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Abstract: In this work, the performance of discrete and continuum computational models for ad-
dressing granular flow dynamics in a rotating drum at different regimes is studied. The results are
compared to the experimental observations obtained by image processing of a high-speed camera on
a pilot plant rotating drum. For the discrete modeling, Discrete Elements Method (DEM) through
the open-source software LIGGGHTS(R) is used, while for the continuum model, the µ(I)-rheology
is implemented in the general structure of a Volume-Of-Fluid (VOF) solver of the OpenFOAM(R)
platform. Four test cases consisting of different sets of particles filling and rotational speed are
considered and the results are analyzed in terms of solids distribution, the velocity of the particles,
and mixing patterns. The solids distribution and velocities for each one of the tests considered are
fairly similar between both computational techniques and the experimental observations. In general,
DEM results show a higher level of agreement with the experiments, with minor differences that
might be irrelevant in some cases (e.g., more splashing of particles for the fastest regimes). Among
the drawbacks of the continuum model, it was unable to predict the slumping regime observed
experimentally which can be attributed to the lack of a yield criterion and a slower dragging of
the granular material when the drum is being accelerated, which can be attributed to the need of
adding non-local effects to the rheology. On the other hand, the dynamic of the bed in the rolling and
cascading regimes are accurately predicted by the continuum model in less time than DEM, even in
a pilot plant scale system. These results suggest that the use of a continuum model with granular
fluid rheology is more suited for simulating industrial-scale rotating drums at different regimes than
DEM, but only if all the phenomenological features (i.e., yield criteria and non-local effects) are taken
into account in the model.

Keywords: rotating drum; CFD; DEM; granular flow; rheology

1. Introduction

Rotating drum systems can be found in many industrial applications, such as dryers,
mixers, kilns, and reactors. The performance of such systems mainly depends on the flow
patterns produced at different regimes. In this regard, six distinguishable regimes can be
defined depending on the type of material, the filling degree, and the rotational speed
of the drum: Slipping, slumping, rolling, cascading, catarating, and centrifuging [1–3].
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However, a full understanding of the mechanisms involved in the granular motion inside
the drum is still missing in the literature and it is essential for design purposes.

A detailed description of the granular flow patterns in rotating drums can be done by
experimental techniques and through computational simulations. Many authors attempted
to describe the rheological behavior by experimental techniques ranging from Positron
Emission techniques (PET and PEPT) and Magnetic Resonance Imaging (MRI) [4–9], up to
image processing by high-speed cameras [10,11]. However, the experimental approaches
present drawbacks that make them inadequate for a complete characterization of the solids
motion in these types of systems, such as depending on measuring probes that are intrusive
(e.g., using optical fibre probes), being influenced by the size of the observation (e.g., MRI,
PET, and PEPT techniques), or being limited to a certain type of material (e.g., radioactive
powders for PET and PEPT techniques). In addition, the technological developments of the
last few decades in terms of computer speed and memory management made numerical
techniques an efficient and low-cost tool for modeling this type of system.

