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Abstract: Malware family classification is grouping malware samples that have the same or similar
characteristics into the same family. It plays a crucial role in understanding notable malicious patterns
and recovering from malware infections. Although many machine learning approaches have been
devised for this problem, there are still several open questions including, “Which features, classifiers,
and evaluation metrics are better for malware familial classification”? In this paper, we propose
a machine learning approach to Android malware family classification using built-in and custom
permissions. Each Android app must declare proper permissions to access restricted resources or to
perform restricted actions. Permission declaration is an efficient and obfuscation-resilient feature
for malware analysis. We developed a malware family classification technique using permissions
and conducted extensive experiments with several classifiers on a well-known dataset, DREBIN.
We then evaluated the classifiers in terms of four metrics: macrolevel F1-score, accuracy, balanced
accuracy (BAC), and the Matthews correlation coefficient (MCC). BAC and the MCC are known
to be appropriate for evaluating imbalanced data classification. Our experimental results showed
that: (i) custom permissions had a positive impact on classification performance; (ii) even when
the same classifier and the same feature information were used, there was a difference up to 3.67%
between accuracy and BAC; (iii) LightGBM and AdaBoost performed better than other classifiers
we considered.

Keywords: Android malware; malware family classification; machine learning; built-in permission;
custom permission; balanced accuracy; Matthews correlation coefficient

1. Introduction

Android platforms are a major target of malware attacks. The statistics of Statista [1]
showed that the total number of Android malware instances was 26.61 million on March
2018 and that 482,579 new Android malware samples were captured per month as of March
2020. G Data security experts announced that more than 1.3 million new malware samples
were discovered every month in 2020 [2]. They also reported that, on average, new versions
of malware were released every 1.3 s. Android malware analysts are overwhelmed by the
large number of Android malware instances. To analyze malware instances efficiently and
effectively, we need to classify them into malware families. Since the malware samples of a
family have similar functionalities and share characteristics, malware family classification is
crucial for understanding malware threat patterns and designing effective countermeasures
against malware [3–5]. For example, if a malware sample is correctly categorized into
a known family, we can easily identify any variants of the family, properly prescribe its
solution, and instantly recover from the malware infection.

To tackle malware classification problems, many machine-learning-based techniques
have been proposed. In machine-learning-based Android malware family classification,
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an important issue is which features are selected and extracted [3,6–10]. There are static
and dynamic features [3,6]. Static features can be obtained without executing malware.
Static features include package name, app size, app component, permissions, application
programming interface (API) calls, intent information, operation code, control flow graph,
call graph, strings, etc. Dynamic features can be obtained by executing malware. Dynamic
features include system calls, network traffic, resource consumption, SMS events, phone
events, system logs, I/O operations, etc. Among those various features, permission infor-
mation is the most widely used and effective feature [3,6–9]. The reasons are as follows.
First, permission requests can be statically and easily extracted from the Androidmanifest.
xml in an Android application package (APK) file [6,11–13]. Permission-based malware
analysis needs to examine only the manifest file in each APK and does not need to
parse/decompile/decrypt the Dalvik executable (DEX) file. Second, permission request
are essential for Android malware to accomplish their malicious purposes. Android system
controls each access to its resources with the associated permissions. When malware imple-
ments malicious behaviors by invoking some API calls, they require specific permissions
related to the API calls. Third, the permission information is hard to deform by code
obfuscation, which is often used by malware to evade analysis [10].

Another crucial issue is which metrics are useful for evaluating malware classifica-
tion techniques. Malware family classification problems suffer from imbalanced datasets
where the distribution of malware samples is unequal [14–16]. Different malware families
normally contain different numbers of malware samples. In imbalanced datasets, a classi-
fier tends to concentrate on correctly classifying large families while ignoring small ones.
For a skewed class distribution, choosing proper metrics for imbalanced classification is
challenging. The well-known metrics such as accuracy, F1-score, and receiver operating
characteristic (ROC) may not be inappropriate especially when we are interested in minor-
ity sets [17,18]. Some studies [17–22] addressed this issue and proposed alternative metrics
such as the area under the precision–recall curve (AUPRC), balanced accuracy (BAC), and
the Matthews correlation coefficient (MCC).

This article presents a machine-learning-based Android malware family classifica-
tion. Using only permission-based features, our method is lightweight and fast, but gives
performance comparable to other methods that exploit multiple features. We carried out
extensive experiments with several classifiers and a well-known dataset, DREBIN [23], to
determine which classifier achieves better performance. The classifiers considered in this
paper were random forest (RF) [24], artificial neural network (ANN) [25], deep neural net-
work (DNN) [26], extremely randomized decision trees (Extra Trees) [27], adaptive boosting
(AdaBoost) [28], XGBoost [29], and LightGBM [30]. We evaluated our Android malware
classification method using the following metrics: accuracy (ACC) [18], F1-score [21],
BAC [20], and the MCC [22]. BAC and the MCC are the proper metrics to evaluate imbal-
anced data classification. However, there is very little literature that has adopted BAC and
the MCC in evaluating Android malware classification. We extracted both built-in permis-
sions and custom permissions that are effective in malware family classification, analyzed
the effect of the permissions in classifying DREBIN malware samples, and evaluated the
classification models in terms of the four metrics.

The contributions of our work are as follows:

• We extracted built-in and custom permissions from malicious apps statically and used
them as the feature for classifiers. The permissions were simply obtained from the
Manifest.xml in each APK. Therefore, there was no need to reverse engineer, decrypt,
or execute the Dalvik executable (DEX) file. In addition, our approach is resilient to
code obfuscation and requires little domain knowledge;

• We applied seven machine learning classifiers for Android malware familial classifi-
cation and compared their performance. The classifiers were ANN, DNN, random
forest, Extra Trees, AdaBoost, XGBoost, and LightGBM;

• We evaluated the classification models with the following four metrics: ACC, macrolevel
F1-score, BAC, and the MCC. The latter two metrics, BAC and the MCC, are suitable
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metrics for the malware familial classification model whose datasets are imbalanced.
When experimenting with 64 permissions (56 built-in + 8 custom permissions), the
LightGBM classifier achieved 0.9173 (F1-score), 0.9512 (ACC), 0.9198 (BAC), and 0.9453
(MCC) on average;

• We inspected which Android permissions were primarily requested by a particular
family or used only by a specific family. This can identify the permissions with which
we can efficiently cluster malware instances into their families. For example, the three
permissions ACCESS_SURFACE_FLINGER, BACKUP, and BIND_APPWIDGET are
requested only by the Plankton malware family, and the two permissions BROAD-
CAST_PACKAGE_REMOVED and WRITE_CALENDAR are requested only by the
Adrd family;

• We considered all ninety-six permissions including nine custom ones and, then, con-
sidered eighty=seven built-in permissions alone, excluding custom ones. We then
analyzed the impact of custom permissions on malware family classification.

