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Abstract: The extraction of a road network is critical for city planning and has been widely studied
in previous research using high resolution images, whereas the high cost of high-resolution remote
sensing data and the complexity of its analysis also cause huge challenges for the extraction. The
successful launch of a high resolution (130 m) nighttime remote sensing satellite, Luojia 1-01, provides
great potential in the study of urban issues. This study attempted to extract city roads using a Luojia
1-01 nighttime lighting image. The urban regions were firstly distinguished through a threshold
method. Then, an unsupervised PCNN (pulse coupled neural network) was established to extract
the road networks in urban regions. A series of optimizing methods was proposed to enhance the
image contrast and eliminate the residential regions along the roads. The final extraction results
after optimizing were compared with OSM (OpenStreetMap) data, showing the high precision of the
proposed approach with the accuracy rate reaching 83.2%. We also found the precision of city centers
to be lower than suburban regions due to the influence of intensive human activities. Our study
confirms the potential of Luojia 1-01 data in the extraction of city roads and provides new thought
for more complex and microscopic study of city issues.

Keywords: Luojia 1-01; nighttime light imagery; road extraction; urban regions

1. Introduction

With the rapid development of remote sensing technology, the spatial resolution
of remote sensing images has improved dramatically, along with the increase in remote
sensing data categories, thus providing new thoughts in high-accuracy urban monitoring
and ground-object identification. As a kind of fundamental ground object, an accurate and
expedient road network extraction is critical for various fields in urban applications, such
as navigation, transportation and facility planning [1–3]. Although previous studies have
devoted considerable effort to the extraction of road network information [4–6], complex
urban environments often bring many challenges to the extraction work. Therefore, the
exploration of more practical methods and the introduction of a new data source is needed
in the extraction of the road network.

A great deal of studies have focused on the extraction of road networks through very
high-resolution images [7–10]. Generally, the extraction methods can be distinguished into
the following two categories [11]: automatic and semiautomatic methods. The purpose of
semiautomatic methods is to put a priori knowledge obtained through human observation,
such as road direction and starting point, into a computer system. In fact, the human
visual system is thought to have high discriminability in the extraction of road networks
through remote sensing images. The accuracy of ground-object identification through
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visual observation is very high. The combination of a priori knowledge obtained from
human observation and powerful computation ability from the computer system have
improved the extraction accuracy. The main steps of the semiautomatic methods are as
follows: (1) Artificially choose several initial road seed points in original images and
record the road directions. (2) Put the initial road seed points into a computer system and
formulate the specific growth pattern to distinguish the pixels with a high probability of
being road. (3) Make an optimization of the initial extraction results in aspects such as
shape, topotaxy and other a priori knowledge. Many studies have proposed or improved
the semiautomatic extraction models, such as the snake model [12], dynamic programming
algorithm [2], region growing method [13] and edge tracking method [14].

The limitation of the semiautomatic methods is also obvious: it is over-reliant on
prior knowledge, which means the final extraction accuracy is largely determined by the
quality of the prior knowledge, whereas the key process during the acquisition of prior
knowledge—road networks’ recognition and seed points’ selection—needs a mass of time-
consuming and high-cost artificial work. In addition, the characteristics of road networks
in different places are often different, which means the prior knowledge obtained through
the labor-intensive preparation work can only be used in specific areas. Therefore, some
studies have attempted to establish the automatic extraction models, which do not need
prior knowledge [5,15]. The automatic methods can distinguish road regions and non-
road regions automatically. The extraction process is conducted according to the essential
characteristics and judging criteria of the road network, through which the feed points
are distinguished and then extended to the road sections. The road sections are finally
connected with each other and formed into road networks through a series of optimizing
processes. Although there exist several typical extraction methods, including the parallel
lines method, spectral classification method and mathematical morphology, the accuracy
of these methods is generally low compared with semiautomatic methods. The current
characteristics are still limited for a computer system to extract road networks through
remote sensing images.