The computational modeling of multiphase granular flows in rotating drums might
be done through Eulerian and Lagrangian approaches. Among the Lagrangian family, the
Discrete Element Method (DEM) consists of predicting the trajectories of each individual
particle by modeling the collisions based on interaction laws. This technique has been used
by many authors for describing the bed behavior in rotating drums [12–19], like characteriz-
ing the angle of repose for different regimes [20] and describing mixing mechanisms [12,13].
DEM provides detailed information at the scale of the particles which can be very valuable
for properly describing the granular phase dynamic. However, this also limits its range
of applicability due to the computational requirements when the ratio between the scale
of the system and the scale of the particles is very high, which often occurs in industrial
applications. On the other hand, the Eulerian techniques are based on treating both phases
as one or more continuous media relying on averaging techniques to obtain the equations
of balance that describes the velocity and concentration fields of each phase. The computa-
tional cost involved in Eulerian simulations is often lower than in Lagrangian techniques
and the difference increases along with the scale of the problem. This might not always
be the case, since it also depends on the architecture upon which the algorithm is imple-
mented. For example, DEM could be optimized to run on a GPU architecture with a much
higher speed-up than the one obtained in standard CPU architectures [21]. In addition, the
accuracy of the solution by Eulerian techniques should be evaluated for each case of study
due to the absence of a microscopic description at the level of the particle. Moreover, there
are certain granular flow behaviors that, unlike for DEM, could become challenging to
represent with Eulerian techniques (e.g., rigid-body movement of a cluster of grains when
shear stresses are below the yield limit). Among the Eulerian techniques, the Euler-Euler
approach coupled with the kinetic theory of granular flow (KTGF) [22] has been mostly
adopted to simulate fluidization phenomena [4,23–33] but can also be used to predict the
flow behavior in rotating drums [10,34–38]. The model is based on considering both phases
(solids and air) as two interpenetrating continua where the rheology of the granular phase
is based on the KTGF theory. In particular, Santos et al. [10] and Yin et al. [38] studied
different regimes by this method and compared the numerical results against the experi-
mental data, showing a good qualitative agreement. More recently, Rong et al. [35] used
this approach and emphasized the need to take into account the frictional effects [39,40]
for the granular viscosity and for the boundary conditions to mimic the solids behavior
inside the drum at different regimes. The KTGF was originally developed in analogy to
the kinetic theory of gases that describe the dynamics of gas molecules, seeking to model
granular flows in diluted conditions where binary collisions can occur between particles,
then extended to more dense conditions by adding frictional effects. A different approach
is proposed by Jop et al. [41], based on the findings of Da Cruz et al. [42] and the GDR
Midi group [43], by defining a constitutive law for the rheology of the granular media
in a dense liquid-like regime based on the inertial number I (the µ(I)-rheology law), a
model that would be highly adequate to model the regimes observable in a rotating drum
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system. The law is developed considering that a yield criterion should be reached at certain
conditions and that the viscosity depends on the pressure and the rate of deformation. Due
to the recent development of this law, this approach has been used in simple geometries
and scarcely adopted for modeling problems with free surfaces in the literature, with few
exceptions [44,45]. In rotating drum systems, many of the regimes observed have a well-
defined interface between the bed of grains and the air, which makes the µ(I)-rheology law
especially suitable to be included in an Eulerian Volume-Of-Fluid (VOF) method [46,47],
which relies on a single momentum equation (unlike Euler-Euler approaches).

The purpose of this work is to evaluate the performance of DEM and a continuum
model (VOF+µ(I)-rheology) to characterize the granular flow patterns (solids distribu-
tion, velocity, and mixing of materials) inside a rotating drum at various regimes. The
computational results are compared to the observed data of an experiment developed for
this study. The µ(I)-rheology is implemented in the general structure of a VOF solver
of the OpenFOAM(R) platform [48] and the simulations based on DEM are made using
the open-source code LIGGGHTS(R) [49]. A goal of the present study is to determine the
relative accuracy of both models given the computational costs involved and to provide
recommendations about the use of each method in different conditions.

2. Experimental Setup

The laboratory drum consists of a 500-mm diameter and 100-mm width steel drum
with its axis in a horizontal position (see Figure 1). The drum axis is coupled to a mechanical
gear reducer that is driven by an electric motor via pulleys and belts. The speed of the motor
can be modified using a frequency converter. All the parts and the general arrangement is
shown in Figure 2.

The inner surface of the drum is painted with epoxy paint. The front cover of the
drum is made of transparent plexiglass to visualize the movement of the granular material
inside the drum. The cover has a circular hole in the middle through which the particles
can be inserted or removed from the drum (as can be appreciated in the picture in Figure 1).
The diameter of the hole is small enough such that the particles never leave the inner part
of the drum during the experiments. After the drum is filled with particles, the surface
of the bed is manually smoothed out and the height of the bed is measured at rest. The
process of introducing or removing particles and the smoothing of the surface is repeated
until the desired bed height is obtained.

Figure 1. Experimental setup.

The drum is filled with spherical particles of Di-Ammonium Phosphate (DAP) of
4 mm in diameter. A high-speed camera (Casio Exilim EX-FH20) with a resolution of
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9.1 MP with up to 1000 fps is located in front of the bed to capture pictures and videos.
Figure 3 shows pictures of the drum with different heights of filling and different rotational
velocities.

Figure 2. Scheme of the device with all the parts and dimensions of the drum.