The rest of this paper is organized as follows. Section 2 explains the Android security
model based on permissions and describes the evaluation metrics for machine learning
classifiers. Section 3 presents the schematic view of our approach and introduces the seven
classifiers. In Sections 4 and 5, we present the setting for our experiments and evaluate the
experimental results, respectively. Section 6 reviews related work, and Section 7 gives a
discussion. Finally, Section 8 gives the conclusions.

2. Background
2.1. Android Permission Model

The APK file is an archive that contains all the contents of an Android app. An APK
includes three files and four folders, as shown in Figure 1. In this article, our discus-
sion is confined to two main files: classes.dex and AndroidManifest.xml. Classes.dex
contains binary codes called the Dalvik bytecode that implements the app’s functional-
ity. The manifest file, AndroidManifest.xml, contains a set of information about the app:
package name, version number, entry points, permissions, etc.

Android employs a permission-based security mechanism to restrict apps from ac-
cessing the resources of systems [6,11,31]. If an app tries to access hardware or software
resources, it has to request the corresponding permissions through the AndroidManifest
.xml file. The permissions are associated with an app’s behaviors and capabilities with API
calls. The permission mechanism is a key in the security model of Android. For instance,
if an Android app needs to access the security-critical or privacy-sensitive methods of the
Android application framework, the app must hold the corresponding permissions [32].

Figure 1. Structure of APK files.

There are two kinds of Android permissions: built-in and custom [13,33–36]. A built-in
permission, also called a system permission or native permission, is a predefined one intro-
duced by the native Android Operating System (OS), and thus is available by default
on Android. An Android device contains many built-in permissions for its functionality
such as monitoring incoming MMS message, accessing the camera device, connecting to
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paired Bluetooth devices, broadcasting a notification, enabling/disabling location update
notifications, etc. The constant values of the built-in permissions begin with the prefix
android.permission. Examples of built-in permissions are android.permission.BROA
DCAST_PACKAGE_REMOVED, android.permission.CONTROL_LOCATION_UPDATES, etc. The
number of built-in permissions is continuously increasing. Android API Level 15 supports
166 permissions, and API Level 28 supports 325 permissions [13]. As more permissions are
available, there are more ways to exploit them.

A custom permission is defined by the developers of third-party apps to regulate access
to their app-specific components by other apps [33–35]. Examples of custom permissions in-
clude com.android.launcher.permission.UNINSTALL_SHORTCUT and com.google.
android.googleapps.permission.GOOGLE_AUTH [12]. The permission com.android.lau
ncher.permission.UNINSTALL_SHORTCUT allows the app to delete home screen shortcuts
without user involvement, but is no longer supported. The permission com.google.androi
d.googleapps.permission.GOOGLE_AUTH allows apps to sign into Android services through
the account saved on the device. All custom permissions defined by app developers are
under the dangerous protection level [13].

Since the number of built-in permissions is increasing and app developers can com-
monly define more custom permissions in Android, malware has plenty of chances to gain
control over sensitive data and devices. Thus, in analyzing recent Android malware sam-
ples, it is very important to consider newly introduced permissions. In addition, built-in
and custom permissions are poorly separated, and they are treated the same by Android.
This might allow malicious apps to obtain unauthorized access to system resources through
custom permissions. The combination of multiple permissions may reflect some harmful
behaviors. Requesting specific permissions is essential for Android malware to achieve
its goals. Therefore, the permissions requested by apps can play a crucial role in malware
analysis [10]. As a result, Android permissions are very popular features and the most
used in many Android malware research works [6]. Moreover, they cannot be easily obfus-
cated by malware writers because scrambling them can destroy the Android programming
model [37].

Another issue is the runtime permissions. Users can grant or revoke permissions at
any time by changing the system settings since Android 6.0 (API Level 23). To access
restricted data or perform restricted actions, Android apps need to check and request
appropriate permissions at runtime. Users can approve or deny the runtime permission
requests. This security enhancement makes permission handling nontrivial, resulting
in various issues. Refs. [38,39] addressed these issues. Fortunately, the runtime permis-
sion issue affects the performance of our method very little because every Android app
should declare at install time all permission requests (including runtime permissions) in
AndroidManifest.xml, from which our method extracts permission request information.
In some cases, an app may declare more permission requests in AndroidManifest.xml
than it actually requests at runtime in the code [37,40]. This can be serious if a malicious
app intentionally has dummy permissions to deceive a classifier into misclassifying it.
However, malware rarely requests dummy permissions since apps requesting too many
install-time permissions are likely to be denied by users.

2.2. Evaluation Metrics for Imbalanced Data Classification

Literature analysis suggests that most malware family classification studies work with
imbalanced datasets. Their main performance evaluation metrics are precision, recall, ACC,
F1-score, ROC, etc. [16–18,41]. In binary classification, ACC and F1-score calculated on
confusion matrices have been the most popular metrics. A confusion matrix is a useful
analytical tool to obtain the detail about what happened in the evaluation test and is the
basis for calculating other performance measurements [42]. However, the two metrics
can show excessively optimistic inflated results, particularly on imbalanced datasets [43].
It is also known that the ROC is inappropriate especially when we are interested in mi-
nority sets [17,18]. The interpretability of ROC plots from the viewpoint of imbalanced
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datasets can be misleading with respect to conclusions about the credibility of classification
performance, due to an intuitional, but incorrect interpretation of specificity [18].

Balanced accuracy (BAC) has some notional merits over the conventional accuracy
while maintaining its simplicity. Accuracy treats each data point equally. Therefore, it has
the effect of assigning different weights for each class. In the case of an imbalanced dataset,
the overall performance can be distorted by classes with a large number of data points. Raff
and Nicholas [15] used balanced accuracy as the metric. They said that BAC reweights the
class with respect to the number of data points in each class and emphasizes the importance
of learning low-frequency classes. The definition of BAC is given in Section 4.3.

The Matthews correlation coefficient (MCC) is said to explain the confusion matrix
better than ACC, F1-score, and BAC [43]. The MCC is a balanced measure that yields a
high value if the prediction achieves good results in all categories (true positives, false
negatives, true negatives, and false positives). The definition of the MCC is shown in
Section 4.3. If the MCC is one, this indicates that a classifier always forecasts correctly. A
value of −1 indicates that a classifier always forecasts incorrectly. If the MCC is zero, it has
the equivalent predictive ability as random prediction.