A considerable number of studies have realized the automatic methods can be the
future development tendency and then attempt to introduce new methods into the road
extraction studies, including deep learning technology. Methods such as convolutional
neural network(CNN) [16] and self-organizing map neural network (SOMNN) [17] are
introduced to improve the accuracy of the extraction results; however, the computation
complexity has not been decreased due to the redundant information in high-resolution
images. Although high-resolution images can provide high resolution object information in
the extraction process, the following problems still exist: (1) High cost: the high-resolution
images are not free for the public. The extraction of roads in a large area or long-term
monitoring of road network changing requires numerous images, which will increase the
cost substantially. (2) Too much redundant information: road information is just a small
part of the high-resolution images, which means the images also contain a lot of texture
information and spectral information of other ground objects, such as buildings, trees,
water and mountains. The residential information largely weakens the major characteristics
of roads. Therefore, the application of a new data source with low cost and distinguishing
characteristics of road networks is required in the extraction.

Satellite-derived nighttime light data, as one of the new generation remote sensing
data, has been proven existing in high correlation with human activities and has been
widely adopted in researching human activities [18,19], including GDP spatialization [20],
fossil fuel combustion [21], material stock estimation [22], disaster damage assessment [23]
and energy consumption prediction [24]. Satellite-derived nighttime light data are the
electromagnetic wave information of an overnight light source in a near-visible infrared
band through earth surface reflection. Compared with census data, which are collected
by administrative boundaries, nighttime light data are much timelier with lower cost and
flexible spatial scale.
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Hence, this study attempted to prove the capability of the Luojia 1-01 data source in
the extraction of city roads, through the establishment of a hybrid model. The extraction
is based on the following few steps: firstly, the image is enhanced (sharpened) using
Laplace-filtering with an elimination of the diffusion, then urban areas are detected using
the threshold value in the light intensity. Afterwards, the PCNN is established for pattern
recognition. The final step, before road extraction itself, includes optimization methods
such as clean, edge loss filling and close. The results of the road extraction in representative
parts of Wuhan city are compared with Open Street Map data.

2. Data Source and Preprocessing
2.1. NPP-VIIRS Nighttime Light Dataset and Preprocessing

The earliest nighttime light data are the stable Nighttime Light Data on the De-
fense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS). The
DMSP/OLS nighttime light data are free for the public with coarse spatial resolution (15
arc seconds, 2~5 km) and long period (1992–2013) [25]. Several limitations of DMSP/OLS
data also restrict its furthering application: The range of DN (digital number) values in
DMSP/OLS data is small (0–63), which results in an over-saturation in city centers; the
DMSP/OLS data are available just between 1992 and 2003, which also restricts the study of
social economy issues after 2013 [26]; and the DMSP/OLS data are obtained through differ-
ent satellites, which makes the data quality uneven in contiguous years. In October 2011,
the Suomi National Polar-Orbiting Partnership (NPP) satellite with the Visible Infrared
Imaging Radiometer Suite (VIIRS) was launched by the National Oceanic and Atmospheric
Administration (NOAA)/National Geophysical Data Center (NGDC). The NPP-VIIRS
nighttime light data are superior in spatial and radiometric resolution (15 arc seconds,
400~700 m), radiometric detection range and onboard calibration [27–29], compared with
DMSP/OLS. However, the spatial resolution of the NPP-VIIRS nighttime light data is still
not enough to study microcosmic topics; current research using NPP-VIIRS data mainly
focus on the distinguishing of large-scale hot spots [30] and the economic inequality of
a country [31]. On 2 June 2018, the Luojia 1-01 satellite produced by Wuhan University,
China, was launched with the purpose of acquiring high resolution nighttime light data.
The comparisons of Luojia 1-01, DMSP/OLS and NPP-VIIRS data are shown in Table 1,
through which the spatial resolution of Luojia 1-01 can be found to be much higher than
the previous two data sources.

Table 1. The comparisons between Luojia 1-01 satellite and the other two nighttime light satellites
DMSP/OLS and NPP-VIIRS.