ω = 0.25 rpm

H = 0.025 m

ω = 2.5 rpm ω = 25 rpm

H = 0.050 m

H = 0.075 m

H = 0.100 m

H = 0.125 m

Figure 3. Experimental solids distribution at different rotational velocities and initial bed heights.
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3. Computational Approach
3.1. Continuum Model (CM)

The continuum model (CM) is based on the Volume-Of-Fluid (VOF) method [46,47]
implemented in the OpenFOAM(R) platform [48]. The model consists of the following
equations of balance:

∇ · u = 0 (1)

∂

∂t
(ρmu) +∇ · (ρmu⊗ u) = ∇ · σ + ρmg (2)

∂αq

∂t
+∇ · (αqu) +∇ · [αq(1− αq)vqp] = 0. (3)

Here, Equations (1)–(3) represent the continuity equation, the momentum balance,
and the mass conservation of the continuous phase, respectively. u represents the center-
of-volume velocity, ρm is the density of the mixture, g is the gravity acceleration, αq is the
solid volume fraction, and vqp is an ad-hoc relative velocity between phases suitable for
free-surface compression [47]. The stress tensor may be written as:

σ = −pI + ηmγ̇ (4)

γ̇ =
1
2
(∇u +∇uT) (5)

where γ̇ is the rate of deformation, p is the pressure field, and ηm is the mixture viscosity
defined as ηm = αqηq + (1− αq)ηp, where ηp is the dynamic viscosity of the air and ηq is
the viscosity of the granular media.

The current model considers the grains as a continuous media, therefore a rheol-
ogy model must be defined for this phase. In this work, the µ(I)-rheology model is
considered [41,42,50], where the viscosity is defined as:

η =
µ(I)p
|γ̇| . (6)

Here, the µ(I) function is defined as:

µ(I) = µ1 +
(µ2 − µ1)

(I0/I + 1)
(7)

I =
|γ̇|d

(p/ρq)0.5 (8)

where µ1, µ2, and I0 are material parameters of the model, ρq is the density of the solids,
and d is the diameter of the particles.

This rheology was implemented on the general structure of the viscosity models of
OpenFOAM(R) since it is not part of the standard distribution of the code. The velocity,
pressure, and viscosity field are coupled by means of a segregated method of the SIMPLE-
family [51,52]. In this model, a yield criterion should be reached as |γ| tends to zero.
However, in these conditions, η would reach infinity and, following a general flow solver
structure, this cannot be allowed to happen from a practical point of view. To fulfil the
yield criteria, some authors propose to switch to a plastic model to correctly address the
rigid body-like motion of the granular media [53,54]. In this work, the granular media is
always treated as a fluid by considering that Equation (6) stands as long as η is below a
certain threshold value. Whenever this threshold is reached, the viscosity is considered
constant. This value can be defined by the user and it is usually high compared to any
real fluid in order to mimic the rigid-body-like motion of the granular media. Although
this combination of the multiphase flow model (VOF) and rheology model (µ(I) rheology)
is one of the many alternatives that can be adopted under a continuum approach, for
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simplicity, this approach will be referred to as the Continuum Model (CM) in the rest of the
work.

3.2. Discrete Elements Method (DEM)

DEM is a Lagrangian method for modeling individual trajectories of every particle in
a granular system. The equations of motion for a particle i with mass mi and moment of
inertia Ii are given by:

mi
dvi
dt

= ∑
j

F ij + Fg
i

Ii
dωi
dt

= ∑
j

Mij

(9)

where vi and ωi are the translational and rotational velocities of particle i, F ij, and Mij

are the contact force and torque acting on particle i by particle j, or by walls, Fg
i is the

gravitational force. The summation is performed on all particles that are in contact with
the particle i. The contact force F ij is comprised of normal and tangential contact forces
denoted by Fn

ij and Ft
ij, respectively:

F ij = Fn
ij + Ft

ij (10)

with

Fn
ij = (−knδn − γnvrn)nij

Ft
ij = −min{(ktδt + γtvrt), µ|Fn

ij|} tij
(11)

kn and kt are the normal and tangential spring coefficients, δn and δt are the relative normal
and tangential displacements (overlaps), γn and γt are the normal and tangential damping
coefficients, vrn and vrt are the normal and tangential components of the relative velocity
between particles i and j, µ is the sliding friction coefficient, and nij and tij are the unit
normal and tangential vectors.

