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Abstract: Aiming at the problems of large ciphertext size and low efficiency in the current secure
multi-party computation (SMC) protocol based on fully homomorphic encryption (FHE), the paper
proves that the fully homomorphic encryption scheme that supports multi-bit encryption proposed
by Chen Li et al. satisfies the key homomorphism. Based on this scheme and threshold decryption,
a three-round, interactive, leveled, secure multi-party computation protocol under the Common
Random String (CRS) model is designed. The protocol is proved to be safe under the semi-honest
model and the semi-malicious model. From the non-interactive zero-knowledge proof, it can be
concluded that the protocol is also safe under the malicious model. Its security can be attributed to
the Decisional Learning With Errors (DLWE) and a variant of this problem (some-are-errorless LWE).
Compared with the existing secure multi-party computation protocol based on fully homomorphic
encryption under the CRS model, the ciphertext size of this protocol is smaller, the efficiency is higher,
the storage overhead is smaller, and the overall performance is better than the existing protocol.

Keywords: fully homomorphic encryption; secure multi-party computation; multi-bit encryption;
threshold decryption; decisional learning with errors

1. Introduction

As cloud computing develops rapidly, the problem of user privacy data security has
become increasingly prominent. Fully Homomorphic Encryption (FHE) has just solved the
problem of data privacy computing. Fully homomorphic encryption was first proposed by
Rivest et al. [1] in 1978, which could perform various meaningful calculations on ciphertext
without knowing the key. In other words, for any plain-text m and function f, there is
f (Enc(m)) = Enc( f (m)). Since Gentry et al. [2] proposed the first fully homomorphic
encryption scheme in 2009, many fully homomorphic encryption schemes such as BV11 [3],
BGV12 [4], Bra12 [5], GSW13 [6], and CKKS17 [7] have appeared in recent years. Fully ho-
momorphic encryption can be used as a building block of a secure multi-party computation
(SMC) protocol and shows good potential in the design of a secure multi-party computation
protocol. In addition, the concept of secure multi-party computation originated from the
millionaire problem proposed by Yao [8], which is characterized by allowing multiple
parties to jointly calculate a certain function to obtain the result without private data being
leaked out.

Nowadays, domestic and international scholars have carried out much research on
the secure multi-party computation protocol based on the fully homomorphic encryption
scheme. In 2012, López-Alt et al. [9] proposed the concept of Multi-Key Fully Homomor-
phic Encryption (MFHE). Based on the improved NTRU scheme [10], an MFHE scheme
was constructed, which can operate the input encrypted under multiple unrelated keys, but
the complexity is too high. In 2016, based on the Learning With Errors (LWE) assumption,
Mukherjee et al. (MW16 scheme) [11] implemented a multi-key secure multi-party compu-
tation protocol with only two rounds of interaction under the CRS model, achieving the
best interaction rounds, but the ciphertext matrix was too large. In 2017, Wang et al. [12]
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constructed a simple three-round, leveled, multi-key, secure multi-party computation proto-
col under the CRS model based on the GSW13 scheme. Compared with the MW16 scheme,
although an additional round of interaction was added, the complexity of encryption and
decryption was low, and the ciphertext expansion rate was small, which did not require a
running key. In 2018, due to the problem that the secure multi-party computation protocol
under the CRS model weakened the user’s ability to independently generate their own keys,
Kim et al. (KLP18 scheme) [13] constructed a three-round, secure, multi-party computation
protocol without CRS. The protocol was safe against semi-malicious opponents, but it
could not fight against completely malicious opponents. In 2020, Tang et al. [14] improved
the ciphertext extension method of the KLP18 scheme with the help of the coding operation
in Li’s scheme [15] and designed a three-round, secure, multi-party computation protocol
based on MFHE without the CRS model, improving the efficiency and reducing decryption
noise, but it still could not prove that it was safe in a fully malicious environment. In
2021, Tang et al. [16] proved the key homomorphism of the multi-bit fully homomorphic
encryption scheme proposed by Li [17]. Moreover, based on this scheme, a three-round,
secure, multi-party computation protocol that could support multi-bit encryption under
the CRS model was designed, which further reduced the complexity of the NAND gate.