3. Malware Family Classification

Figure 2 illustrates the overview of our malware family classification. Our scheme
extracts the permission requests from APK files using the Android asset packaging tool
(AAPT) [8,44]. The extracted permissions are preprocessed and learned. Assuming that
different malware families request different permissions, we trained seven machine learn-
ing classifiers with the permissions. We implemented our scheme using the Scikit-Learn
library [45]. Using five-fold cross-validation, the classification performance was evaluated
in terms of six metrics.

Figure 2. The schematic view of our malware family classification.

The seven machine learning classifiers we used in our experiments were ANN [25],
DNN [26], random forest [24], Extra Trees [27], AdaBoost [28], XGBoost [29], and Light-
GBM [30]. All input variables used in our work have a binary value. Decision trees and
their ensemble models generally work well with binary input data because input variables
need not be binarized at all. Furthermore, decision trees and their ensemble models are
also very effective at learning from unbalanced data, and in particular, ensemble models
are popular due to their strong predictive performance [46–48]. This is the reason why we
selected ensemble tree models.

ANN [25] is a machine learning algorithm created by mimicking the structure of a
human neural network. ANN is composed of an input layer that receives multiple input
data, an output layer in charge of outputting data, and a hidden layer that exists between
them. A model is constructed by determining the number of nodes in the hidden layer.
An activation function is used to find the optimal weight and bias. If there are many hidden
layers, the accuracy of prediction increases, but the amount of computation increases
exponentially. The disadvantages of ANN are: it is difficult to find the optimal parameter
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values in the learning stage; there is a high possibility of overfitting; the learning time is
relatively long.

DNN [26] improves the prediction by increasing the hidden layers in the model. DNN
refers to a neural network structure with two or more hidden layers and is mainly used for
iterative learning with many data. An error backpropagation technique has been devised
and is widely used. CNN, RNN, LSTM, and GRU are representative algorithms.

The general idea of an ensemble algorithm is to combine several weak learners into a
stronger one. A weak learner is a learning algorithm that only forecasts somewhat better
than randomly.

Random forest [24] is an ensemble algorithm that learns using several decision trees.
Random forest assigns input data sampled with replacement to a number of decision trees
for training, collects the decision results of a target app, and determines the family with
the most votes. As the tree grows, splitting is determined by considering only a subset
of all characteristics at each node. The algorithm is simple and fast and does not cause
overfitting. In general, it shows better performance than when using one good classifier.

Extremely randomized trees (Extra Trees) [27] randomly determines the threshold for
each feature to split into subsets, while random forest searches for an optimal threshold.
The learning time is significantly shorter than the random forest algorithm because finding
the optimal threshold for each feature at all nodes is the most time-consuming task. As
random forests, individual decision trees show some bias error, but overall, the bias errors
and variation errors are reduced.

Adaptive boosting (AdaBoost) [28] is a general-purpose boosting algorithm. AdaBoost
assigns equal weight to all instances when the first classifier learns. It adjusts the weight
of instances for the next classifier according to the errors of the previous classifier: an
increased weight for misclassified instances and a decreased weight for correctly classified
ones. This modification makes the next classifier focus on the misclassified instance at the
previous stage. AdaBoost repeats this recalculation until a desired number of classifiers
are added. When all classifiers make a decision, AdaBoost makes a final decision by
weighted voting.

EXtreme gradient boosting (XGBoost) [29] is an efficient implementation of the gra-
dient boosting framework. XGBoost is also known as the normalized version of GBM,
and normalization can prevent overfitting. The algorithm allows parallel processing on
many CPU cores. The user can perform cross-validation at each iteration of the boost-
ing process.

Light gradient boosting (LightGBM) [30] is a very efficient gradient boosting decision
tree algorithm. It is similar to XGBoost and differs in how it builds a tree. LightGBM can
reduce the learning time and memory usage by replacing continuous values with discrete
bins. This algorithm can reduce the cost of calculating the gain for each partition. This
algorithm supports not only GPU learning, but also parallel learning. LightGBM processes
large-scale data more accurately.

4. Experiment Setup

We constructed a database of permission information extracted from malware of the
DREBIN project [23]. To build a model for multiclass classification, a series of preprocessing
was performed on this extracted data. Then, we trained the above-mentioned machine
learning algorithms to identify the malware family.

4.1. Dataset

The DREBIN dataset contains 5560 malware samples from 179 different families.
We dropped 61 samples that had no manifest file or structural errors; then, we used the
remaining 5499 samples for the experiment. We ignored permissions that were not used in
any malware samples. Then, we used the remaining 96 permissions (87 built-in permissions
+ 9 custom ones) as the features. The nine custom permissions are as follows:
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com.android.alarm.permission.SET_ALARM,
com.android.browser.permission.READ_HISTORY_BOOKMARKS,
com.android.browser.permission.WRITE_HISTORY_BOOKMARKS,
com.android.launcher.permission.INSTALL_SHORTCUT,
com.android.launcher.permission.UNINSTALL_SHORTCUT,
com.android.vending.BILLING,
com.android.vending.CHECK_LICENSE,
com.google.android.c2dm.permission.RECEIVE,
com.google.android.googleapps.permission.GOOGLE_AUTH.

Since the malware of each family share codes, they also request similar permissions.
Malware tends to belong to only one family, and some families have few samples to learn
through machine learning. We sorted the families in descending order of the number of
samples. We experimented with 4615 malware of the top 20 families. The family name,
the number of samples, and permissions are shown in Table 1.

Table 1. The number of samples and permissions of the top 20 families.

Family Rank # of Apps
# of Permissions

Built-In Custom

Fakeinstaller 1 920 42 1
DroidKungFu 2 660 59 5
Plankton 3 621 64 6
Opfake 4 601 35 2
GinMaster 5 336 43 5
BaseBRIDGE 6 327 36 1
Iconosys 7 152 21 0
Kmin 8 145 24 2
FakeDoc 9 132 36 4
Adrd 10 91 50 5
Geinimi 11 89 29 5
DroidDream 12 81 50 2
MobileTx 13 69 8 0
ExplitLinuxLotoor 14 66 48 4
Glodream 14 66 29 6
FakeRun 16 61 17 4
Gappusin 17 58 31 1
Sendpay 17 58 14 0
Imlog 19 43 8 0
SMSreg 20 39 25 5

4615 669 58

We evaluated the algorithms using 5-fold cross-validation. We split the dataset into 5
folds. To proportionally distribute the samples of each family on 5 folds, we divided each
family into 5 subsets and associated each subset with a fold.

4.2. Parameter Tuning

The parameters of the machine learning algorithms are shown in Table 2. The em-
ployed activation function of ANN and DNN was ReLU; the output function was Softmax; the
optimization function was Adam.
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Table 2. Parameters for machine learning algorithms.