The expressions for kn, kt, γn, and γt depend on the applied contact model. Here a
non-linear damped Hertzian spring-dashpot model is used [55–57] and the coefficients are
calculated from the material properties as follows:

kn =
4
3

Eeq

√
Reqδn

γn = −β
√

5meqkn

kt = 8 Geq

√
Reqδn

γt = β

√
10
3

meqkt

β =
ln e√

(ln e)2 + π2

Eeq =

(
1− ν2

i
Ei

+
1− ν2

j

Ej

)−1

Geq =

(
1− νi

Gi
+

1− νj

Gj

)−1

Req =

(
1
Ri

+
1
Rj

)−1

meq =

(
1

mi
+

1
mj

)−1

where E is the Young’s modulus, ν is the Poisson ratio, G is the shear modulus, e is the
coefficient of restitution, R is the particle radius, and m is the particle mass. For the contact
of two particles i and j of different materials (urea and DAP), the equivalent properties
(denoted by the subscript eq) are used. Whereas for a collision of a particle i with a wall j
the same relations are applied with Req = Ri and meq = mi.
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The torque acting on contacting particles is comprised of two terms. The rotational
torque by contacts in the tangential direction Mt

ij, and the rolling resistant torque Mr
ij

which is modeled here as a spring torque [58–60]:

Mij = Mt
ij + Mr

ij (12)

with

Mt
ij = R nij × Ft

ij

Mr
ij = −min{krθr, µrR|Fn

ij|} ω̂ij
(13)

where kr is the rolling stiffness which is assumed kr = ktR2 [60]. In addition, θr is relative
rotation between two particles, µr is the rolling friction coefficient, and ω̂ij is the unit vector
of the component of the relative angular velocity of particles.

Among all these parameters, the coefficient of restitution e, the coefficients of friction
µ and µr, and the mass m and radius R of the particles are regarded as given empirically
and can be obtained from measurements or by calibrating simulations with experiments.

3.3. Test Cases

The assessment of the computational approaches and their experimental validations
are based on four different test cases that seek to represent a wide range of regimes. For
each case, a 3D cylindrical domain is considered using the geometry described in Section 2.
Table 1 shows the bed depth, rotational velocity, and the regime observed experimentally,
and Figure 4 shows the four regimes studied on a Bed Behavior Diagram (BBD).

Table 1. Test cases.

Case Bed Depth [m] Rotational Speed [rpm] Observed Regime

A 0.125 0.25 Slumping
B 0.075 25 Transitional (Rolling/Cascading)
C 0.075 2.5 Rolling
D 0.125 25 Cascading

Slipping - Slumping

Rolling

Cascading

Catarating

C
en

tr
if

ug
in

g

Case C
Case B

Case D

Case A

Figure 4. Bed Behavior Diagram for DAP.
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For both computational methods, uniformly distributed spherical particles that have a
4-mm diameter are considered. The particles density for DAP is 1600 Kg/m3 and the static
friction coefficient is µ1 = 0.53. Case B and D require around 3 s to reach a steady state
while Case C needed less than 10 seconds. The regime observed experimentally for Case
A is slumpling, so a steady state is never reached, but a statistically steady state (where
particles bed move back and forth at a fixed time period) is reached after the first 5 s from
the beginning of the experiment.

Table 2 shows the numerical and physical parameters adopted for the CM.

Table 2. Physical properties and numerical parameters used in CM simulations.

Property Value

Effective density (ρm) 920 Kg/m3

Solids density (ρp) 1600 Kg/m3

Maximum viscosity coefficient (µ2) 0.9
Reference inertial number (I0) 0.4
Maximum time step (∆t) 2 × 10−3 s
SIMPLE iterations 3
Time discretization second order implicit
Advection schemes second order linear upwind
Volume fraction iterations 5
Interphase compression factor (cAlpha) 0.25
Relaxation factor for velocity 0.7
Relaxation factor for pressure 0.3
Maximum residuals allowed for each field 1× 10−6

For the CM simulations, an O-grid FVM mesh of 168.000 cells, with 5 cells in the depth,
is adopted (as shown in Figure 5). Finer and coarser grids where tested beforehand and the
current refinement was selected based on preserving a well-balanced relation between the
computational cost involved in the simulations and the accuracy of the solution. It was
observed that the solution fields do not change significantly for finer grids. A rotating wall
boundary condition is imposed for all the surrounding walls of the drum. No turbulence
model is used for the CM simulations and the air is treated as an incompressible fluid with
properties at room thermal conditions.