Satellite Information DMSP/OLS NPP-VIIRS Luojia 1-01

Institution U.S. Department of Defense NASA/NOAA Wuhan University
Available years 1992~2013 2011~Current 2018,06~Current

Spatial resolution 2~5 km 400~700 m 80~130 m
Revisit Time 12 h 12 h 15 d

Wavelength range 400~1100 nm 500~900 nm 400~800 nm
Swath width 3000 km 3000 km 260 km

The nighttime light data used in this study are the Luojia 1-01 nighttime light data of
Wuhan, China, obtained in July 2018. The data can be accessed from the official website of
Hubei data and application center (http://www.hbeos.org.cn/, accessed on 29 September
2021). Located in the center of China, Wuhan is the capital city of Hubei Province. As one
of the biggest central cities in China, Wuhan is also the national transportation hub and a
famous tourism city in China. The rapid development of Wuhan makes it meaningful to
find more appropriate ways to extract city roads.

In this study, the following preprocessing steps were taken before the analysis of Luojia
1-01: (1) To reduce the influence of background noise and abnormal lights, the maximum
radiance value derived city centers, where most commercial facilities and human activities

http://www.hbeos.org.cn/
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are concentrated, were set as the upper threshold [32,33]. (2) Most of the faintly lit pixels,
which could be urban roads, have very low radiance values as a result of the blooming
effect of nearby lit pixels, and the radiance values were normally larger than water, due
to their reflectivity difference [34]. Thus, the minimum radiance value obtained from the
locations of lakes or rivers was set as the lower threshold to keep all the potential road
pixels and eliminate the influence of pixels with 0 radiance value, which are either non-lit
areas or noises [35]. In this way, the light values smaller than the lower threshold or larger
than the upper threshold were treated as the noises and their values were set as 0. The
position of Wuhan and its nighttime light data after preprocessing are shown in Figure 1.
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Figure 1. Location of Wuhan (a) and its nighttime light data after preprocessing (b).

2.2. City Roads Extracted from OSM

The city roads used in this study to test the extraction accuracy from Luojia 1-01
nighttime light data were derived from OpenStreetMap (www.openstreetmap.org/, ac-
cessed on 29 September 2021), an online map collaboration program that was established
by Steve Coast in July 2004. As an open community formed by millions of cartographers,
OpenStreetMap aims to provide free map data to the public with high accuracy and time-
liness. The data are updated and maintained every day by over 1.5 million map editors
through aerial images and high-precision GPS data. The data we downloaded from the
OSM website included the road networks of Wuhan. The dataset was obtained in January
2018. The city roads extracted from OSM data are shown in Figure 2.

www.openstreetmap.org/
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3. Method

The proposed approach consisted of four parts, which are described in Figure 3. The
three steps were as follows: (1) Image enhancement: Image sharpening was conducted
to increase contrast of original Luojia 1-01 image, thus improving the characteristics of
city roads. (2) Distinguishing of urban regions: Different from high-resolution images,
the light intensity in nighttime light data is highly correlated with human activities and
regions’ development degree. The light intensity in rural areas was too weak to extract the
roads. Therefore, the extraction process could just be conducted in urban regions. (3) Road
extraction: An unsupervised neural network-PCNN was established to extract the road
networks in urban regions. The aim of the PCNN was to identify the objects edges in an
image. (4) Shape Optimizing: A series of optimizing operations were proposed to eliminate
the residential regions along the roads and extrude the shape or extracted roads. The final
extraction results after shape optimizing were then compared with OSM (OpenStreetMap)
data.