ANN DNN Random Forest Extra Trees Ada Boost XGBoost Light GBM

Hidden layers 0 10 N estimators 100 90 90 100 100
Epochs 100 100 Depth 100
Batch size 128 128 Max depth 90 40

4.3. Performance Metrics

A confusion matrix shows how many instances in each actual class are classified into
each (predicted) class. An element mij of a confusion matrix M is the number of instances
in actual class i that is predicted as class j. We can represent the confusion matrix as follows:

MK×K = [mij] (1 ≤ i ≤ K, 1 ≤ j ≤ K), (1)

where K is the total number of classes. With respect to class k, an instance is said to be
positive if its predicted class is k and negative otherwise. Each instance belongs to one of
the following categories with respect to class k:

• True positive: The actual class is k, and the predicted class is also k. The number of
true positive instances is TPk = mkk;

• False positive: The actual class is not k, but the predicted class is k. The number of

false positive instances is FPk =
(

∑K
i=1 mik

)
− mkk;

• False negative: The actual class is k, but the predicted class is not k. The number of

false negative instances is FNk =
(

∑K
j=1 mkj

)
− mkk;

• True negative: The actual class is not k, and the predicted class is also not k. The num-

ber of true negative instances is TNk =
(

∑K
i=1 ∑K

j=1 mij

)
− (TPk + FPk + FNk).

We can calculate the precision and recall of class k using Equation (2). Then, accuracy
(ACC) is defined as the sum of true positives divided by the total number of instances. We
also calculate balanced accuracy (BAC) using Equation (4) [20,21,49].

Precisionk =
TPk

TPk + FPk
, Recallk =

TPk
TPk + FNk

. (2)

Accuracy =
∑K

k=1 TPk

∑K
i=1 ∑K

j=1 mij
. (3)

BAC =
1
K

K

∑
k=1

TPk
TPk + FNk

. (4)

Micro- and macro-averages are two ways of interpreting confusion matrices in multi-
class classification. The micro-average represents the performance of a model by focusing
on each sample. On the other hand, the macro-average shows the model’s performance
by focusing on each class. The macro-average is therefore more suitable for data with an
imbalanced class distribution. The macro-averages of precision, recall, and F1-score are
calculated as follows:

Precisionavg =
1
K

K

∑
k=1

Precisionk, Recallavg =
1
K

K

∑
k=1

Recallk, (5)

F1-score =
2 × Precisionavg × Recallavg

Precisionavg + Recallavg
. (6)
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We used the following equation to calculate the MCC [21,22,43]:

MCC =
c × s − ∑K

k pk × tk√
(s2 − ∑K

k p2
k)× (s2 − ∑K

k t2
k)

, (7)

where:

• tk = ∑K
i mik: the number of samples belonging to class k;

• pk = ∑K
j mkj: the number of samples predicted as class k;

• c = ∑K
k mkk: the total number of samples correctly predicted;

• s = ∑K
i ∑K

j mij: the total number of samples.

5. Evaluation
5.1. Feature Sets

We used the AAPT to extract the permissions requested by malicious apps belonging
to the top 20 malware families listed in Table 1. As mentioned in Section 4.1, the number
of distinct permissions requested by at least one malicious app is 96. They consist of 87
built-in permissions and 9 custom ones.

We took advantage of the feature importance score of the LightGBM classifier, which
represents how many times the feature is used to split the data while constructing trees.
We calculated the feature importance score of the 96 permissions and normalized it to the
sum of the importance scores of all features. Figure 3 shows the feature importance of the
top 10 among the 96 permissions. Permissions related to the network, SMS, or external
storage were highly ranked. This implies that such permissions play an important role
in malware family classification. On the other hand, there were some permissions whose
feature importance was 0. They were 31 built-in permissions and 1 custom permission.
These permissions hardly contributed to the malware family classification. Notice that,
however, they might be needed by malware to conduct malicious behavior.

Figure 3. Feature importance of the top 10 permissions.

5.2. Effect of Classifiers and Custom Permissions

We trained several machine learning classifiers and measured their metrics, as sug-
gested in Section 4.3. The experiments were performed using the four feature sets (per-
mission sets) listed as below. The features sets were formed by excluding 0-importance
permissions and/or custom permissions from the 96 permissions. These experiments
were planned to find out which permission set was most effective and which classifier
performed best.

• S96: 96 permissions;
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• S87: 87 permissions (excluding custom permissions);
• S64: 64 permissions (excluding 0-importance permissions);
• S56: 56 permissions (excluding custom permissions and 0-importance ones).

We conducted balanced 5-fold cross-validation in our experiments. As explained in
Section 4, we split each malware family into 5 subsets and distributed them to the folds
evenly. Therefore, the ratio of a malware family in any fold was nearly equal to the ratio of
the malware family in the whole dataset.

Figures 4–7 show the performance of the classifiers with permission sets S96, S87,
S64, and S56, respectively (see Appendix A, Tables A1–A4 for the measured values). On
the whole, boosting algorithms (AdaBoost, XGBoost, and LightGBM) performed better
than other algorithms. AdaBoost achieved the highest precision, F1-score, ACC, and MCC
for S96. LightGBM achieved the highest recall, F1-score, ACC, MCC, and BAC for S87.
In many cases, XGBoost lied between AdaBoost and LightGBM. On the other hand, BAC is
a metric suitable for imbalanced datasets as explained in Section 4.3. In all cases, i.e., for
all classifiers and permission sets, BAC was lower than ACC. This implies that there were
small families that included many misclassified instances. We look into the family-level
performance in Section 5.3.

Table 3 summarizes the experiment results. It shows the most effective classifiers and
their measured metrics for each permission set. AdaBoost achieved the highest precision,
F1-score, ACC, and MCC, and LightGBM achieved the highest recall and BAC over all
permission sets. LightGBM outperformed AdaBoost for permission sets S87, S64, and S56.
For permission set S96, however, AdaBoost outperformed LightGBM. The achieved highest
MCC was 0.9484 by AdaBoost, and the highest BAC was 0.9198 by LightGBM.

Figure 4. Performance of classifiers with permission set S96.

Figure 5. Performance of classifiers with permission set S87.
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Figure 6. Performance of classifiers with permission set S64.

Figure 7. Performance of classifiers with permission set S56.

Table 3. Most effective classifiers and measured values. The highest value for each metric is
emphasized as bold-face type.