It can be seen from the above related work that although the secure multi-party
computation protocol under the CRS-free model allows MFHE users to independently
generate their own keys, the secure multi-party computation protocol under this model is
not secure enough to resist completely malicious adversaries. What is more, nowadays, the
fully homomorphic encryption-based secure multi-party computation protocol under the
CRS model has problems such as large ciphertext size and insufficient efficiency. Therefore,
to solve the problems mentioned above, a three-round secure multi-party computation
protocol that can resist malicious opponents under the CRS model is designed in this
paper with the help of the New Fully Homomorphic Encryption (NFHE) scheme [18] and
threshold decryption. This protocol supports multi-bit encryption. In addition, compared
with the existing secure multi-party computation protocol under the CRS model, the
ciphertext size of the protocol is smaller, and the overall performance is better than the
existing protocol.

2. Preliminaries
2.1. Symbolic Representation

In this paper, Z, R, and Zq respectively represent the integer set, real number set,
and integer modulo q residual ring. Bold italic lowercase letters represent vectors, and
bold italic uppercase letters refer to matrices. Moreover, the length of the n-dimensional

vector a is defined as its Euclidean norm ‖a‖ =

√
n−1
∑

i=0
a2

i , and the length of the vector

set S is defined as ‖S‖ = maxa∈S‖a‖. a← D means randomly selecting variable a from

probability distribution D, and a R← U means randomly and uniformly selecting variable a
from set U. Vector a ∈ Zn

q can be expressed as a = (a0, · · · , an−1). The polynomial b ∈ Rq
can be expressed as b = (b0, · · · , bn−1)·ci represents the i-th row of the matrix C, In is the
n-dimensional identity matrix, and ϕ(y) refers to the probability Pr[y ≤ x|y ∼ N(0, 1) ]. In
addition, for the polynomial b, c ∈ R, b× c = bc mod(xn + 1) can be defined.

In this paper, the logarithmic function log is based on 2, except that the basis is
specified. O and o represent the complexity of the calculation. At the same time, for
variable σ and any constant c, if f (σ) = O(σc), then f (σ) can be expressed as poly(σ). If
there is f (σ) = o(σ−c), then f (σ) can be expressed as negl(σ), which is called a negligible
function of σ.
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2.2. Definitions and Theorems

Definition 1. ([19]) (Learning With Errors, LWE) For the vector s ∈ Zn
q , the LWE distribution

As,χ on Zn
q ×Zq refers to uniformly selecting a ∈ Zn

q at random, selecting the error e← χ , and
outputting (a, b = a · s + e modq).

Definition 2. (Search.LWEm,n,q,χ) For vectors ∈ Zn
q , s is recovered from the given m independent

samples (ai, bi) ∈ Zn
q ×Zq selected from the distribution of As,χ.

Definition 3. (Decision.LWEm,n,q,χ) For vector s ∈ Zn
q , the attacker is required to distinguish two

sets of random variables containing m independent samples with non-negligible advantage. The two sets
of variables are taken from the uniform distributions on distributions As,χ and Zn

q ×Zq, respectively.

Definition 4. (Some-are-errorless LWE) for q ≥ 1, n > 0, the error distribution on R is χ′,
Tq =

{
0, 1

q , · · · , q−1
q

}
, where q ∈ Z. The distribution A′s,χ on Tn

q × Tq refers to uniformly
selecting a ∈ Tn

q , selecting the error e← χ′ , and outputting (a, b = a · s + e). Some-are-errorless
LWE distinguishes the following two situations.

(1) Select all samples uniformly from Tn
q × Tq.

(2) For the vector s ∈ Tn
q , the previous sample is selected from A′s,0. All the remaining samples

are selected from A′s,χ. In other words, the previous sample is (ai, b = ai · s), and no error e is
introduced. The remaining samples are (ai, b = ai · s + ei), i > l, and each sample introduces
a small error ei.

Definition 5. Secure multi-party computation. The general formal definition of an SMC agree-
ment [9] can be described as follows. It is assumed that there are N participants {P1, P2, · · · , PN},
and xi(i ∈ [N]) is the private data owned by each participant P. In addition, all participants jointly
calculate a certain effective function y = f (x1, x2, · · · , xN). After the calculation, each Pi can
obtain y but cannot obtain the private data of other participants.

Theorem 1. If αi(i ∈ [N]) is a series of independent random variables that obey a bounded distribu-

tion of Bχ, then the random variable α = 1
N

N
∑

i=1
αi also obeys the bounded distribution of Bχ.