3.1. Image Enhancement

Due to the similarity of the DN values between facilities and roads, the edges of roads
were difficult to extract from the nearby environment. In image processing, some image
enhancement methods were often used to enhance the difference between pixels, thus
emphasizing the characteristics of interest areas. As a representative image enhancing
technology, image sharpening was often used in the image enhancement tasks, the principle
of which is to compensate the contours of an image and enhance the edge gradation
jump parts, thus enlarging the main characteristics of images. Compared with traditional
histogram equalization, which often loses the image details and increases noise, image
sharpening can effectively distinguish the small edges of objects and avoid noises. In image
sharpening, the following three kinds of first order-based derivative operators [36,37]:
Roberts, Prewitt and Sobel, are often used. However, it is difficult for the first order-based
derivative operator to distinguish the steep edges and slow change edges. In this way, a
second order-based derivative operator, Laplacian, which is more sensitive to distinguish
the isolated points, was used in this study. For a discrete point f (m, n) in an image, the
first order partial derivative is defined as [38]:

∂ f (m,n)
∂x = f (m, n)− f (m− 1, n)

∂ f (m,n)
∂y = f (m, n)− f (m, n− 1)

 (1)
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Additionally, the second order partial derivative is calculated as follows:
∂2 f (m,n)

∂x2 = | f (m + 1, n)− f (m, n)|+ | f (m− 1, n)− f (m, n)|
∂2 f (m,n)

∂y2 = | f (m, n + 1)− f (m, n)|+ | f (m, n− 1)− f (m, n)|

 (2)

In this way, the final expression of the Laplacian operator is defined as follows:

∇2 f (x, y) = ∂2 f
∂x2 +

∂2 f
∂y2 =

| f (m + 1, n) + f (m− 1, n) + f (m, n− 1) + f (m, n + 1)− 4× f (m, n)|
(3)

To eliminate the influence caused by diffusion, images operated by Laplacian operator
can be enhanced using the following method:

g(m, n) = f (m, n)− k×∇2 f (x, y) (4)

where k denotes the correlation coefficient of diffusion, which is often set as 1. Additionally,
the formula is as follows [38]:

g(m, n) = 5× f (m, n)− f (m + 1, n)− f (m− 1, n)− f (m, n− 1)− f (m, n + 1) (5)
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3.2. Distinguishing of Urban Areas

Due to the differences of light intensity of roads between urban area and rural areas, it
was essential to distinguish the urban boundary of Wuhan. Although the administrative



Appl. Sci. 2021, 11, 10113 7 of 17

boundary could be obtained from the census data, some rural areas still existed within the
administrative boundary.

Different from Landsat data with several bands, Luojia 1-01 data only contained
a single band of DN values. Therefore, we used a thresholding method to achieve the
extraction, the principle of which was to find an optimal threshold intensity that could
keep the major characteristics of urban-area pixels and eliminate rural-area pixels at the
same time.

The accuracy of this method highly relies on the choosing of a threshold intensity
value. According to previous studies, the methods for finding out optimal threshold
value can be distinguished into the following four categories [28,39–41]: (1) Experience
threshold method. In this kind of method, threshold value is determined according to
expert knowledge, which is obtained through years of experience or a great deal of previous
experiments. Though the advantage of this method is obvious—quick and simple, the
over-reliance on historical knowledge also imitates its further use in a new field where the
historical knowledge is lacking. (2) Statistical analysis method. In this kind of method, a
number of candidate intensity values are chosen to extract the urban area of target city and
the area of each extraction will be recorded. The optimal is the one that makes the area of
extraction most close to the statistical data in the yearbook. However, the area information
is mainly accurately measured in metropolitan cities, which limits the performing of this
method in county-level and town-level cities. (3) Image comparison method. In this
kind of method, external data sources, such as Landsat satellite images, Google Earth
Images and MODIS images, through which the land use information can be derived, are
adopted to match with nighttime light data and to help distinguish the boundary of an
urban area. However, the method requires a mass of artificial participation to delineate
the urban boundary, which can be high in cost and time consuming when performing
analysis on multiple cities. (4) Mutation detection method. In this kind of method, the
urban boundary is extracted according to the structure characteristics of an urban area. In
a rural area, the perimeter of pixels, the intensity of which is larger than a certain value,
will decrease with the increase in the value. However, the perimeter of urban-area pixels
will show a fluctuating tendency with the increase in intensity value, causing the influence
of polycentric features of an urban area. Additionally, the threshold value can be found
through the fluctuating tendency, which can be described as follows [42]:

f (Nn) = in × Nn (6)

∃Nm,
d f (Nm−1)

dN
× d f (Nm+1)

dN
≥ 0, (Nm = 0, 1, 2, . . . , Nmax) (7)

Nu = min(∀Nm) (8)

where Nm represents the light intensity, ranging from 0 to the maximum value Nmax, and
makes the function f (N) reach its minimal value. f (N) represents the function of urban
perimeter and each light intensity value; in represents the number of pixels, the DN value
of which is Nn. There may exist several Nm values because of the complex city structure.
To avoid the data loss, the minimum Nm was considered as the threshold value Nu.