Figure 5. Grid adopted for the CM simulations.
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DEM simulations were performed using LIGGGHTS which is an open-source software
for modeling granular materials [49]. The stability of DEM simulations can be ensured
by setting the time step equal to 20% of the Raleigh time step sizes (see LIGGGHTS
documentation and also [61]).

Spherical particles (urea and DAP) with the same radii (2 mm) were used in all DEM
simulations. Most of the constants were chosen on a purely empirical basis or were obtained
by the calibration procedure (see below) and are summarized in Table 3.

Table 3. Physical properties and numerical parameters used in DEM simulations (p-p: particle-
particle, p-w: particle-wall).

Property Value

Time step 2.0× 10−5 s
Total number of particles 6.61× 104

Young modulus 1.5× 107 Pa
Poisson ratio (p-p, p-w) 0.25
Coefficient of restitution (p-p, p-w) 0.40
Sliding friction coefficient (p-p) 0.40
Sliding friction coefficient (p-w) 0.60
Rolling friction coefficient (p-p) 0.20
Rolling friction coefficient (p-w) 0.30

The calibration procedure was the following. To determine the values of the co-
efficients of friction (sliding and rolling friction) for one type of material (DAP), two
experiments were chosen: Static and dynamic angles of repose. The angle of repose is
defined as the angle of inclination of the free surface to the horizontal of a conical bulk solid
stack. It strongly depends on material properties such as sliding and rolling friction, but is
not sensitive to the density of particles, Poisson’s ratio, or Young’s modulus [62–64]. Pile
formation experiments in hoppers were performed to measure the static angle of repose,
and the dynamic angle of repose was measured in the rotating drum tests. For the mixture
of DAP and urea, the same parameter values were used except for the density and number
of particles.

Particles were generated in a parallelepipedic region of the domain (400× 47× 100 mm)
located 200 mm from the bottom of the drum. A uniform distribution in size but random in
position was followed, with a rate of 200,000 particles/s, by generating new particles every
5000 timesteps. This is so because particles must leave the domain before new ones can be
generated. As they are generated, particles fall by gravity and settle to the bottom of the
drum by forming a pile. An insert region was used by filling almost the entire width of
the drum (or length of the arch segment) to obtain a bed that covers all the necessary space
without the need for too high a stack.

For the case of only one type of particle (DAP) a procedure of insertion and “smoothing”
was performed. Once all particles were inserted (in a greater number than necessary to
exceed the height of the bed) and they were at rest, particles located above a reference
plane of the domain were eliminated to simulate a planar surface. In this initial condition,
the volumes corresponding to two circular segments of 100 mm (thickness) and 75 mm
and 125 mm (height) were occupied by 32,900 and 68,800 particles, respectively.

For the mixture of particles, the insertion was performed in two stages, one for each
type of particle. Once all the particles of the lower layer were inserted and they were at
rest, particles located above a reference plane of the domain were eliminated to simulate
the planar interface between the two types of particles. Then, the second insertion stage
was performed by generating the second layer with a height greater than the height of
the bed. Once all particles were inserted and were at rest, a new reference plane removed
the particles above this plane to simulate the flat surface layer. For the simulation of
the mixture, particles were inserted forming two layers: One of urea with a high of 75
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mm (31,200 particles of density 1300 kg/m3) and the other of DAP at 50 mm high (34,900
particles of density 1600 kg/m3).

It is important to note that the particle smoothing process was performed to achieve
the same initial condition as the real experiment and was performed for all simulations.
In the real experiments, the drum starts from rest with the particle layers in a horizontal
position and the steady state speed of 25 rpm is reached after 1 complete revolution. In
order to simulate this procedure, constant and staggered speeds were used for each 1/8 of
a drum revolution in the first revolution. Then two additional revolutions were simulated
at 25 rpm.