Proof. Suppose E(αi) =
Bχ

poly(σ) , according to Markov inequality,

Pr{|α| > Bχ} ≤
E(|α|)

Bχ
=

1
N·Bχ

E

(
N

∑
i=1

αi

)
= 1

poly(σ) . So, the conclusion holds.
End. �

2.3. Secure Multi-Party Computation Model

(a) Semi-honest model: All participants will strictly abide by the agreement and will
not actively change the agreement or data. However, intermediate calculation results may
be retained and used to calculate the private data of other participants.

(b) Semi-malicious model: The adversary can decide whether to faithfully execute the
original agreement based on the input and a certain degree of randomness.

(c) Malicious model: All computing participants can tamper with or leak the agreement
and data at will, and even prevent the normal execution of the agreement.

3. Efficient Fully Homomorphic Encryption Scheme

This scheme is an improved NFHE scheme based on GSW13 in reference [18], and the
structure of the scheme is as follows. The modulus q and the dimension N are settled, and
the ciphertext C is an N×N-dimensional matrix defined on Zp. In addition, each component



Appl. Sci. 2021, 11, 10332 4 of 11

of the matrix is much smaller than q. The private key sk of C is an N-dimensional vector
defined on Zp. Let the plain-text µ be a small integer. When C · sk = µ · sk + e, C is
called the ciphertext of µ, where e is the small error vector. In the decryption process, first
extract the i-th row Ci of C, then calculate x ← 〈Ci, sk〉 = µ · ski + ei , and finally output
µ = bx/skie, where ski is the i-th element of sk, ei is the i-th element of e, and i ∈ [0, N − 1].
The message µ can be regarded as an eigenvalue of the ciphertext matrix C, and the private
key sk is the approximate eigenvector of C corresponding to the eigenvalue µ.

The structure of the scheme is as follows. First of all, defining functions such as
mbDpt(a), mbDpt(−1)(a′), mbFlatten(a′), and pofmb(b), the expansion method of the
NFHE scheme is given. Then, based on the above functions, the five polynomial time algo-
rithms included in the NFHE program are designed, namely the key generation algorithm
NFHE.Keygen(n, q), the encryption algorithm NFHE.Encrypt(pk, µ), the decryption al-
gorithm NFHE.Decrypt(sk, C), the homomorphic addition algorithm NFHE.Add(C1, C2),
and the homomorphic multiplication algorithm NFHE.Mult(C1, C2).

Let a and b be vectors on Zk
q. k is a positive integer, q is a modulus, and p is a power of 2.

t =
⌈

logp q
⌉

, and N = kt. The definition of each function is shown in the following formula.

mbDpt(a) = a′ = (a1,1, · · · , a1,t, · · · , ak,1, · · · , ak,t) ∈ ZN
p

where a′ is an N-dimensional vector, ai =
t

∑
j=1

ai,j pj−1, ai,j ∈ Zp.

mbDpt(−1)(a′) =
(
∑ pj · a1,j, · · · , ∑ pj · ak,j

)
mbFlatten(a′) = mbDpt(mbDpt(−1)(a′))

pofmb(b) =
(

b1, pb1, · · · , pt−1b1, · · · , bk, pbk, · · · , pt−1bk

)
a. Key generation algorithm NFHE.Keygen(n, q). For a positive integer n, the depth of

the homomorphic operation is l. Randomly and uniformly select A R← Zn×n
q from

Zn×n
q , and sample s from the discrete Gaussian distribution χn×l on Zn×l . In addition,

e← χn . The public key is pk = (A, b = A · s + e) ∈ Zn×n
q ×Zn

q , and the private key

is sk =

(
−s
1

)
∈ Zn+1

q .

b. Encryption algorithm NFHE.Encrypt(pk, µ). For the plain-text µ ∈ {0, 1} to be en-
crypted, randomly selecting ri, ei,1 ← χn and ei,2 ← χ , i = 1, · · · , (n + 1) · t, calculate
Ci,1 = AT · ri + ei,1 ∈ Zn

q and Ci,2 = bT · r2 + ei,2 ∈ Zq. Among them, eij is the j-th
element of ei, and Cij is the j-th element of Ci. Let C′ be a matrix formed by array-
ing m = (n + 1) · t ciphertexts as column vectors, whose dimension is (n + 1)×m.
Output ciphertext C = mbFlatten