3.3. Extraction of City Roads through a PCNN

A PCNN is a kind of unsupervised artificial neural network, which does not have a
training process. Different from other neural networks, the output of a PCNN is a series
of pulse signals, each associated to one pixel or to a cluster of pixels. When applied to
image processing, the output of a PCNN is a binary image, which describes the mutation
information in images. Therefore, a PCNN has been widely used in the edge detection of
objects in remote sensing images with its simple architecture and high accuracy [43,44].

A PCNN model consists of the following three parts: the input tree, the linking
modulation and the pulse generator [45]. The structure of a PCNN is given in Figure 4.
The input tree contains the following two channels: the linking channel and the feeding
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channel. The linking channel can only receive simulation from a neighborhood neural. The
feeding channel can receive simulation both from the neighborhood neural and external
input data. The two channels then transfer their input L and F to the linking modulation,
and form a state U, which is then transformed to the pulse generator. The pulse generator
contains a dynamic threshold value T, which is compared with U. The output of pulse
generator Y is generated by the comparison through U and the initial T value. Additionally,
a pulse signal will be produced through the numerical value of Y. Y will also reversely
adjust the threshold value T, and then influence the next comparison process.
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The iterative process is described as an iteration by the following equations:

Fij[n] = e∂F × Fij[n− 1] + Sij + VF ∑
kl

MijklYkl [n− 1] (9)

Lij[n] = e∂L × Lij[n− 1] + VL ∑
kl

WijklYkl [n− 1] (10)

where Fij represents the value of the feeding channel, and Lij represents the value of the
linking channel. The decay constants of the two channels were ∂F and ∂L. The feeding
channel take consideration of the external dataset, represented by Sij. Both the feeding
channel and the linking channel take consideration of the influence of the outputs from
neighborhood neurons in the previous iteration (n − 1). M and W represent the weights of
the neighborhood neuron in the feeding channel and the linking channel, respectively. The
constants VF and VL are normalizing constants. The two values from the feeding channel
and the linking channel were then transformed to the linking modulation, and formed a
new state U.

Uij = Fij[n]×
(
1 + δLij[n]

)
(11)

where δ is used to indicate the incidence of influence from neighborhood neurons. The
stale is then transformed to the pulse generator and decides the output of PCNN.

Yij[n] =
{

1, i f Uij[n] > θij[n]
0, others

}
(12)

where θij[n] represents the dynamic threshold value, which is decided by the output of
PCNN in the last iteration, as follows:

θij[n] = e−∂θ × θij[n− 1] + Vθ ×Yij[n] (13)
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It needs to be declared that the threshold value of the n iteration is θij[n− 1]; therefore,
the threshold value in the next iteration θij[n] will be decided by the output of n iteration
(Yij[n]).

3.4. Shape Optimization through Morphological Operations

The original extraction results from PCNN may have contained not only the road
regions, but also some non-road regions, such as dark vehicles, shadows and trees, which
have an intensity value less than that of an urban road. To eliminate influence from
these pixels, thus improving the extraction accuracy, the following three morphological
operations were conducted to the extraction results: clean, edge loss filling and close [46].

(1) Clean: The purpose of this operation was to eliminate the isolated pixels in extraction
results. The shape of the road was often similar to a long strip. Additionally, there
existed a high connectivity between roads. Thus, we designed a 3 × 3 filter to
distinguish pixels surrounded by 0 values and these pixels were marked as ‘noises’,
the intensity of which were then set as 0 to avoid being detected as road pixels.