S96 S87 S64 S56

Precision 0.9326 0.9190 0.9351 0.9198
(AdaBoost) (AdaBoost) (AdaBoost) (AdaBoost)

Recall 0.9192 0.9066 0.9198 0.9056
(LightGBM) (LightGBM) (LightGBM) (LightGBM)

F1-score 0.9212 0.9033 0.9173 0.9033
(AdaBoost) (LightGBM) (LightGBM) (LightGBM)

ACC 0.9541 0.9421 0.9512 0.9424
(AdaBoost) (LightGBM) (LightGBM) (LightGBM)

MCC 0.9484 0.9351 0.9453 0.9354
(AdaBoost) (LightGBM) (LightGBM) (LightGBM)

BAC 0.9192 0.9066 0.9198 0.9056
(LightGBM) (LightGBM) (LightGBM) (LightGBM)

Note that the highest values were achieved with S96 and S64, which were the per-
mission sets containing custom permissions. To check whether custom permissions con-
tributed to Android malware family classification, we wanted to statistically compare
the MCC and BAC when only built-in permissions were used and when both built-in
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permissions and custom permissions were used. Thus, the null hypotheses are given as
H0 : MCC(built_in) = MCC(all) and H0 : BAC(built_in) = BAC(all), where all includes
both built-in and custom permissions. For the two-sided t-test, we conducted 5-fold cross-
validation 30 times for LightGBM and then obtained 30 MCCs and BACs. The means of
30 MCCs were 0.9337700 and 0.9474933 for built-in and all permission sets, respectively.
The relevant p-value was 5.931 × 10−39, which is much less than 0.0001. Thus, MCC(all)
was significantly bigger than MCC(built_in). The means of 30 BACs were 0.9090167 and
0.9229400 for built-in and all permission sets, respectively. The relevant p-value was
4.518 × 10−20, which is much less than 0.0001. Thus, BAC(all) was significantly bigger
than BAC(built_in). Therefore, we noticed that using custom permissions together with
built-in permissions was more effective than using only built-in permissions, and then,
custom permissions contributed to the Android malware family classification. We also per-
formed the normality test by using the scipy.stats.shapiro() function for the Shapiro–Wilk
test, which is known to be a reliable test for normality, on 30 MCCs and BACs of LightGBM.
The result of the normality test showed that the data followed a normal distribution.

Figure 8 shows the performance of LightGBM for each permission set. The measured
metrics for S96 and S64 (permission sets containing custom permissions) were higher than
S87 and S56 (permission sets not containing custom permissions), respectively. This was
the same for the other classifiers. Including custom permissions improved the classification
performance. On the other hand, the effect of 0-importance permissions was not consistent.
Excluding 0-importance permissions slightly improved the classification performance
in the majority of cases. However, in some cases, excluding 0-importance permissions
degraded the classification performance.

Figure 8. Performance of LightGBM for each permission set.

5.3. Family-Level Performance

This section analyzes the class-level (family-level) performance of our malware family
classification. We examined the classification results of LightGBM with S64, which scored
the highest BAC. Table A5 is a confusion matrix of LightGBM with S64. It is one of the test
results of the 5-fold cross-validation. The family-level precision and recall calculated using
this matrix are shown in Figure 9.

As presented in Section 4.3, overall accuracy (ACC) is the ratio of true positive in-
stances to all instances. If large families are classified well, there will be many true positive
instances. Overall accuracy can be high even if small families are classified very poorly.
Figure 9 shows that most large families, such as DroidKungFu, FakeInstaller, Opfake, and
Plankton (see Table 1), were classified well. Their measured family-level recall was higher
than 0.96. Thus, the overall accuracy was very high, although some small families, such
as ExploitLinuxLotoor and SMSreg, were classified poorly. The ACC of the confusion
matrix (Table A5) was 0.9523. The poor classification of small families degraded the overall
accuracy a little.
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On the other hand, since BAC is the average of family-level recalls, the poor classifi-
cation of small families had more effect on BAC than ACC. As we can see from Figure 9,
the ExploitLinuxLotoor and SMSreg families had the lowest family-level recalls. Their
measured recall was lower than 0.63. The BAC of the confusion matrix was 0.9289, which
is lower than ACC. For malware family classification, we needed to measure both ACC
and BAC. Furthermore, we also needed to identify poorly classified families and develop
methods that can improve both ACC and BAC.

In Figure 9, the GinMaster family had a low recall. Since GinMaster is a relatively
large family, many instances of GinMaster were misclassified, as shown in Table A5. This
misclassification degraded not only the recall of GinMaster, but also the precision of other
families. If we reduce the misclassified instances, both BAC and ACC can be improved.

Figure 9. Family-level performance of LightGBM for permission set S64.

6. Related Work

This section describes the existing approaches to permission-based Android mal-
ware family classification using machine learning techniques. Alswaina and Elleithy [8]
implemented a reverse engineering framework for malware family classification, which
selected the permissions declared in malicious apps as static features. They introduced
two approaches: the first one used the binary representation of the extracted permissions,
and the second one used the features’ importance based on the weighted value of each
permission. Then, they conducted experiments with six machine learning classifiers using
the dataset provided by [9]. The classifiers were k-nearest neighbor (k-NN), neural network
(NN), random forest (RF), decision tree (DT), and support vector machine (SVM).

Some studies used other features, as well as permissions for Android malware family
classification. Xie et al. [50] first extracted 149 static features, which consisted of 93 built-in
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permissions, 41 hardware components, and 15 suspicious API calls. Then, the 20 key
features were selected from the 149 features by eliminating less important features with the
frequency-based algorithm. They classified malware samples into ten families using SVM.
The malware samples were collected from Anzhi market in China.

Türker and Can [51] extracted API calls and permissions as static features. They
selected 958 API calls and 42 permissions as important features using a feature ranking
method. They used logistic regression (LR), DT, SVM, k-NN, RF, AdaBoost, major voting
(MV), and multilayer perceptron (MLP).

Arp et al. [23] extracted various feature sets from AndroidManifest.xml and disas-
sembled the bytecodes. The feature sets from AndroidManifest.xml include requested
permissions, filtered intents, hardware components, and app components. The feature sets
from disassembled bytecodes include used permissions, network addresses, and restricted
and suspicious API calls. The used permissions refer to the permissions that are requested,
as well as actually used during app execution. For the 20 largest malware families, they
analyzed the performance to detect each of the families separately using linear SVMs.

Suarez-Tangil et al. [10] developed DroidSieve, a malware classification system that
considered static and obfuscation resilient features. DroidSieve relied on invoked compo-
nents, permissions, code structure, API calls, obfuscation artifacts, native components, and
other obfuscation-invariant features.

Sedano et al. [52] employed the static features such as intents, API calls, permissions,
network addresses, hardware components, etc. They proposed an evolutionary algorithm
such as a genetic algorithm to select relevant features for characterizing malware families.
They conducted experiments with the DREBIN dataset. The experiment results showed
that the external information such as network addresses was more relevant than the
characteristics of an app itself for identifying a malware family.