(
µ · IN + mbDpt

(
C′
))
∈ Zm×m

p .
c. Decryption algorithm NFHE.Decrypt(sk, C). For ciphertext C ∈ Zm×m

p and private

key sk =

(
−s
1

)
∈ Zn+1

q , let s′ = pofmb(sk), and calculate and output plain-text

µ =
⌊
〈s′, Cm−1〉/(q/2p) + 1

2

⌋
mod2.

d. Homomorphic addition algorithm NFHE.Add(C1, C2). Input the ciphertext C1 and
C2, and output the new ciphertext C = mbFlatten(C1 + C2) obtained after homomor-
phic addition.

Homomorphic multiplication algorithm NFHE.Mult(C1, C2). Input the cipher-text C1
and C2, and output the new ciphertext C = mbFlatten(C1 · C2) obtained after homomor-
phic multiplication.
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3.1. The Correctness of the Scheme

First, correctly analyze the homomorphic addition and multiplication of the scheme. For
the homomorphic addition, there will be C = mbFlatten((µ1 + µ2) · IN + mbDmp(C1 + C2))
and NFHE.Dec(sk, C) = (µ1 + µ2)mod2. After homomorphic addition is performed on
each scheme, the noise will not exceed twice the original ciphertext. For homomorphic mul-
tiplication, there will be C · sk = µ1 ·µ2 · sk+µ2 · e1 +C1 · e2 and NFHE.Dec(sk, C) = µ1 · µ2
(e1 and e2 refers to the noise in ciphertext C1 and C2). Since the coefficient of µ2 is {0, 1},
and the coefficient of C1 is limited to Zp, the noise will not exceed pN + 1 times the original
ciphertext after each homomorphic multiplication.

Theorem 2. For the NFHE scheme, L represents the maximum depth of the homomorphic operation
circuit. In the case of no homomorphic operation, if C is the cipher-text obtained by encrypting 0,
when |〈Cm−1, s′〉| < q/

[
4p(pN + 1)L

]
, the scheme will be correct.

Proof. According to the analysis of the correctness of homomorphic addition and mul-
tiplication, after each homomorphic operation, the noise does not exceed pN+1 times
of the original ciphertext. Therefore, when |〈Cm−1, s′〉| < q/

[
4p(pN + 1)L

]
, after per-

forming no more than L homomorphic operations, |〈Cm−1, s′〉| < q/(4p). According to
the decryption algorithm, when |〈Cm−1, s′〉| < q/(4p), there is 〈s′, Cm−1〉/(q/2p) < 1/2.
Therefore, if the encrypted message is 0, then 〈Cm−1, s′〉 is closer to 0 than q/(2p),
µ = b〈s′, Cm−1〉/(q/2p) + 1/2cmod2 < b1/2 + 1/2cmod2 = 0. Otherwise, the situation
is reversed, and the correctness of the scheme can be guaranteed.

For the ciphertext obtained by encrypting 0, there are〈
Cm−1, s′

〉
= 〈r, s〉+ em−1,2 − 〈em−1,1, e〉

Therefore, as long as the appropriate parameter q is selected, the correctness can be
satisfied by making it large enough. �

3.2. Security of the Scheme

Theorem 3. Supposing that parameters n = poly(λ) and q = poly(λ) are the polynomials of
the security parameter λ, if the attacker can distinguish the ciphertext of the NFHE scheme from
the uniform distribution on Zm×m

p with a non-negligible advantage, the DLWEq,n,2n+1,χ problem
can also be solved. Therefore, if the problem is assumed to be difficult, then the NFHE scheme can
achieve IND-CPA security.

The detailed proof can be found in reference [18].

3.3. Optimization Based on Multi-Bit Encryption

In the GSW13 scheme and the NFHE scheme, although the plaintext messages are all
µ ∈ {0, 1}, the GSW13 scheme cannot support multi- bit encryption under the condition that
the system parameters remain unchanged [17]. In addition, the NFHE scheme adopts the
following modifications to realize multi-bit encryption without changing system parameters.