4. Results

The computational and experimental results are analyzed in three different aspects:
The particles distribution inside the drum, the velocity of the particles, and the mixing
patterns between two types of particles. In this section, these aspects are considered to
evaluate the performance of both computational methods in terms of the accuracy of the
solution and computational cost for the previously proposed cases. For each case, the
solutions are analyzed in a qualitative (for the particles distribution and mixing patterns)
and a quantitative manner (for the velocity field distribution) by comparing the results
against the experimental observations. Each of the results shown below are taken after
a steady state is reached (if they ever reach one), except for the mixing study where the
transient evolution is analyzed.

4.1. Particles Distribution

Figure 6 shows side-by-side the distribution of particles for the four proposed cases in
the experiments and by computational simulations.

In particular, for Case A, DEM is able to predict the slumping regime as in the
experiment, where the free surface of the bed of particles oscillates between two different
angles and does not reach a steady position in time. Conversely, the continuum model
does not capture this transient effect, showing a steady distribution with the plane of the
free surface at an angle within the limits observed experimentally. This can be attributed to
the absence of a yield criterion in the model above in which the pack of grains behave as a
rigid body. Without this physical characteristic, the stick-and-slide effect of the slumping
regime cannot occur.

For Case B, DEM predicts more splashing of particles in the right upper part of the
bed compared to the experiment, while the continuum model does not. The same behavior
is observed in Case C, where isolated particles move following the cylindrical wall of the
drum and leave the dense core of particles before falling for their own weight.

At the left-most part of the particles bed, in each of the CM simulations, an unphysical
“noise” in the solids fraction field might also be observed. This is due to the fact that
particles are modeled as a continuum and the use of a refined grid with cells smaller than
the particles size. In these conditions, it is possible to obtain intermediate volume fractions
(between 0 and 1) at certain places where there should be only particles or air. In any case,
the amount of solids fraction here represents less than 0.1% of the granular bed which does
not affect the general results.

Although in general the results of the CM are in good agreement with the experiments,
the regimes with higher velocities (Case B and D) exhibit a lack of accuracy to predict the
length of the “tail” of the bed surface (bottom-left part region of the bed). This could be
observed in more detail in Figure 7, where the interfaces between the bed of particles and
air are plotted simultaneously for the three methods of observation/prediction. The reason
behind the differences is that the CM is preserving the initial volume while the volume of
mixture in DEM and experiment expands. This is due to the presence of air that percolates
through the core of the bed as the drum is rotating. This effect is emphasized at higher
velocities (Case B and D) and cannot be captured by the CM. For the continuum model, the
bed surface is defined as an isosurface with 0.5 of concentration.
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(a)

Case A

(b) (c)

(a)

Case B

(b) (c)

(a)

Case C

(b) (c)

(a)

Case D

(b) (c)

Figure 6. Particles distribution for the four test cases: (a) Experiment, (b) DEM, and (c) CM.

Overall, the distribution of particles is accurately predicted by the CM and DEM, with
the exception of Case A where the slumping effect cannot be captured by CM. In addition,
for Case D, the bed surface predicted by CM does not match perfectly with the results of
the experiment and DEM.

Regarding the computational costs, the simulations of Case C are taken as a reference.
To achieve a steady distribution of particles for this problem, 12 s of physical time is
required. Both methods of simulation use a set of numerical parameters that optimize
the costs for a similar level of accuracy of the solution. This is achieved in practice by
repeating the simulations, each time modifying certain numerical parameters with the
purpose of increasing the time step as long as the numerical stability is not lost. For DEM,
the simulation required 10.530 s, where a maximum time step of ∆t = 2× 10−5 s was used.
For CM, the simulation required 8.340 s, where a fixed time step of ∆t = 2× 10−3 s was
needed. For these conditions, and given the FVM mesh adopted, CM saves around 20% of
computational costs compared to DEM. While this saving could be considered marginal
given the accuracy requirements for this problem and the overall time consumed (no more
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than a few hours on a personal computer), the scale of the problem should be taken into
account in this analysis. This problem considers a lab-scale configuration with particles of
a few millimetres of diameter, where the use of DEM can still be recommended. However,
when an industrial-scale problem is considered, the use of DEM becomes a subject of
debate and clustering of particles should be considered for the simulation, otherwise the
computational costs could make the simulation prohibitive. In these conditions, the use of
a CM approach becomes a promising alternative since the computational cost involved
does not scale with the dimension of the problem necessarily. Moreover, the relative size
of the particles compared to the size of the domain is almost irrelevant to the overall time
consumption, unlike in DEM.