Qiu et al. [5] proposed a multilabel classification model that can annotate the malicious
capabilities of suspicious malware samples. The model extracted permissions, API calls,
and network addresses from malicious apps as the features. They performed experiments
with the DREBIN and AMD datasets by applying the linear SVM, DT, and deep neural
network (DNN) classifiers.

Bai et al. [16] constructed two kinds of feature sets: 250 manual features and 16,873
documentary features. Both feature sets consisted of attributes of intercomponent commu-
nication (ICC), permissions, and API calls. By using the features and applying k-NN, RF,
DT, SVM, and basic MLP classifiers to the three different datasets, they investigated the
influence of features, classifiers, and datasets. Their findings were that: (i) MLP slightly
outperformed the four other classifiers by about 1–3% on the F1-score; (ii) API calls were
more relevant features than permissions; (iii) the MLP-based transferability across different
datasets was explored.

Chakraborty et al. [53] proposed EC2, which combines malware classification and
clustering. They employed RF, SVM, naive Bayes (NB), LR, k-NN, and DT for supervised
classification and MeanShift, K-means, affinity, and DBSCAN for unsupervised clustering.
They used 190 static features including permissions and 2048 dynamic features including
cryptographic usage, network usage, and file I/O. They conducted experiments on the
DREBIN and Koodous dataset.

Atzeni et al. [54] introduced a semisupervised scalable framework with the goal
of identifying similar apps and generating malware family signatures. The framework
mined massive Android apps to automatically cluster malicious apps into families, while
reducing the false positive rate. The framework extracted many features through static and
dynamic analysis. Static features were obtained from the manifest file (permissions, filters,
components) and the bytecode analysis. Dynamic features represented the app interaction
with the operating system at the file system and networking module.

Table 4 shows the comparison of the studies on classifying or clustering Android
malware families using permission information. Among the studies, Atzeni et al. [54]
presented a framework that clusters apps into families and identifies them using formal
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rules. To the best of our knowledge, our study is the first to adopt custom permissions and
the MCC for Android malware classification. Moreover, we achieved high performance
only using permissions and validated the effectiveness of custom permissions by applying
the p-value approach to hypothesis testing.

Table 4. Comparison of the studies on Android malware family classification/clustering using permissions.

Study Features Classifiers Metrics Dataset

A3CM [5]
Requested permissions, SVM, DT, DNN Precision, recall, F1-score DREBIN, AMD/
used permissions, Hamming loss, accuracy 4 capability types
API calls, network address

Atzeni et al. [54]
Permissions, components, Clustering algorithms Adjusted Rand index, 1.5 million apps
dynamic app interaction, homogeneity, completeness,
etc. V-measure

Alswaina et al. [8] Requested permissions SVM, DT(ID3), RF, Accuracy StormDroid [9]/
NN, k-NN, bagging 28 families

EC2 [53]
Permissions, dynamic SVM, RF, DT, Precision, recall, DREBIN, Koodous/
features (network, system k-NN, LR, NB F1-score, AUC at macrolevel and 44 families
information, etc.) microlevels

DREBIN [23]

Requested permissions, SVM Accuracy, DREBIN/
used permissions, detection rate 20 families
API calls, network address,
HW components, etc.

Bai et al. [16] Permissions, API calls, SVM, DT, RF, Precision, recall, Genome, DREBIN, AMD/
ICC attributes k-NN, MLP F1-score, accuracy 32, 131, 71 families

DroidSieve [10]
Permissions, API calls, Extra Trees Accuracy, F1-score DREBIN / 108 families,
code structure, detection rate PRAGuard/not specified
invoked components

Xie et al. [50] Built-in permissions, SVM Accuracy 11,643 apps from Anzhi/
API calls, HW components 10 families

AndMFC [51]
Requested permissions, SVM, DT, LR, k-NN, Macrolevel precision, AMD, DREBIN, UpDroid/
API calls RF, AdaBoost, MLP, recall, and F1-score, 71, 132, 20 families

Majority voting accuracy

Sedano et al. [52]
Permissions, API calls, Genetic algorithm Not specified DREBIN/
HW components, intents, for feature selection 179 families
network address, etc.

Our study
Requested permissions ANN, DNN, RF, Precision, recall, and F1-score DREBIN/
(built-in permissions + Extra Trees, AdaBoost, at macrolevel, accuracy 20 families
custom permissions) XGBoost, LightGBM balanced accuracy, MCC

To classify Android malware samples into their corresponding families, some existing
studies utilized other features than permissions. Garcia et al. [37] leveraged obfuscation-resilient
features such as API usage, reflection-related information, and native code features. They
compared their method with the other existing methods and demonstrated that their method
was resilient to obfuscation. They used accuracy for evaluating the proposed classification.

Fan et al. [4] constructed sensitive API-call-based frequent subgraphs that repre-
sented malicious behavior common to malware samples belonging to a family. They also
developed a system called FalDroid to efficiently classify large-scale malware samples.
The system offered useful knowledge for detecting and investigating Android malware.
They evaluated the system in terms of precision, recall, F1-score, ROC, and accuracy.

Raff and Nicholas [15] proposed Stochastic Hashed Weighted Lempel–Ziv (SHWeL),
which is an extension of the Lempel–Ziv Jaccard Distance (LZJD). Using the SHWeL
vectors, the authors could make efficient algorithms for training and inference. The SHWeL
approach was helpful to solve the class imbalance problem. It worked well with the LR
classifier and improved balanced accuracy compared to the LZJD and SMOTE.

Kim et al. [55] extracted several features though static and dynamic analysis. They
used the permissions, file name, and activity name as the static features and the API call
sequence as the dynamic features. They represented the features using a social network
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graph and calculated the similarity of malware samples using the weighted sum of feature
similarities. Malware samples were clustered by the optimal weights based on social
network analysis. They used accuracy as the evaluation metric.

Gao et al. [56] explored an approach for Android malware detection and familial clas-
sification using a graph neural network and developed a prototype system called GDroid.
The approach mapped both apps and Android APIs into a heterogeneous graph, which
was fed into the graph convolutional network model, and utilized a node classification
problem for malware classification. GDroid achieved an average accuracy of almost 97% in
the malware familial classification on the datasets AMGP, DB, and AMD. They used the
precision, recall, and F-measure for the evaluation metrics.