Encryption Algorithm NFHE.Encrypt(pk, µ). For plain- text µ ∈ Zp, uniformly select ri,
ei,1 ← χn , ei,2 ← χ , and i = 1, · · · , (n + 1) · t at random. Calculate Ci,1 = AT · ri + ei,1 ∈ Zn

q

and Ci,2 = bT · r2 + ei,2 ∈ Zq. Let C′ be a matrix formed by arranging m = (n + 1) · t
ciphertexts as column vectors, the dimension of which is (n + 1)× m. Then output the
ciphertext C = mbFlatten

(
µ · IN + mbDpt

(
C′
))
∈ Zm×m

p .
Decryption algorithm NFHE.Decrypt(sk, C). For ciphertext C ∈ Zm×m

p and private

key sk =

(
−s
1

)
∈ Zn+1

q , let s′ = pofmb(sk), and calculate and output plain-text

µ =
⌊
〈s′, Cm−1〉/(q/2p) + 1

2

⌋
modp.
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When not performing homomorphic operation, if the plain-text message is µ′, according
to the encryption/decryption process, there will be µ =

⌊
〈s′, Cm−1〉/(q/2p) + 1

2

⌋
modp =⌊

µ′ + e/(q/2p) + 1
2

⌋
modp after decryption. When |e/(q/2p) < 1/2|, there will be

µ = µ′, which can be decrypted correctly. For homomorphic addition, there will be
C = mbFlatten((µ1 + µ2) · IN +mbDmp(C1 + C2)) and NFHE.Dec(sk, C) = (µ1 + µ2)modp.
For homomorphic multiplication, there will be C · sk = µ1 · µ2 · sk + µ2 · e1 + C1 · e2 and
NFHE.Dec(sk, C) = µ1 · µ2. Therefore, it can be decrypted correctly.

After homomorphic multiplication, since the coefficients of µ2 and C1 are both limited
to Zp, the noise does not exceed pN + p times of the original ciphertext. Therefore, when
performing multi-bit encryption, the noise limit of Theorem 2 becomes |〈Cm−1, s′〉| <
q/
[
4p(pN + p)L

]
. In addition, due to pN = pkt� p, the effect of this change on modulus

q can be ignored.

4. Key Homomorphism of NFHE Scheme
4.1. Definition of Key Homomorphism

It is assumed that F : K× X → Y is a pseudo-random function (PRF) [20], and K is
the key space, which has a group structure and satisfies a certain ⊕ operation on the group.
Besides, X is the plain-text space, and Y is the ciphertext space. If for any k1, k2 ∈ K and ξ ∈ X,
an effective algorithm can be found to calculate F(k1 ⊕ k2, ξ) from F(k1, ξ) and F(k2, ξ).

Now its definition is extended to multiple keys, assuming that the number of keys is
N. For a public key encryption scheme E, if (pki, ski) is the effective public key or private
key pair of the scheme, and for pk = g(pk1, pk2, · · · , pkN), sk = g′(sk1, sk2, · · · , skN) can
be found. (pk, sk) can also be the effective public key or private key pair of E and E is called
the key pair homomorphic nature. Among them, g and g’ are both effective computable
functions. In particular, if both g and g’ are sum (product/linear) functions, then E is said
to have the property of key addition (multiplication/linear) homomorphism.

4.2. Proof of Key Homomorphism

In the NFHE scheme, s ∈ Zn×l , sk = t =

(
−s
1

)
∈ Zn+1

q is the private key, and

pk = K = (A, b = A · s + e) ∈ Zn×n
q × Zn

q is the public key. Denote it as pk = K =

1
N

N
∑

i=1
Ki. If pk is used to encrypt the plain-text µ, C = mbFlatten

(
µ · IN + mbDpt

(
C′
))

= mbFlatten(µ · IN + mbDpt(r ·K)) is obtained.

sk = t = 1
N

N
∑

i=1
ti can be used to decrypt the ciphertext. In other words, if A remains

unchanged, the scheme will satisfy the linear homomorphism of the key.

Proof. tK = 1
N

N
∑

i=1
ti · 1

N

N
∑

i=1
Ki

=

 − 1
N

N
∑

i=1
si

1

(A, 1
N

N
∑

i=1
bi

)

= 1
N

N
∑

i=1
ei ≈ 0

is right. Therefore, there is still tC = mbFlatten
(
µ · IN + mbDpt

(
r ·K

))
t = µ · t+ r ·K · t =

µ · t + r · e = µ · t + e. and e = r · e
Therefore, plain-text µ can be obtained by decryption according to the original scheme.