(2) Edge loss filling: Due to the existence of vehicles, trees, shadows, ground noises or
data loss, some road pixels, especially those located in the road edge, can be some tiny
cavities with 0 light intensity, which can cause edge loss in final extraction results and
influence the integrality and continuity or road networks. Therefore, we adopted this
operation to fill up the tiny cavities in binary images. The main steps were as follows:
searching for a potential road path, which can be realized by connecting furcate road
pixels with terminal road pixels; calculating the average road width and comparing
average road width with the width of each road unit to find out units influenced by
cavities and need edge loss filling; performing the filling process in edge loss pixels
to keep the width of road unit consistent with the average road width. The process
can be described as Figure 5, where a short part of road is observed as narrower than
the main part, caused by background noises or shadows. We recorded the coordinate
of the central point P1(x1, y1) of this small part and the central points P2(x2, y2)
and P3(x3, y3) of two nearby road units. We adopted the following formulation to
calculate the theoretical location of central point P′1

(
x′1, y′1

)
without influences from

tiny cavities [13]:
x′1 = (ax2 + x1/a− y2 + y1)/(a + 1/a) (14)

y′1 = y1 + a(x− x2) (15)

where a is a constant. If x2 = x3, then x′1 = x2, y′1 = y1; if y2 = y3, then x′1 = x1,
y′1 = y2. Finally, the road pavements were then filled according to its new central
point P′1 and average width.
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operation to connect these separated parts into a continuous road. The operation
included two steps—dilation and erosion. The purpose of dilation is to enlarge the
edge of roads to make adjacent roads connected. This step can be achieved through
a structural element s(r, t), which will set the pixel value of location (x, y) as the
maximum value of their product in image f (x, y) [47]:

f (x, y)� s(r, t) = max f (x + r, y + t)× s(r, t) (16)

After the dilation step, most road edges will be wider than the original edges and
some unrelated roads may also be connected. The purpose of erosion is to shrink the edge
of roads to separate roads that were not supposed to connect with each other. This step can
be achieved through the structural element s(r, t), which will set the pixel value of location
(x, y) as the minimum value of their product in image f (x, y):

f (x, y)� s(r, t) = min f (x + r, y + t)× s(r, t) (17)

Therefore, the whole operation can be described by the following:

f (x, y) ∗ s(r, t) = ( f (x, y)� s(r, t))� s(r, t) (18)

Through this operation, some tiny parts of roads, which were separated from main
stem because of background noises, can become connected.

3.5. The Accuracy Assessment of Extraction Results

To evaluate the accuracy of the model, we introduced the following two indexes that
were widely used in the performance evaluation of machine learning methods: precision
and recall [48]. Precision describes how many positive samples were distinguished exactly
in the predicted positive samples. Recall describes how many positive samples were
distinguished exactly in the total positive samples. For the better explain of precision and
recall, a confusion matrix of the classification results is shown in Table 2.

Table 2. Confusion matrix of classification results.

True Situation Predicted Positive Predicted Negative

Positive TP FN
Negative FP TN

Where TP represents the true positive samples, FP represents the false positive samples,
FN represents the false negative samples and TN represents the true negative samples.
Generally, the two indexes are both meaningful in the description of model equality;
however, they are also contradictory: higher recall only means a larger sample data set,
thus leading to lower precision. Therefore, an F1-score, which is the harmonic mean
value of precision and recall, is often used to describe the quality of the following binary
classification models:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

1
F1

=
1
2
×
(

1
P
+

1
R

)
(21)

F1 =
2× P× R

P + R
(22)

where P represents the precision and R represents the recall. The higher F1-score indicated
the higher classification quality of the model.
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4. Results
4.1. Results of Urban Areas

