.934 0.791

ais 202 10 1.272 1.278 1.226 1.164 1.163 1.204 1.078
alcohol 2467 17 1.067 1.006 1.103 1.102 1.103 1.002 1.043

autompg 392 7 1.032 1.026 0.901 0.871 0.947 1.039 0.765
baseball 263 18 1.063 1.038 1.087 1.024 1.019 0.938 0.706
boston 506 13 1.090 1.075 0.936 0.846 0.876 0.967 0.660
budget 1729 9 0.670 0.628 0.539 0.493 0.531 0.534 0.122

cane 3775 23 1.152 1.143 1.082 1.064 1.071 1.143 0.957
mussels 82 4 1.854 1.840 1.047 1.073 1.066 1.474 1.111
ozone 330 9 1.144 1.135 0.956 0.933 0.953 1.005 0.836

parkinsons 5875 20 1.116 1.108 1.064 1.048 1.048 1.082 0.804
price 159 15 1.140 1.106 1.101 1.122 0.945 0.979 0.681

strikes 628 4 1.013 0.975 1.049 1.030 1.035 1.011 0.869
tecator 240 22 2.458 2.425 1.762 0.907 1.494 2.726 1.999

wine-red 1599 11 0.907 0.907 0.969 0.979 0.975 1.048 0.864
wine-white 4898 11 1.026 0.983 1.116 1.099 1.101 1.032 0.774
yachtdata 308 6 0.298 0.303 0.114 0.084 0.104 0.240 0.360

Sometimes the performance of Model 5 is better than the performance of Model 4.
The reason is mainly due to the overfitting. In the price data, the final tree has eight final
nodes, and each node has about 15 observations. Model 4 fits the linear regression model
with 15 variables to the data with 15 observations and causes the overfitting. Therefore,
Model 4, the multiple linear regression model with all variables, should be used when the
number of observations is enough to fit the model.

5. Conclusions and Discussion

This paper proposed a new exploratory regression method: the projection pursuit
regression tree. This tree is an extension of the projection pursuit classification tree to
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the regression problem. In each node, all observations in the node are divided into two
groups—a larger dependent-variable group and a smaller dependent-variable group. Then,
the projection pursuit method is applied using indices for classification. One of the
projection pursuit indices—the LDA, Lr, or PDA index—is maximized to find a projection
that separates the two groups. With the projection pursuit regression tree, the partitioned
data as well as the data as a whole can be explored. The main difference between the
general tree-based regression method and the projection pursuit regression tree is the
way the data is partitioned. The general tree-based regression methods focus on the
space of independent variables and each final node tends to have much wider-ranging Y
values. However, the projection pursuit regression tree starts from the dependent variable.
The data in each node are divided into two groups: group 1, with small dependent values,
and group 2, with large dependent values. Then, group 1 is assigned to the left node,
and group 2 is assigned to the right node. This procedure is repeated until a node is
declared a final node. Therefore, all final nodes are ordered by the averages of Y values.
With this property, the features of the independent variables can be explored easily in each
range of the dependent variable. To explore more fine-grained ranges of the dependent
variable, the depth of the projection pursuit regression tree can be increased.

The projection pursuit regression tree provides five different models to assign final
values to the final nodes and these methods improve predictability. It is shown that
the predictability of the projection pursuit regression tree is similar or better than that
of rpart by testing 18 data sets. Even though our projection pursuit regression tree is
not outperformed in all data sets, it shows better performance than rpart in most cases,
and sometimes beats randomForest. This projection pursuit regression tree is developed in
the R package PPtreereg and this package is available on GitHub (https://github.com/EK-
Lee/PPtreereg).

The projection pursuit regression tree is originally from the projection pursuit clas-
sification tree, which separates classes using the separating hyperplane. This projection
pursuit regression tree can perform poorly in a nonlinearly separable case, especially in
the paraboloid case. Therefore, this regression tree also separates the data space using the
separating hyperplane, limiting the nonlinearly separable case. Based on this study, it will
be possible to extend the method of considering nonlinear transformations or non-linear
projections when a growing tree. However, in that case, the computational complexity will
increase exponentially, and the model’s interpretability will disappear. Therefore, in the
area where the predictive model requires explanatory power, this developed tree can be
sufficiently valuable because it can be explained by looking at the projection according to
each node.
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