Therefore, when A is unchanged, the scheme will satisfy the linear homomorphism
of the key. �
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5. Secure Multi-Party Computation Protocol Based on NFHE Scheme
5.1. SMC Protocol Based on Leveled NFHE Scheme

The basic NFHE scheme in this paper is leveled, which can only carry out a limited
number of homomorphic operations. Although this limitation can be removed by boot-
strapping to achieve any number of homomorphic operations, most of the advantages of
the scheme will also be destroyed. Therefore, an SMC protocol based on the leveled NFHE
scheme can be constructed.

π f : Under the CRS model, a protocol for safely computing a single-valued function f
is constructed, which is always safe under the semi-honest model and the semi-malicious
model. The details are as follows.

Preprocessing: Set parameter, ensuring that all participants share parameter settings.
Choose a lattice dimension parameter n, where λ is the security parameter. Pick an error
distribution χ and a modulus q, such that for l = blog qc + 1, the some-are-errorless

LWEn,q,l,χ holds. Let m = n · l. A common random string matrix A R← Zn×n
q is selected.

Input: For i ∈ [N], each participant Pi inputs private data xi ∈ {0, 1}, then calculate
the function f

(
{0, 1}N → {0, 1}

)
. d is the circuit depth of f.

Round 1. For Pi, the following is operated.

- Generate (pki, ski)← NFHE.Keygen(n, q) .
- Release the public key {pki}i∈[N].

Round 2. Each Pi receives the public key {pki}i∈[N]\{i} of others and performs the
following operations.

- Calculate the joint public key pk = K = 1
N

N
∑

i=1
Ki.

- pk is used to calculate ciphertext C = mbFlatten
(
µ · IN + mbDpt

(
C′
))

and publish
ciphertext {Ci}i∈[N].

Round 3. Each party Pi receives the ciphertext {Ci}i∈[N]\{i} of others and performs
the following operations.

- Perform homomorphic operations.
- Perform threshold decryption. Pi selects a random vector γ′i ← χm−l . Let

γi =
(
γ′i , 0, · · · , 0

)
∈ χm, then calculate the partial decryption result ηi = ti ·C+ γi ∈ Zm

q .
Finally, release ηi.

Output: Each participant Pi accepts others to decrypt {ηi}i∈[N]\{i}. Calculate

η = 1
N

N
∑

i=1
ηi = tC + 1

N

N
∑

i=1
γi = tC + γ, then calculate v = ηG−1(wT), where G−1(wT)

is a bit decomposition of wT and w =
(
0, 0, · · · ,

⌈ q
2
⌉)

. If the value of v is close to 0, then
µ = 0. If the value of v is close to

⌈ q
2
⌉
, then µ = 1.

5.2. Correctness

The correctness of the agreement mainly depends on two aspects:

a. It has been proven that it is right to use the NFHE scheme in the protocol, so it is only
necessary to verify whether the parameters used are correct. Besides, it can be seen
from this scheme that through setting the parameter mentioned above, the noise does
not exceed pN + p times of the original ciphertext after each homomorphic operation.
Therefore, when |〈Cm−1, s′〉| < q/

[
4p(pN + p)L

]
, if it does not exceed L homomorphic

operations, |〈Cm−1, s′〉| < q/(4p), and the scheme can be decrypted correctly.
b. The correctness of the encryption and decryption of the protocol mainly involves

three issues. Upon analyzing the key homomorphism in the previous scheme, it can
be seen that the key pair used in protocol π f is effective. Besides, from Theorem 1,
it can be seen that the joint error in protocol π f also obeys Bχ bounded distribution.
Then, prove the correctness of the protocol joint decryption.
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Proof. According to η = 1
N

N
∑

i=1
ηi = tC + 1

N

N
∑

i=1
γi = tC + γ

There is ηG−1(wT) = (tC + γ)G−1(wT)
= tCG−1(wT)+ γG−1(wT)
= µ

⌈ q
2
⌉
+
(

γ
′
1, · · · , γ

′
(m−l), 0, · · · , 0

)
G−1

 0
...⌈ q
2
⌉
 = µ

⌈ q
2
⌉

Since G−1⌈ q
2
⌉

is a bit decomposition of
⌈ q

2
⌉
, the maximum decomposition length of

⌈ q
2
⌉

is blog qc+ 1. Moreover, from l = blog qc+ 1, the maximum length of G−1


⌈ q

2
⌉

...⌈ q
2
⌉


is l. Then, as the last l bits in γ are all 0, and the protocol can correctly perform joint
decryption. �

5.3. Security
5.3.1. In Semi-Honest Model

In the CRS model, the security of the protocol is based on the following issues.

a. Under the above settings, the security of the NFHE solution can be attributed to the
DLWE problem.

b. In ηi = ti ·C+ γi and η = tC+ γ, the first l components in γi and γ obey the bounded
distribution of Bχ, which implies that these two equations constitute two some-are-
errorless LWE instances discussed in Section 2. Therefore, after each party announces
its own ηi in Round 3, its private key and joint key will not be disclosed, and the
protocol is safe under the semi-honest model.

5.3.2. In Semi-Malicious Model

To be easily expressed, ρi = ηiG−1(wT)+ εi = vi + εi and εi ← χ are used to replace
ηi as part of the decryption of Pi. If the ρi obtained by simulation is indistinguishable
from the real ρi obtained by decrypting ηi, the ηi obtained by the simulation will be also
indistinguishable from the real ηi.

Theorem 4. If f is a computable function with N inputs and one output of a deterministic
polynomial time (PPT), then the above protocol π f can realize that f is safe when facing a semi-
malicious adversary who happens to capture N − 1 participants.

Proof. A PPT simulator S is constructed to target a semi-malicious adversary who has
captured N − 1 users, and this static semi-malicious adversary is denoted as A. Ph is
assumed as the only honest party left. Simulator S performs the following operations on
behalf of Ph.

In the second round, the simulator S uses 0 to replace the real input of the hon-
est party Ph for encryption. Then the simulator S obtains the input and private keys of
N − 1 captured parties from the “evidence tape”. These inputs are sent by S to an ideal
machine to obtain the output y. Meanwhile, the ciphertext C that performed the homo-
morphic calculation can be obtained. Moreover, S calculates the simulated part to decrypt
ρ′h ← S

(
y, C, h, {ski}i∈[N]\{h}

)
for Ph, and the decryption results of the simulated part are

published in the third round, instead of the real decryption.
A series of mixed attack games are used to prove that the real result and the simu-

lated result cannot be distinguished, namely IDEALF,S,Z
comp
≈ REALπ,A,Z. Z represents a

specific environment.
Game REALπ,A,Z: In the real environment Z, there is a semi-malicious adversary who

executes protocol π f .
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Game HYBπ,A,Z: Similar to game REALπ,A,Z, the difference is that it is assumed that
Ph obtains all the private keys {ski}i∈[N]\{h} after the second round, and in the third round,

the simulated part is used to decrypt ρ′h ← S
(

y, C, h, {ski}i∈[N]\{h}

)
instead of the real

decryption being released.
Game IDEALF,S,Z: Similar to game HYBπ,A,Z, except that in the second round, Ph

uses 0 to replace the real input encryption and is released. �

Lemma 1. REALπ,A,Z
stat≈ HYBπ,A,Z

Proof. The difference between the two games is that the decryption ρ′h of the real part
of Ph is replaced by analog decryption ρ′h. So, if v = µ

⌈ q
2
⌉
+ e′, its simulated decryption

algorithm can be

ρ′h = Nµ
⌈ q

2

⌉
+ Ne′ −∑

i 6=h
tiCG−1

(
wT
)
+ ε′h= Nµ

⌈ q
2

⌉
+ Ne′ + ε′h −∑

i 6=h
vi

where e′ ← χ , ε′h ← χ .
The real decryption result of Ph is: if v = 1

N ∑
i∈[N]

vi = µ
⌈ q

2
⌉
+ e′ ⇒ Ne′ = ∑

i∈[N]
vi−Nµ

⌈ q
2
⌉

, then:

ρh = ηhG−1
(

wT
)
+ εh = vh + εh

= ∑
i∈[N]

vi −∑
i 6=h

vi + εh

= ∑
i∈[N]

vi − Nµ
⌈ q

2

⌉
+ Nµ

⌈ q
2

⌉
−∑

i 6=h
vi + εh

= Ne′ + Nµ
⌈ q

2

⌉
−∑

i 6=h
vi + εh

where εh ← χ .
It is easy to determine that εh and ε′h are statistically indistinguishable, which proves

that ρh and ρ′h cannot be distinguished, so the conclusion is proven. �

Lemma 2 . HYBπ,A,Z
comp
≈ IDEALF,S,Z

Proof . The ciphertext generated by Ph is the only difference between the two games. From
the semantic security of the encryption method of the NFHE scheme, it can be seen that the
ciphertext is computationally indistinguishable, so the two games are also computationally
indistinguishable.