To distinguish the boundary between urban areas and rural areas, the perimeter of
the region extracted by each DN value was calculated and shown in Figure 6. The curve
describes the changing trend of the perimeter with the increase in the DN values in Wuhan.
A decreasing trend is shown with DN values ranging between 151 to 190, reaching the
extreme point (190,0.925). The perimeter then shows an increasing trend from 190~238
and turns to keep decreasing when the DN values are more than 238. According to the
extraction model, the extreme point (190,0.925) is thought to be the threshold value of the
boundary between urban areas and rural areas. The extraction results when adopting 190
as the threshold are shown in Figure 7.
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4.2. Results of Image Enhancement

After the extraction of urban areas of Wuhan, image sharpening was conducted to the
original image. To decrease the noises produced by the sharpening process, a median filter
was used. Additionally, the results were compared with the original image and are shown
in Figure 8.
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sharpening and median filtering. (d): the case regions A and B.

Figure 8a shows the original extraction result of the urban areas and the DN values
range between 190~2669. Additionally, the image after the sharpening process is shown in
Figure 8b, where the DN values range between 1 and 8456. We can find the range of the DN
values has been extended comparing Figure 8a,b: The minimum value has decreased from
191 to 1, and the maximum value has increased from 2669 to 8456. Therefore, the image
contrast of Figure 8b is higher than the original image. The road profile in Figure 8b is also
clearer than that in Figure 8a. However, some abnormal points also emerged in Figure 8b,
the DN values of them were much larger than the nearby pixels. Through the middle filter,
we can find the number of these points has been decreased, as shown in Figure 8c. Two
regions, A and B, were chosen to show the details in Figure 8d. A represents the regions
with high light intensity. B represents the regions with low light intensity.

The histograms of the original image and the sharpened image (also after middle
filtering processing) were shown in Figure 9. Through the comparison, we can find that the
range has been obviously expanded. The DN values of the histogram of the original image
were distributed mainly between 200 and 350, and the DN values showed a decreasing
trend with the increasing DN values. The DN values of the histogram of the sharpened
image were distributed in a larger range (50 to 800) with an obvious fluctuation.

4.3. Extraction Results of City Road

The image after enhancement was then fed into the PCNN to extract the road networks
in Wuhan. Four parts, namely A, B, C and D, were chosen as the case areas to show the
extraction process. The locations of the four case areas are displayed in Figure 10.
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Case A is located in the north of Wuhan, where a wide range of forests exists. The
coverage of the forests may shield the road lighting, thus leading to the discontinuity
in the original image. Through the extraction process, the road network regions were
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extracted with some residential areas, which were then eliminated through the optimizing
process. Additionally, the rough outline was finally formed through the thin process. The
comparison with the OSM network showed that the shape and direction of the main streets
have been correctly extracted, except three short roads were missed.

Case B is also located in the north of Wuhan. Additionally, the region mainly includes
several riverside roads and a bridge called ‘Yangtze River Bridge’. We can find the riverside
road and the bridge has been extracted correctly. However, some short roads near the
riverside road were just extracted partly caused by the mixed-up pixels in the connection
of the riverside road and bridge, which also caused the small break between them.

Case C is located in the middle, the city center, of Wuhan, covering several blocks,
containing many high DN value pixels and two bridges. Due to the similarity of the DN
values between the residential areas and road networks in city center, the identification of
the road network is much more difficult than regions in suburban areas. Therefore, many
crush plaques of residential areas were also extracted after the PCNN process. Through
shape optimizing, most crush plaques have been effectively eliminated. The final extraction
results were close to the OSM data, although a few short roads in the top left were not
distinguished clearly.

Case D is located in the south of Wuhan, covering the connection regions of two
lakes. Through PCNN, the main road network regions have been extracted. A small break
emerged in the extraction results, which was caused by the large difference of DN values
along the roads.

Table 3 shows the accuracy assessment of the extraction results. The F1 index of the
four regions were 0.910, 0.852, 0.816 and 0.852, respectively. Additionally, the F1 index
of the whole of Wuhan is 0.832. Overall, caused by the instability of the DN values and
shield, a few short roads in some suburban regions may have been ignored or extracted
out of shape, which caused the recall value of Wuhan to be lower than the precision value.
Additionally, the precision of the extraction results in city centers with dense residential
areas was lower than other regions, such as Case C, the F1 (0.849) of which is lower than
the other three case regions. However, all the main roads have been correctly extracted
through Luojia 1-01 nighttime lighting data. The extraction results were close to the OSM
data.