Case A Case B Case C Case D

Experiment
Continuum model
DEM

Figure 7. Interface between air and the bed of particles for the proposed regimes comparing experi-
ment and simulations.

4.2. Velocity Distribution

The velocity of the particles inside the drum is a key aspect to compare between
simulations and the experiment. For Case A, Figure 8a shows the magnitude of the velocity
predicted with DEM during the sticking period of the slumping regime, where the particles
move with the walls at the corresponding velocity as it were a rigid body (i.e., v = ωr).
Figure 8b shows the distribution of the tangential component of the velocity with DEM
and experimentally. For these conditions, the DEM exhibits a very high level of agreement
in both the instantaneous velocity field and the period of stick and slide observed in the
experiment. The CM results are omitted for this case since the general regime cannot be
captured.
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Figure 8. Velocity field for Case A: (a) Velocity field magnitude with DEM and (b) normalized
tangential component of the velocity as a function of a radial direction at 35º from a vertical line
measured experimentally and through simulation.

Figure 9 shows the simulation predictions of the velocity field magnitude for a tran-
sitional regime (Case B), a rolling regime (Case C), and a cascading regime (Case D),
respectively.

In the rolling regime, both approaches show a quasi-planar bed surface where the
particles are moving downward at a high velocity near the interface. This layer of high
velocity is very thin and the particles rapidly change direction as we move far from the
centre of the drum until reaching the rotating wall velocity. In the transitional and cascading
regimes, the maximum velocity is reached close to the part of the bed surface that is farthest
from the drum cylindrical wall, where the particles move downward in the opposite
direction of the rotating wall. Unlike the rolling regime, here the high-velocity layer is
broader until it reaches zero tangential velocity. Once again, both models show similar
trends.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Velocity field magnitude for (a) Case B with DEM, (b) Case B with CM, (c) Case C with
DEM, (d) Case C with CM, (e) Case D with DEM, and (f ) Case D with CM.

Figure 10 shows the tangential velocity profile on a radial direction at 35º from the
vertical direction for rolling and cascading regimes. The simulation results are plotted along
with the velocity measured experimentally at certain positions. The experimental results
are computed based on the relative position of tracer particles inside the bed analyzing
each frame of a high-quality video filmed at 25 fps. The error bars amplitude are computed
based on the uncertainty of the position measurement of the tracer particles divided by the
time span between frames.

In general, the granular phase velocity is null until the bed surface is reached and
then it rapidly becomes maximum and decreases until it changes direction as we move
far from the centre. Both computational models are in agreement with the experiment
and with each other in the region close to the rotating wall and present more differences
close to the bed surface. However, the general trend is in agreement and there is no one
technique that stands out from the other in terms of accuracy of the solution in comparison
to the experiment. In fact, for the rolling regime, the experiment seems to be close in
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agreement with the DEM results in the backward flowing region, but it is the opposite for
the cascading regime, where the continuum model seems to be closer to the experimental
observation. It is worth mentioning that DEM seems to slightly overestimate the tangential
velocity in comparison to the continuum approach in the backward flowing region.

r

ω

r

ω

r

ω

(a)

(b)

(c)

Figure 10. Tangential velocity as a function of a radial direction at 35º from a vertical line measured
experimentally and through simulation for (a) Case B, (b), Case C, and (c) Case D.

4.3. Mixing Patterns

This section focuses on the capability of both approaches to accurately measure the
mixing of two materials inside the drum rotating at a cascading regime. Figure 11 shows
the distribution of particles inside the drum while being accelerated from 0 to 25 rpm. The
drum is filled with particles with two colors (black and white) initially segregated and each
frame represents half of a cycle (three cycles in total).
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(a)

Experiment DEM CM

(b)

(c)

(d)

(e)

(f)

(g)

Figure 11. Particles distribution over time for two materials initially segregated and accelerated until
reaching a steady regime. (a) At rest, (b) after 0.5 cycle, (c) 1 cycle, (d) 1.5 cycles, (e) 2 cycles, (f ) 2.5
cycles, and (g) 3 cycles.