Nisa et al. [57] proposed a feature fusion method that used distinctive pretrained
models (AlexNet and Inception-V3) for feature extraction. The method converted binary
files of malware to grayscale images and built a multimodal representation of malicious
code that could be used to classify the grayscale images. The features extracted from
malware images were classified by some variants of SVM, KNN, decision tree, etc. They
also performed data augmentation on malware images. Their method was evaluated on a
Malimg malware image dataset, achieving an accuracy of 99.3%. They employed the recall,
accuracy, AUC, and error rate for the evaluation metrics

Suareze-Tangil et al. [10] proposed an Android malware classification approach, called
DroidSieve. DroidSieve targets obfuscated malware and uses features missed by existing
techniques. The approach uses features of native components, artifacts introduced by
obfuscation, and invariants under obfuscation. The samples were from the DREBIN,
MalGenome McAfee, Marvin, and PRAGuard (obfuscated) sets. They detected malware
and identified families of them using Extra Trees with ranked features. The approach
showed up to 99.82% accuracy for detection and 99.26% for classification.

Cai et al [58] proposed a dynamic app classification approach, called DroidCat. Droid-
Cat first characterizes benign and malware samples and extracts features based on method
calls and intercomponent communication (ICC) intents. These features represent the struc-
ture of app executions and are robust against reflection, resource obfuscation, system-call
obfuscation, and malware evolution. The features include the distributions of method calls
among user code, third-party libraries, and the SDK, as well as the percentage of ICCs that
is implicit and external. They collected samples from AndroZoo, Google Play, VirsuShare,
and MalGenome and used the random forest algorithm. DroidCat achieved a 97% F1-score
for the detection and categorization of malware.

7. Discussion

In Android, while much research has utilized only permissions as the feature for
malware detection, malware family classification studies that utilized only permissions
as the feature are very few. Since our approach utilizes only the requested permissions
contained in the AndroidManifest.xml of apps, it can be simply extended to identify a new
family that was previously unknown. Android permissions are very significant features
for machine learning models because they are obfuscation resilient [6,10,37]. In addition,
the requested permissions are more easily extracted than the used permissions [59] and
can be effective indicators to detect Android malware [7].

By analyzing the relationship between Android malware families and permissions,
we found that certain permissions were requested by only one malware family. Table 5
shows the permissions requested by only one specific family. The malware samples with
the permissions listed in the table can be simply classified into their corresponding family.
However, permissions may have some limitations. According to [37], permissions are
very granular. In this paper, to tackle the granularity issue of permissions, we introduced
custom permissions, as well as built-in permissions. Another issue is that malicious apps can
perform malicious behavior without any permission [40]. Actually, our investigation has
shown that 19 of the 4615 malware samples did not request any permission. Twelve of the
nineteen samples belonged to the Geinimi family. In our experiments, all nineteen samples
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without any permission were classified into Geinimi, that is the seven samples without
any permission were misclassified. To address this issue, we plan to consider the other
features in AndroidManifest.xml such as intents, components, etc.

Table 5. Permissions requested only by a specific family.

Family Name Permission List

Adrd android.permission.WRITE_CALENDAR
android.permission.BROADCAST_PACKAGE_REMOVED

DroidKunFu android.permission.BROADCAST_WAP_PUSH
android.permission.CALL_PRIVILEGED

ExploitLinuxLotoor android.permission.REORDER_TASKS

FakeInstall android.permission.ACCOUNT_MANAGER
android.permission.BRICK
android.permission.BROADCAST_SMS
android.permission.CLEAR_APP_USER_DATA
android.permission.READ_CALENDAR

Geinimi com.google.android.googleapps.permission.GOOGLE_AUTH

Opfake android.permission.GLOBAL_SEARCH
android.permission.UPDATE_DEVICE_STATS
com.android.alarm.permission.SET_ALARM

Plankton android.permission.ACCESS_SURFACE_FLINGER
android.permission.BACKUP
android.permission.BIND_APPWIDGET
android.permission.CHANGE_WIFI_MULTICAST_STATE

The next issue is the sustainability. Owing to the evolution of the Android framework
and malware, the performance of machine-learning-based classification might be degraded.
As the Android framework evolves, Android APIs and permissions are newly introduced
or removed. Machine-learning-based classifiers trained using old features, such as old
APIs and old permissions, may not correctly classify new malware without frequent
retraining. Many researchers have addressed this issue [60–65]. In a recent research
work [64], the authors defined sustainability metrics and compared state-of-the-art Android
malware detectors. The authors also proposed a sensitive access distribution (SAD) profile
and developed a SAD-based malware detection system, DroidSpan. The experiments using
datasets over 8 y showed that DroidSpan outperforms other detectors in sustainability.
The sustainability of our malware family classification can be affected by the evolution
of Android permissions, the evolution of malware exploiting new permissions, and the
emergence of new families. We plan to assess the sustainability of our classification in
future work.

The samples in the DREBIN dataset were collected from August 2010 to October 2012
with API Levels 9 through 19. According to the findings in [13], the DREBIN dataset has
apps from the time when built-in permissions were common and custom permissions were
seldom used. Therefore, the custom permissions may not have a big impact on classifying
Android malware families of the DREBIN dataset. In the near future, we will construct an
Android malware family classification technique using more recent data and evaluate the
effect of custom permissions. Furthermore, we will update the relevant permissions list for
malware family classification by selecting significant built-in and custom permissions from
the latest Android versions and newer malicious apps.

We utilized only the existence of requested permissions and did not consider the fre-
quency of occurrence of individual requested permissions. As future work, we plan to
consider the frequency of the real occurrences of individual permissions after extracting
them from disassembled code.

Several existing research works on malware family classification utilized not only
permissions, but also other features such as API calls [5,10,16,23,37,50–52], hardware com-
ponents [23,50,52], intents [23,37,52,54], network addresses [5,23,52], etc. According to the
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results of [16], API calls can be a more effective feature than permissions for Android
malware family classification. However, it is hard to statically extract API calls if code
packing and method hiding [66], encryption, or reflection [67] techniques are applied to
malware samples.

As the source of the features to classify Android malware families, AndroidManifest
.xml has three advantages [53]: (i) the features extracted from the code of a DEX file may
bring in excessively detailed information, whereas Manifest has plentiful information
about an app and its structure; (ii) the features extracted from the code may produce mean-
ingless information due to code encryption or reflection, whereas Manifest is described in
plaintext and includes many details about permissions, components, and interfaces; (iii)
the Manifest file has significant information to identify malware families. According to
those advantages, the classification performance would be improved if the features such as
components and intents were extracted together from the Manifest file and utilized.

For the metrics to evaluate a classification model, most of the existing studies for
Android malware family classification adopted accuracy [4,5,8,10,16,23,37,50,51,54,55] of
the F1-score [4,5,10,16,51,53]. Only one previous study [15] used balanced accuracy for the
evaluation metric. In this paper, we used the precision, recall, F1-score at the macrolevel,
accuracy, balanced accuracy, and MCC for the metrics. The MCC is a good metric that
evaluates classification tasks on imbalanced datasets. To the best of our knowledge, we
are the first to adopt MCC for evaluating the performance of Android malware family
classification. Our approach achieved a high MCC (up to 0.9484 in the case of S96 and
AdaBoost) by using only the requested permissions as static features.