From Lemma 1 and Lemma 2, IDEALF,S,Z
comp
≈ REALπ,A,Z can be obtained.

End. �

5.3.3. In Malicious Model

Due to the SMC protocol under the CRS model, if the protocol is proven to be safe
under the semi-malicious model, the protocol can be converted into a protocol under the
malicious model by non-interactive zero-knowledge proofs (NIZKs) [21]. Therefore, the
SMC protocol designed in this paper is also safe under the malicious model.

5.4. Performance and Comparison

References [11,12] are both single-bit SMC protocols. If B is the number of input bits,
then the two schemes need to be repeated B times. Reference [16] and the SMC protocol in
this paper both support multi-bit encryption, which only needs to be executed once.
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Compared with the protocol in reference [16], the protocol constructed in this paper
has the following two improvements.

(a) From the perspective of efficiency, the protocol constructed in this paper improves
the ciphertext size (n + 1)2dlog qe2 by modifying the expansion method of the GSW13

scheme, and the obtained cipher-text size is (n+1)2dlog qe2
dlog pe . In addition, under the multi-

bit encryption, the ciphertext size is (n+B)2dlog qe2
dlog pe , as shown in Table 1. Therefore, the

performance of the protocol under the existing CRS model is the best.
(b) Moreover, in terms of storage overhead, the ciphertext of the NFHE scheme based

on the SMC protocol in this paper is a matrix, so the ciphertext expansion rate is also O(1).
At the same time, since the size of the ciphertext is much larger than the size of the key,
the protocol in this paper effectively reduces the storage overhead of the system by greatly
compressing the size of the ciphertext.

The main performance comparison of the existing secure multi-party computation
protocols based on fully homomorphic encryption under the CRS model is shown in
Table 1, where “Basic” represents the basic fully homomorphic encryption scheme used
in the protocol; “Rd” represents the protocol Interactive rounds; “CTE Ratio” represents
the ciphertext expansion ratio; “Depth” represents the complexity of the NAND gate; and
the last column “Ciphertext Size” represents the size of the ciphertext. B is the number of
input bits; N is the number of users; n is the lattice dimension; d is the NAND depth of the
circuit to be evaluated; ω < 2.3727 is a constant; q ∈ Z is a modulus; and p is a power of 2.

Table 1. Performance comparison of SMC protocol based on FHE.

Protocol Basic Rd CTE Ratio Depth Ciphertext Size

Mukherjee et al. [11] GSW13 2 O(1) Õ
(

BN(nd)ω) (n + 1)2dlog qe2

Wang et al. [12] GSW13 3 O(1) Õ
(

B(nd)ω) (n + 1)2dlog qe2

Tang et al. [16] GSW13 3 O(1) Õ
(
(nd)ω) (n + B)2dlog qe2

Ours GSW13 3 O(1) Õ
(
(nd)ω) (n+B)2dlog qe2

dlog pe

6. Conclusions

Based on the efficient FHE scheme, a leveled, multi-bit, multi-key, secure multi-party
computation protocol under the CRS model is constructed in this paper. This protocol has
a total of three rounds of communication, which is proven to be safe in a semi-honest and
semi-malicious environment, and the security is based on DLWE and the some-are-errorless
LWE. Moreover, compared with the existing protocol, the ciphertext expansion rate of this
protocol is small, and the multi-bit encryption greatly reduces the number of homomorphic
calculations. Meanwhile, the complexity of the NAND gate is low, and the ciphertext
size is small. The overall performance is optimal among the existing FHE-based secure
multi-party computation protocols. Therefore, for the next study steps, attention will be
paid to how to conduct the appropriate methods to ensure the safe transmission of data
and meet the coordination requirements of the session when implementing the protocol.
Meanwhile, the protocol will be further improved to achieve practical standards.
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