Table 3. The accuracy assessment of extraction results.

Region Precision Recall F1

Case A 0.913 0.907 0.910
Case B 0.826 0.880 0.852
Case C 0.785 0.849 0.816
Case D 0.826 0.880 0.852

Whole City 0.847 0.818 0.832

5. Discussion

Benefiting from the development of remote sensing technology, nighttime light data,
as one of the new typical remote sensing data, has been widely used in the study of social
economy. Additionally, the main nighttime light data sources used in previous studies
were DMSP-OLS and NPP-VIIRS, with low resolutions of 1 km and 700 m, respectively.
Therefore, they can only be used in the study of some macro problems. Although several
high-resolution nighttime data, such as JL1-3B [49], have been introduced in previous
studies, these data were not available to the public freely. Therefore, the study and ap-
plication of high-resolution nighttime data is really lacking. Luojia 1-01, with its high
resolution (130 m) and availability to the public, will potentially be used in the study of
more microcosmic city issues, such as urban traffic evaluation. This study investigated the
potentiality of using Luojia 1-01 data in the study of urban traffic. During the COVID-19
pandemic, major roads were found to be less used through NPP-VIIRS nighttime light
data [50]. The Luojia-01 data set and the approach we proposed in this study may make
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it possible to further investigate the dynamic road occupation and traveling preferences
during the pandemic.

However, some challenges still exist in the extraction of road networks, which need to
be further addressed. The first challenge is to distinguish the light intensity of residential
buildings from urban roads. Although most buildings can be removed through their
different shape with roads, some buildings nearby the roads may still affect the extraction
results. The second challenge is the data lacking in some pixels, due to data noises, trees
and the shielding of high buildings, which will cause some tiny cavities in the extraction
results. Although morphologic optimizing methods have been introduced to fill these
cavities, the accurate identification of these cavities is still difficult. The adoption of external
data sources can be a potential solution, which needs further attempts. The third challenge
is that the available Luojia 1-01 images are still limited. Therefore, it is still difficult to
obtain the average light intensity data source with the more stable light intensity of urban
roads, which will fix the flux reduction problem in public and private lighting at night.

With the increase in the data size of the Luojia 1-01 satellite over time, the extraction
precision of ground objects such as road networks and residential buildings will be highly
improved. In future application, the combination of Luojia 1-01 data with high resolution
images or Landsat images will also optimize the current road extraction project and reduce
expenses significantly.

6. Conclusions

Nighttime light imagery, with its high correlation with human activities, has been
widely used in the study of social economy and environmental issues [51–53]. The Luojia
1-01 data source, with a much higher resolution compared with DMSP and VIIRS data
sources, will provide new thoughts on the study of urban planning. This paper investigated
the potential of the Luojia 1-01 data source in the extraction of city roads. The main work
can be concluded as follows:

(1) We proved the possibility of extracting city roads through a nighttime lighting data
source, which provides more thoughts in the study of the extraction of ground objects.

(2) An unsupervised neural network-PCNN was established in the extraction of road
networks. To improve the extraction precision, the urban regions were extracted
through a threshold method. We also adopted a series of optimizing methods to
enhance the image contrast and eliminate the residential regions along the roads. The
method we proposed takes consideration of the negative effects and do not need
enormous training data, which gave it potential in the road extraction project.

(3) The results showed that the extraction quality of city centers was lower than suburban
areas, which indicated that there existed a great similarity of light intensity in city
centers.

In general, the extraction quality of Wuhan reached 83.2%, which proved the pos-
sibility of using Luojia-01 data to extract city roads. In this study, we just adopted one
single image in the experiment, which may limit the improvement of extraction accuracy.
In future work, we will adopt a more stable Luojia-01 data set through the observation of
a long time, and use more external datasets, such as high-resolution images and Landsat
data, to obtain more precise results.
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