8. Conclusions

In this article, we proposed a new approach to classify Android malware families
using only the requested permissions that consist of built-in and custom permissions.
Those permission were directly extracted from AndroidManifest.xml of each malicious
app. Some of them have the value of zero for the feature importance and did not play an
important role in malware family classification. We constructed four kinds of permission
sets as static features by including or excluding the custom permissions and the zero-
importance permissions. We then conducted various experiments with seven classifiers on
the top twenty largest malware families in the well-known DREBIN dataset.

We evaluated the performance of the classifiers in terms of the precision, recall, F1-
score, accuracy, balanced accuracy, and MCC. Balanced accuracy and the MCC are known
as good metrics to evaluate multiclass classification models on imbalanced datasets. The
experiment results showed that LightGBM achieved the best balanced accuracy of 0.9198
with 64 permissions (56 built-in + 8 custom permissions), while the same classifier achieved
a balanced accuracy of 0.9192 with 96 permissions (87 built-in + 9 custom permissions). On
the other hand, AdaBoost achieved the highest MCC of 0.9484 with 96 permissions, while
the same classifier achieved an MCC of 0.9364 with 64 permissions. The highest accuracy
and F1-score was 0.9541 and 0.9212 when the AdaBoost classifier was applied with the
96 permissions.

We also analyzed the effect of the custom permissions. Using all the permissions
including both the zero-importance permissions and custom permissions, LightGBM
achieved a better F1-score, accuracy, balanced accuracy, and MCC by 1.29%, 0.89%, 1.26%,
and 1.0%, respectively, compared to the excluding custom permissions. By excluding
all the permissions with the zero-importance value, but including custom permissions,
LightGBM also achieved a better F1-score, accuracy, balanced accuracy, and MCC by 1.4%,
0.88%, 1.42%, and 0.99%, respectively, compared to excluding custom permissions. Finally,
the effectiveness of custom permissions was verified by applying a p-value approach to
hypothesis testing.

In future work, we will try to seek other features that are obfuscation resilient and
effective for malware family classification and enhance our technique. We will also collect
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datasets with more recent malware samples and the small-sized families and investigate
the effects of the custom permissions and the evaluation metrics.
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Appendix A

Tables A1–A4 show the measured metrics of the classifiers for permission sets S96, S87,
S64, and S56, respectively. Pavg denotes Precisionavg, and Ravg denotes Recallavg. Table A5
is a confusion matrix of one of the five-fold cross-validations using LightGBM for S64.

Table A1. Measured metrics for permission set S96.

Pavg Ravg F1-Score ACC MCC BAC

ANN 0.9246 0.9003 0.9065 0.9458 0.9392 0.9003
DNN 0.8956 0.8832 0.8834 0.9361 0.9284 0.8832
RF 0.9168 0.9058 0.9001 0.9404 0.9337 0.9058
ET 0.9184 0.9125 0.9055 0.9445 0.9382 0.9125
AdaBoost 0.9326 0.9174 0.9212 0.9541 0.9484 0.9174
XGBoost 0.9202 0.9178 0.9155 0.9515 0.9455 0.9178
LightGBM 0.9201 0.9192 0.9162 0.9510 0.9451 0.9192

Table A2. Measured metrics for permission set S87.

Pavg Ravg F1-Score ACC MCC BAC

ANN 0.9078 0.8900 0.8942 0.9309 0.9224 0.8900
DNN 0.8838 0.8753 0.8744 0.9268 0.9178 0.8753
RF 0.9086 0.8922 0.8880 0.9291 0.9212 0.8922
ET 0.9070 0.8908 0.8865 0.9281 0.9201 0.8908
AdaBoost 0.9190 0.8973 0.9029 0.9398 0.9324 0.8973
XGBoost 0.9111 0.9028 0.9029 0.9400 0.9326 0.9028
LightGBM 0.9077 0.9066 0.9033 0.9421 0.9351 0.9066
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Table A3. Measured metrics for permission set S64.

Pavg Ravg F1-Score ACC MCC BAC

ANN 0.9217 0.8906 0.8988 0.9406 0.9333 0.8906
DNN 0.8953 0.8904 0.8899 0.9385 0.9309 0.8904
RF 0.9160 0.9034 0.8981 0.9424 0.9358 0.9034
ET 0.9149 0.9113 0.9030 0.9434 0.9370 0.9113
AdaBoost 0.9351 0.9040 0.9146 0.9430 0.9364 0.9040
XGBoost 0.9165 0.9167 0.9125 0.9495 0.9434 0.9167
LightGBM 0.9219 0.9198 0.9173 0.9512 0.9453 0.9198

Table A4. Measured metrics for permission set S56.

Pavg Ravg F1-Score ACC MCC BAC

ANN 0.8989 0.8632 0.8731 0.9174 0.9073 0.8632
DNN 0.8784 0.8658 0.8674 0.9222 0.9127 0.8658
RF 0.9089 0.8909 0.8871 0.9285 0.9205 0.8909
ET 0.9073 0.8928 0.8874 0.9276 0.9196 0.8928
AdaBoost 0.9189 0.8925 0.8997 0.9395 0.9322 0.8925
XGBoost 0.9117 0.9035 0.9033 0.9400 0.9326 0.9035
LightGBM 0.9097 0.9056 0.9033 0.9424 0.9354 0.9056
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Table A5. Confusion matrix of LightGBM with S64.

Adrd Base- Droid- Droid- Expl 1 Fake- Fake- Fake- Gapp- Gei- Gin- Glod- Icon- Imlog Kmin Mobi- Op- Plan- SMS- Send-
Bridge Dream KungFu Doc Inst 2 Run Usin Nimi Master Ream Osys LeTx Fake Kton Reg Pay

Adrd 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
BaseBridge 0 60 0 0 3 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0
DroidDream 0 0 15 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
DroidKungFu 0 0 1 127 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0
Expl 1 0 0 0 0 8 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0
FakeDoc 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FakeInst 2 0 0 0 0 0 0 180 0 0 0 0 0 1 0 0 0 2 0 1 0
FakeRun 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0
Gappusin 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
Geinimi 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0
GinMaster 0 2 0 1 0 0 0 0 1 1 53 0 0 0 0 0 1 2 0 6
Glodream 0 1 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0
Iconosys 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0
Imlog 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0
Kmin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0
MobileTx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0
Opfake 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0
Plankton 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 121 0 0
SMSreg 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 5 0
SendPay 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 11

1 Expl: ExploitLinuxLotoor, 2 FakeInst: FakeInstaller.
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