For the DEM simulation, particles were inserted forming two layers: One of urea at
75 mm high (31,200 particles) and the other of DAP at 50 mm high (34,900 particles). In the
real experiment, the drum starts from rest with the particle layers in a horizontal position
and the steady-state speed of 25 rpm is reached after two cycles.

Both computational approaches are tested and compared against the experimental
observations. In general, both approaches are apt to predict the amount of time needed to
mix the two materials from qualitative observation of the results.
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At a closer analysis, the DEM approach is in very close agreement with the qualitative
patterns observed experimentally. On the other hand, the continuum model is slower
to reach the maximum height of the bed but eventually does once the steady regime is
established. This drawback of the CM model may be attributed to the absence of non-local
effects on the model. Henann et al. [65] have shown that the correct shear layer that takes
place in cylindrical geometries cannot be captured with the standard µ(I)-rheology and non-
local effects must be included in the model to accurately predict the size of the shear bands.
This type of problem is not far from a rotating drum arrangement where, if the gravity is
not considered, the rate at which the shear bands are formed could be different between
the experiment and a local rheology model. Eventually, due to the presence of gravity,
the non-locality aspects of the rheological model becomes non-relevant for predicting
the steady-state flow and particles distribution but might explain the inaccuracies in the
transient evolution.

5. Conclusions

In this work, the performance of discrete and continuum approaches for modeling
the solids motion inside a rotating drum at different regimes has been studied. To achieve
this, a pilot-plant rotating drum experiment filled with DAP spherical particles with a
4-mm diameter, was mounted with a plexiglass cover to observe the flow patterns using
a high-speed camera. The DEM simulations were performed with the open-source code
LIGGGHTS(R), while a VOF solver of the OpenFOAM(R) platform was adopted for the
continuum approach. To account for the granular flow dynamics in this context, an
implementation of the µ(I)-rheology was made on the general structure of the viscosity
models library of the code.

For evaluating the performance of the computational approaches, four different test
cases at different regimes were considered. The accuracy of the results was analyzed in
terms of solids distribution, particles velocities, and mixing patterns. The main findings
may be summarized as follows:

• The solids distribution for each regime was correctly predicted with both techniques,
except for the slumping regime, which could not be captured by the CM approach.
This was attributed to the use of a high-viscosity threshold instead of a yield criterion
in the implementation of the rheology model. In the fastest regimes, DEM predicted
more splashing of particles than the experimental observations;

• The velocity of the particles predicted by the models was mostly in agreement with
the experimental results. Neither of the computational models stood out over the
other in this regard as both tend to detach more from the experimental observations
where the material flow backwards relative to the rotation of the drum;

• The rate of mixing of two different materials in a cascading regime was well predicted
by both models, reaching a fairly similar level of mixing at different instants in time.
While the DEM results were in very good agreement with the experiments, the CM
predicted a slower dragging of the material as the system was accelerated but reaching
similar steady-state profiles of the interface between the bed of particles and the air.
This drawback might be attributed to the lack of non-local effects and a yield criterion
that reign over the inertial regime at slow speeds;

• In the rolling regime, CM saved around 20% of computational time compared to DEM,
both with an optimized set of numerical parameters. This suggests that, when the
dimensions of the problem shifted from pilot-plant to industrial-scale, CM might still
be suitable while the computational costs of DEM might become prohibitive.

In general, both techniques were able to predict the granular flow patterns in most
of the regimes analyzed. The CM model used in this work needs to incorporate more
phenomenological features to predict with the same level of accuracy as DEM for lab and
pilot-plant scales. This indicates that a more comprehensive rheological model is needed
but it is yet to be proven if an Euler-Euler approach (such as the Two-Fluids Model) instead
of VOF could yield more accurate predictions. The results of this study suggest that a
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continuum model based on the µ(I)-rheology (with a pressure-dependent viscosity and a
yield criterion) enhanced with non-local effects, in contrast to DEM, would be an interesting
approach for simulating industrial-scale rotating drums, by meeting both accuracy and
computational cost requirements.
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